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RESUMO

A complexidade dos problemas reais tem chamado a atenção de muitos tipos de

pesquisa, especialmente aquelas que lidam com grandes conjuntos de dados. A dificuldade

de extrair conhecimento de um banco de dados e devido ao aumento de dados de redes

sociais (por exemplo, Facebook e Twitter) e profissionais (por exemplo, LinkedIn), cada

vez mais aplicações de análise de dados em ambientes com alto dimensional têm sido

discutidas na literatura. A Triadic Concept Analysis (TCA) é uma técnica matemática

aplicada à análise de dados em que as relações entre objetos, atributos e condições

permitem extrair o conhecimento da base de dados em uma representação hierárquica

e sistematizada. É considerada uma importante teoria para formalizar a representação do

conhecimento. No entanto, o volume de informações a ser processado pode tornar o TCA

impraticável, pois exige recursos computacionais poderosos. Existem alguns algoritmos

para extrair conceitos, mas eles não são eficientes em grandes conjuntos de dados porque

os custos computacionais se tornam exponenciais.

Este trabalho tem como objetivo adicionar uma nova estrutura de dados,

denominada Binary Decision Diagram (BDD), no algoritmo TRIAS para extrair conceitos

triádicos em contextos de alta dimensionalidade. O BDD é usado para representar

contextos formais, objetos, atributos e condições. Além disto, este representa informações

de forma canônica e simplificada para reduzir os recursos necessários para manipular

grandes conjuntos de dados, mesma estrutura para problemas de grandes conjuntos

de dados. Os experimentos mostram que a abordagem proposta tem um desempenho

melhor - até 56 % mais rápido - do que o algoritmo original. Além disso, foram

encontrados conceitos que não eram capazes de atingir anteriormente, considerando

contextos dimensionais elevados.

Nesta pesquisa apresenta-se o comportamento dos algoritmos TRIAS e TRIAS

BDD em diferentes contextos. Dentre os 45 contextos sintéticos triádicos avaliados,

entre 500 e 10.000 objetos, em apenas dois o TRIAS BDD apresentou tempo maior de

processamento que o algoritmo original (TRIAS). Realizou-se também um estudo do uso

de memória RAM para ambos os algoritmos, além da ordenação das variáveis do contexto

triádico por atributos e condições para analisar o impacto desta ordenação na geração dos

BDD’s. De acordo com os resultados obtidos, notou-se que em todos os experimentos

o TRIAS BDD utilizou menos quantidade de memória RAM quando comparada ao

algoritmo TRIAS. Além disso, quando utilizado as ordenações crescentes e decrescentes,

a utilização de memória RAM foi ainda menor quando comparada a abordagem sem

ordenação. Os resultados apresentam consumo de até 46% menos memória RAM no



algoritmo proposto quando comparado ao algoritmo original.

Palavras-Chave: Análise Formal de Conceitos. Análise Formal Triádica. Diagrama de

Decisão Binária. Algoritmo TRIAS.



ABSTRACT

The complexity of real problems has directed the attention of many types of

research, especially those handling large datasets. The difficulty to extract knowledge

from a database and due to the increase of social network (e.g. Facebook and Twitter)

and professional (e.g. LinkedIn) data, more and more applications of data analysis

on environments with high-dimensional have been discussed in the literature. Triadic

Concept Analysis (TCA) is an applied mathematical technique for data analysis in

which the relations between objects, attributes and conditions allow extracting database

knowledge in a hierarchical and systematized representation. It is considered an

important theory to formalize the representation of knowledge. However, the volume of

information to be processed could make TCA impracticable because it demands powerful

computational resources. There are some algorithms to extract concepts, but they are

not efficient in large datasets because the computational cost is usually exponential.

The main objective of this thesis is to use Binary Decision Diagrams (BDD’s)

as a structure to represent contexts and extract concepts and implication rules in high-

dimensional datasets. BDD’s are used to represent formal contexts, objects, attributes

and conditions in a canonical and simplified way in order to reduce the resources

needed to manipulate large datasets. The experiments show that our approach has

better performance – up to 56% faster – than the original algorithm used in this work

(TRIAS). Also, our approach discovered concepts that were not able to achieve previously,

considering high-dimensional contexts.

This research presents the behavior of the TRIAS and TRIAS BDD algorithms

in different contexts. Among 45 triadic synthetic contexts evaluated, between 500 and

10,000 objects, only two TRIAS BDD has a longer processing time than the original

algorithm (TRIAS). Also, a detailed study of the RAM memory usage for both algorithms

was accomplished, in addition to the ordering of the variables of the triadic context by

attributes and conditions to analyze the impact of this ordering on the BDD’s creation.

According to the results obtained, it was noted that in all experiments, TRIAS BDD used

less RAM memory when compared to the TRIAS Algorithm. Furthermore, when using

ascending and descending orderings, the use of RAM was even less when compared to the

unordered approach. The results show consumption up to 46% less RAM in the proposed

algorithm when compared to the original algorithm.

Keywords: Formal Concept Analysis. Triadic Concept Analisys. Binary Decision



Diagram. TRIAS Algorithm.
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1 INTRODUCTION

Currently, advanced technologies have facilitated to store dense volumes of

information in many diverse environments. Information previously stored only in textual

format, can be found nowadays in different formats such as images, audio clips, video

streaming and others. It is perceived an important problem which is to deal with the

extraction of information and knowledge from a database that, due to the volume, makes

the task complex.

Several areas of knowledge, for example, Data Mining, Ontology, Bioinformatics,

Information Retrieval and Formal Concept Analysis (FCA) have been concentrating efforts

to address this problem (TANG; HUIA; FONG, 2015)(MAIO et al., 2014)(FAN et al.,

2013)(SENATORE; PASI, 2013)(LI; TSAI, 2013)(ZERARGA; DJOUADI, 2013). Also,

due to the fast development of network technology (HE et al., 2015) (HE; WANG;

HUANG, 2016), more and more approaches to dealing with large datasets (ASHFAQ

et al., 2017)(ASHFAQ; HE; GHEN, 2017)(WANG, 2015)(WANG; ASHFAQ; FU, 2015)

have been emerging. Although many approaches have been developed and presented, it

still not achieving the main purpose which is to extract knowledge from large data sets.

Information has become an important asset in all organizations. Thus, the ability

to properly manage information has become the biggest difference for the companies.

Referring to Information Science, information is data structured that can provide some

knowledge. This same science defines the following cycle: Data → Information →
Knowledge. From this perspective, data generate information that generates knowledge

which completes the cycle by generating more data (DAVENPORT; PRUSAK, 1998).

The advance of technology has facilitated the process of collecting and storing

data which has resulted in an increase in storage requirements. This amount of data from

various sources becomes impractical the analysis of it in order to generate intelligent

information. Therefore, techniques are needed to automate or assist the process of

obtaining information from data.

Several techniques have been proposed in the area of data mining. These techniques

are mostly based on statistical concepts. However, there are also those based on natural

or bio-inspired computing. In general, although distinct, they have some points in

common, such as the fact that they use the probability distribution to analyze the data.

Alternatively, Formal Concept Analysis (FCA) uses structural similarities of data, such

as the set inclusion ratio, for the analysis. Thus, it is known that FCA-based methods
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can provide better results in data analysis by enhancing structural relationships. This

argument justifies the analysis and comparison of FCA based methods. This technique

basically tries to find the relationship between data. Once a relationship is discovered, it

can be expressed through rules.

FCA and TCA (formal analysis of triadic concepts) which are the focus of this

thesis, are areas of applied mathematics that use the framework of lattice theory to design

and analyze the concept hierarchies (DAVEY; PRIESTLEY, 2001). The starting point of

the FCA dates from the early 1980s. More precisely, the FCA began with Rudolf Wille

(WILLE, 1982) which proposed a formal framework for the use of lattice theory.

Lately, FCA/TCA has migrated from mathematics to computer science

(STUMME, 2002). Initially, works related to FCA/TCA were presented at conferences

in the area of Mathematics, while currently, the works have been mostly published in

conferences in the Computer Science area. This feature shows a transformation in the

view of FCA/TCA: in the past, FCA/TCA was studied only from a theoretical point of

view and in recent years it has been explored from a practical point of view, for example

beyond the development of theories related to FCA/TCA.

Currently, it investigates its use in various areas of human knowledge, especially

in Computer Science. FCA and TCA’s applications in computer science include those for

information retrieval (CARPINETO; ROMANO, 2004)(KOESTER, 2006) and for mining

and knowledge discovery in databases (STUMME; WILLE; WILLE, 1998)(WILLE,

2001). The Conceptual Data Analysis (CARPINETO; ROMANO, 2004) confirms FCA’s

approach to the Computer Science area by presenting the technique in a more algorithmic

rather than theoretical and mathematical as seen in Ganter and Wille (GANTER; WILLE,

1999a).

Despite the benefits that FCA brought which is to transform data into intelligible

information (knowledge), it has some limitations. For example, the limitation to represent

only the relationship between attribute and objects. Although the dyadic approaches

have been successful in many applications, there have been situations suggesting an

extension of formal concepts by a third component. The triadic approach (TCA) to FCA

is based on a formalization of the triadic relation connecting formal objects, attributes

and conditions (LEHMANN; WILLE, 1995a)(WILLE, 1995)(WILLE, 1996). TCA, for

example, can provide an approach to solve existing problems among three dimensions

data, such as Folksonomy, in which users, tabs, and sources have a relation between them

(three dimensions). Both techniques (FCA and TCA) can be used to discover, sort and

display concepts (WILLE, 1982)(WU; LEUNG; MI, 2009)(WU, 2008).

However, there are several obstacles before making the FCA / TCA application

viable when used in large databases. For example, in FCA the algebraic structure called



40

concept is defined according to a set of objects, a set of attributes and a binary relationship

that links attributes and objects. In this case, there is a problem with generating all formal

concepts and classifying them hierarchically due to the exponential behavior presented in

the worst case (NETO; ZÁRATE; SONG, 2018). When dealing with TCA, the problem

is even more evident, since a new dimension is inserted: there is now a set of objects,

attributes, conditions and a ternary relationship that interconnects them. Consequently,

the computational cost increases even more, making it difficult to apply TCA on high-

dimensional bases. This fact justifies several studies and alternative approaches, whether

dyadic or triadic, for the generation of formal concepts, the construction of the conceptual

lattice and the extraction of rules (SELMANE et al., 2013).

1.1 Motivation and problem

The motivation for this research is defined by the need to expand existing technique

to extract knowledge in order to make explicit the interactions between elements and to

define patterns that represent the behavior of the network and/or dataset. The goal of

several research areas is the formal discovery of valid, understandable and useful knowledge

from data. Due to fact that databases are becoming larger, to accomplish it is getting

even harder. One of the challenges that impulses this research is finding relationships and

rules that describe the behavior of the objects contained in a large dataset, as an example,

the access to the social networks, such as Linkedin and Facebook, and the volume of data

generated by their users, the collaborative network (Wikipedia), professional network

(ResearchGate), among others.

One possible solution to resolve what was described previously, is use Formal

Concept Analysis (FCA), which is a technique based on the formalization of the notion

of concepts and the structuring of concepts into a conceptual hierarchy. Applying FCA

is possible to analyze the data through associations and dependencies of objects and

attributes formally described from a dataset (WILLE, 1982) (BERNHARD; RUDOLF,

1999).

However, in a high-dimensional context, FCA has not presented an expected

computational behavior. In this way, several papers have been presented in

order to overcome this limitation, either by changing existing solutions via code

parallelization (ANDREWS, 2011)(KODAGODA; ANDREWS; PULASINGHE, 2017),

including additional structures to speed up the extraction of concepts (NETO; ZÁRATE;

SONG, 2018), rules (SANTOS et al., 2018), or even performing both inclusion of new

data structure and parallelization of the solution (NEVES et al., 2020b).

Thus, in some situations, it is required to describe the condition that connects

the relationship between the different objects and their attributes. An extension of the
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classical (dyadic) FCA, called Triadic Concept Analysis (TCA) was proposed to deal with

this situation (LEHMANN; WILLE, 1995b). Although it is from the FCA, the triadic

approach is more complex because it deals with three-dimensional data.

In the same situation as we have with the FCA, the TCA approach has to

deal with computational processing restrictions in which databases are considered high-

dimensional. Researchers are still proposing new approaches for extracting information

from data contexts (MISSAOUI; KWUIDA, 2011), but although several algorithms have

been proposed in the literature in order to extract information from triadic concepts,

neither one directly attacks the high-dimensional contexts (JASCHKE et al., 2006)

(CERF; BESSON J.AND ROBARDET; BOULICAUT, 2009) (TRABELSI; JELASSI;

YAHIA, 2012b). Therefore, this is an important aspect which motivates the development

of this work.

It is important to highlight that a dyadic approach (FCA) allows an analysis

that can be used only between objects and attributes. A triadic analysis (TCA) allows

the extraction of concepts that are not possible with FCA. TCA, in addition to objects

and attributes, allows the inclusion of conditions, which model the relationship between

attributes and objects, improving the analysis significantly. Adding conditions expands

the possibilities of usage in many applications, supporting the extraction of more relevant

information from a given context, allowing a more complete study of the information from

a given dataset.

For example, in a dyadic context, where objects are represented by users and

attributes by the social networks accessed (Linkedin or Facebook), it is possible to know

only which social networks are accessed by each user. However, this information is limited

and does not provide information of extreme relevance for decision making.

In a triadic context, in addition to the user object and the social network attribute,

conditions can be included. Considering only the inclusion of a condition for example,

timeslot, it can offer relevant information about who accesses, which social network in

which timeslot. The inclusion of only one condition would generate relevant information,

allowing actions to be taken, in that timeslot, for certain users on a social network.

A practical application of this model would be, for example, to publicize advertising

campaigns to users of Linkedin and Facebook, based on what time users spent most of

their time.

Another important point to be observed in this study, is to understand that this is

not a new subject. Before the development of computational architectures, mathematical

studies were used and were able to work with a certain amount of information, promoting

the generation of relevant information. Despite the arrival of computers, it is possible to

process information faster, more efficiently and by increasing the number of data to be
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processed, the use of computers has also allowed a very relevant increase in the amount of

data generated. Thus, the technology that has facilitated processing and made it possible

to analyze so much data, has created another problem: an increasing amount of data to

be worked on, which has gone beyond its processing capacity.

As described previously, the computational limitation widely known and discussed

in computer science due to the increasing complexity and increase of databases, has

become a new challenge to be studied - which also motivated this research. There are

several approaches to solve this problem, however, when applied to large datasets, they

often do not generate the expected results. In this work, for example, there are cases

where, after 14 days of execution, using the original algorithm, no results were generated.

Despite formally solving it, when data are applied to an algorithm, the results were not

obtained as expected.

From studies carried out in this research and the available literature, it was

observed that the application of projections of triadic contexts in dyadic offers a significant

improvement in the processing of the algorithms. The projection basically implies

the transformation of the triadic model into a dyadic, generating the same possible

combinations, with object, attribute and condition, in a model of objects and attributes,

where the attributes are stratified in each of the conditions.

Therefore, the concepts extraction was proposed and rules from high-dimensional

triadic contexts using the TRIAS (JASCHKE et al., 2006) as the basis, which, in its

essence, projects triadic context into dyadic. Modifications were applied to the original

algorithm to support the BDD structure (BRYANT, 1986a), representing data as a BDD.

From this representation, several logical operations with BDD were included to extract

the concepts.

1.2 Objectives

The following objectives were defined to achieve the contributions:

• Represent triadic contexts using Binary Decision Diagram (BDD) in order to store

and manipulate high-dimensional contexts efficiently (AKERS, 1978). In this case, a

set of boolean operations was implemented to be able to retrieve objects, attributes

and conditions (ANANIAS et al., 2018) (ANANIAS et al., 2019);

• Modify the TRIAS algorithm using BDD structure in order to analyze its efficiency

when comparing with the original algorithm;

• Extract association rules from dyadic and triadic formal concepts;
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• Random Access Memory (RAM) analysis during execution to understand its

behavior;

• Manipulate the order of variables to be inserted in the BDD based on the attributes

and conditions’ density;

• Time execution comparison between TRIAS and the proposed algorithm TRIAS

BDD and between TRIAS BDD and the TRIAS BDD Descending and Ascending

order.

Based on the behavior of the algorithm, the objective was to apply a data structure

called BDD in order to represent triadic contexts and concepts since the behavior of the

algorithm for high-dimensional contexts was not able to return concepts after a defined

period of time. Finally, TRIAS was extended in order to extract triadic rules - the original

algorithm was able to extract only concepts from a dataset.

1.3 Contributions

The main contribution of this thesis is an approach to extract concepts and rules

from high-dimensional triadic datasets using Binary Decision Diagrams based on TRIAS

algorithm. As pointed out, one of its potentials lies in the use of TCA and its mathematical

foundation that enables the generation of knowledge in the form of formal concepts and

rules (NEVES et al., 2020a).

In order to analyze the behavior of algorithms in high-dimensional triadic contexts,

triadic contexts were created using a synthetic tool called Synthetic Context Generator

a-z (SCGaz). These contexts are available for future use for any researcher who needs

to deal with high-dimensional datasets. Modifications to the dyadic synthetic context

generator SCGaz were applied to generate triadic concepts by adding a third dimension,

not developed by the tool. The reducibility rules defined in (RIMSA; SONG; ZÁRATE,

2013) were maintained for triadic contexts. Only the notion of a third dimension to be

chosen was added, then the number of dyadic context objects was replicated to the number

of defined conditions.

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the

main definitions about FCA, TCA, BDD, TRIAS and SCGaz. Chapter 3 describes some

important related work. The details of the proposed approach are described in Chapter

4. The results and analysis are presented in Chapter 5. Finally, conclusions and future

work are drawn in Chapter 6.
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2 LITERATURE REVIEW

2.1 Formal Concept Analysis

FCA is a technique based on formalizing the notion of concept and structuring

concepts in a conceptual hierarchy (BERNHARD; RUDOLF, 1999). The FCA relies

on lattice theory (BIRKHOFF, 1940) (DAVEY; PRIESTLEY, 2001) to structure formal

concepts and enable data analysis. The capability to hierarchize concepts extracted from

data turns the FCA an interesting tool for dependency analysis. With the increase of

social networks and due to the large amount of data generated by users, the study and

improvement of techniques to extract knowledge are becoming increasingly justified. Also,

it permits the data analysis through associations and dependencies attributes and objects,

formally described, from a dataset.

2.1.1 Formal Context

Formally, a dyadic context is formed by a triple (G,M, I), where G is a set of objects

(rows), M is a set of attributes (columns) and I is defined as the binary relationship

(incidence relation) between objects and their attributes where I ⊆ G×M (GANTER;

STUMME; WILLE, 2005). Table 1 exemplifies a formal context. In this example,

objects correspond to planets, attributes are the characteristics, and the relationship of

incidence represents whether or not the planet has that characteristic. A planet has that

characteristic if and only if there is an ′X ′ at the intersection between the row and the

respective column.

2.1.2 Formal Concepts

Let (G,M, I) be a formal context, A ⊆ G a subset of objects and B ⊆ M a subset of

attributes. Formal concepts are defined by a pair (A,B) where A ⊆ G is called extension

and B ⊆ M is called intention. This pair must follow the conditions where A = B′ and

B = A′ (GANTER; STUMME; WILLE, 2005). The relation is defined by the derivation

operator ( ′ ):

A′ = { m ∈ M| ∀ g ∈ A, (g, m) ∈ I}
B′ = { g ∈ G| ∀ m ∈ B, (g, m) ∈ I}
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Table 1: Formal Context - Planets

Planets Small Medium Big Near Far Moon Yes Moon No
Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×
Pluto × × ×

If A ⊆ G, then A′ is a set of attributes common to the objects of A. The derivation

operator (′) can be reapplied in A′ resulting in a set of objects again (A′′). Intuitively, A′′

returns the set of all objects that have in common the attributes of A′; note that A ⊆ A′′.

The operator is similarly defined for the attribute set. If B ⊆ M, then B′ returns the set

of objects that have the attributes of B in common. Thus, B′′ returns the set of attributes

common to all objects that have the attributes of B in common; consequently, B ⊆ B′′.

An example, given the set of objects A ={Mercury, Venus, Earth, Mars}, applying the

derivation operator, we will have A′ = {Small, Near}. If we apply the derivation operator

again, we will have A′′ = {Mercury, Venus, Earth, Mars}. Similarly, if we consider the

set of attributes B ={Small, Near} and apply the derivation operator, we will have B′ =

{Mercury, Venus, Earth, Mars}. Then, if we apply the derivation operator again, we will

have B′′ = {Small, Near}. Finally, it can be said that {{Mercury, Venus, Earth, Mars},
{Near, Small}} is a concept. All the concepts are described in Table 2 were extracted

from Table 1.

Table 2: Concepts extracted from the Planets Formal Context - Table 1

Objects Attributes
{Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Pluto} {}
{Mercury,Venus,Earth,Mars,Pluto} {Small}
{Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Pluto} {Moon Yes}
{Mercury,Venus,Earth,Mars} {Near,Small}
{Earth,Mars,Pluto} {Small,Moon Yes}
{Jupiter,Saturn,Uranus,Neptune,Pluto} {Far,Moon Yes}
{Mercury,Venus} {Big,Near,Small}
{Earth,Mars} {Small,Near,Moon Yes}
{Pluto} {Small,Far,Moon Yes}
{Jupiter,Saturn} {Big,Far,Moon Yes}
{Uranus,Neptune} {Medium,Far,Moon Yes}
{} {Small,Medium,Big,Near,Far,Moon Yes,Moon No}
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2.1.3 Dyadic Rules

Dyadic Rules are dependencies between elements of a set of attributes obtained

from formal contexts (R.; L., 2011), formal concepts (K.; W, 2005) and concept lattice

(BERTET; MONJARDET, 1999). In our study, the implication rules extraction will be

based on formal contexts. Using a formal context (G, M, I) an implication rule would

be A→ B where A,B ⊆ M (A and B are defined, respectively, as the rule’s premise and

conclusion).

Dyadic Rules rule A → B is considered valid for the context (G, M, I) if, and

only if, every object that has the attributes of A also has the attributes of B. Formally

∀g ∈ G[∀a ∈ A gIa→∀b ∈ B gIb].

Let (G,M, I) be a formal dyadic context. A rule is of the form r : A → B (s,

c) where A,B ⊆ M (itemsets) with A ∩ B = /0. The parameter s = supp(r)= |A′∩B′|
|G| is

called the support of the rule r while c = conf(r)= |A′∩B′|
|A′| is its confidence (AGRAWAL;

SRIKANT, 1994).

Table 3 shows the examples of all dyadic rules of Table 1 where rules have, as

parameters, support greater than 10.00% and confidence greater than 50.00%. Given the

dyadic rule {Moon Yes} → {Far} with 55.55% support and 71.42% confidence. In this

example, it can be said that in 55.55% (support) of cases (5 objects {Jupiter, Saturn,

Uranus, Neptune, Pluto} of 9 total) where it has the attribute {Moon Yes}, it also has

the attribute {Far}, and this occurs 71.42% (confidence) in the dataset where it has at

least the attribute {Moon Yes} (5 of 7 objects subset {Earth, Mars, Jupiter, Saturn,

Uranus, Neptune, Pluto}).

Another example in Table 3 is the dyadic rule {Small, Moon Yes} → {Near} with

22.22% support and 66.66% confidence. It can be said that in 22.22% of cases (2 objects

of 9 total) where it has the attribute {Small, Moon Yes}, it also has the attribute {Near},
and this occurs 66.66% (confidence) in the dataset where it has at least the attribute

{Small, Moon Yes} (2 objects of 3).

Implication rules are association rules that have 100% confidence. As an example

of implication rules (Table 4), we can consider the context described in Table 1. In this

context, every planet which is near the sun is also small. This type of relationship can be

described as an implication: {Near}→ {Small}.

2.2 Triadic Concept Analysis

The TCA was introduced by Lehmann and Wille (LEHMANN; WILLE, 1995b),

extends the classic FCA, but a new dimension was added (WILLE, 1995).
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Table 3: Example of Dyadic Rules of the Table 1

Dyadic Rule Support Confidence
{Small} → {Near} 44.44% 79.99%

{Small} → {Moon Yes} 33.33% 59.99%
{Moon Yes} → {Far} 55.55% 71.42%
{Near} → {Moon No} 22.22% 50.00%
{Near} → {Moon Yes} 22.22% 50.00%
{Near} → {Small} 44.44% 100.00%

{Small, Moon Yes} → {Near} 22.22% 66.66%
{Far} → {Moon Yes} 55.55% 100.00%

{Moon No} → {Small, Near} 22.22% 100.00%
{Near, Moon Yes} → {Small} 22.22% 100.00%
{Small, Far} → {Moon Yes} 11.11% 100.00%
{Big} → {Far, Moon Yes} 22.22% 100.00%

{Medium} → {Far, Moon Yes} 22.22% 100.00%

Table 4: Implication Rules extracted from the Planets Formal Context

A → B
{Near} → {Small}
{Far} → {Moon Yes}
{Moon No} → {Small, Near}
{Near, Moon Yes} → {Small}
{Small, Far} → {Moon Yes}
{Big} → {Far, Moon Yes}
{Medium} → {Far, Moon Yes}

2.2.1 Triadic Formal Context

Formally, a triadic context is defined as a quadruple (K1,K2,K3,Y ), where K1, K2

and K3 are sets and Y is a ternary relation between K1, K2 and K3, i.e., Y ⊆ K1 x K2 x

K3, the elements of K1, K2, and K3 are called (formal) objects, attributes, and conditions,

respectively, and (g,m,b) ∈ Y is read: the object g has the attribute m under the condition

b. An example of a triadic context is represented in Table 5 - it was originally presented in

(MISSAOUI; KWUIDA, 2011) and adapted on this work. This example shows the dataset

with 3 dimensions: Customers, Suppliers and Products. Then we have the Customers

{1,2,3,4,5} as objects where {1} is Rod, {2} is Anna, {3} is Sarah, {4} is Josh and {5} is

Jim, the Suppliers {P,N,R} as attributes where {P} is Pearson Limited, {N} is Norway

Incorporation and {R} is Randy Incorporation and the products {a,b,c,d} as conditions

where {a} is antenna, {b} is bumper, {c} is car cover, {d} is door.
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Table 5: Left: An example of triadic formal context - Customers, Suppliers and Products. Right:
Dyadic context extracted from K .

K P N R K
P N R

a b c d a b c d a b c d
1 abd abd ac 1 X X X X X X X X
2 ad bcd abd ≡ 2 X X X X X X X X
3 abd d ab 3 X X X X X X
4 abd bd ab 4 X X X X X X X
5 ad ad abd 5 X X X X X X X

2.2.2 Triadic Concepts

Let K = (K1,K2,K3,Y ) be a triadic context, {i, j,k} = {1,2,3}. Based on the triadic

context described previously, it gives rise to the following dyadic contexts: K (1) = (K1,K2

x K3,Y (1)), see Table 6, K (2) = (K2,K1 x K3,Y (2)) - see Table 7, K (3) = (K3,K1 x K2,Y (3))

- see Table 8, where gY (1) (m,b)⇐⇒ mY (2)(g,b)⇐⇒ bY (3)(g,m)⇐⇒ (g,m,b) ∈ Y .

Table 6: Customers, Suppliers, Products context projected by Suppliers x Products

K (1) Pa Pb Pc Pd Na Nb Nc Nd Ra Rb Rc Rd
1 X X X X X X X X
2 X X X X X X X X
3 X X X X X X
4 X X X X X X X
5 X X X X X X X

Table 7: Customers, Suppliers, Products context projected by Customers x Products

K (2) (1,a) (1,b) (1,c) (1,d) (2,a) (2,b) (2,c) (2,d) (3,a) (3,b) (3,c) (3,d) (4,a) (4,b) (4,c) (4,d) (5,a) (5,b) (5,c) (5,d)
P X X X X X X X X X X X X X
N X X X X X X X X X X X
R X X X X X X X X X X X X

Table 8: Customers, Suppliers, Products context projected by Suppliers x Customers

K (3) (1,P) (2,P) (3,P) (4,P) (5,P) (1,N) (2,N) (3,N) (4,N) (5,N) (1,R) (2,R) (3,R) (4,R) (5,R)
a X X X X X X X X X X X X
b X X X X X X X X X X
c X X
d X X X X X X X X X X X X
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Moreover, based on the structure of triadic contexts, another derivation operators

is given as follows. Let K = (K1,K2,K3,Y ) be a triadic context, {i, j,k} = {1,2,3}.
Xi⊆Ki,X j⊆K j and Xk ⊆ Kk, the (i, j,Xk)-derivation operators are defined by: K i j

Xk
=

(Ki,K j,Y
i j
Xk

), where (ai,a j)∈Y i j
Xk

if and only if ai,a j,ak are related by Y for any ak∈Xk. Then,

the basic and the important definition, triadic concept, is given as follows. For Xi⊆Ki and

Xk⊆Kk with {i,j,k} = {1,2,3}, let A j = X (i, j,Xk)
i , Ai = A(i, j,Xk)

j and Ak = (AixA j)
(k). As

an example, we have X3={a,d}⊆K3, we obtain the dyadic context K 12
X3

= (K1,K2,Y 12
X3

) -

Table 9.

Table 9: Table K 12
X3

projected where X3 = {a,d}

K 12
X3

P N R

1 X X
2 X X
3 X
4 X
5 X X X

Let K = (K1,K2,K3,Y ) be a triadic context, Ai⊆Ki,= 1,2,3. If Ai = (A j,Ak)
(i), for

{i, j,k} = {1,2,3} and j < k, then (A1,A2,A3) is called a triadic concept, where A1,A2 and

A3 are called the extent, the intent, and the modus of (A1,A2,A3), respectively.

Consider the triadic context in Table 5. Let X1 = {5}⊆K1, X3 = {a,d}⊆K3, we

have A2 = X (1,2,X3)
1 , A1 = A(1,2,X3)

2 and A3 = (A1xA2)(3). By the Table 9, we obtain A2

= {5}(1,2,{ad}) = {P,N,R}. A1 = {P,N,R}(1,2,{ad}) = {5}. Then by the Table 8, we have

A3 = ({5}x{P,N,R})(3)) = {a,d}. So, {5,PNR,ad} is a triadic concept of the Table 5. In

other words, firstly determines the set of all attributes which all objects of A2 have under

all conditions of X3; secondly, A1 is extended to the set of all objects having all those

attributes under all conditions of X3; thirdly, A3 is extended to the set of all conditions

under which each of the derived objects has each of the derived attributes. The Table 10

presents all the concepts found.

2.2.3 Triadic Implication Rules

Many studies in FCA were conducted on the generation of precise representation

of rules (HAMROUNI; VALTCHEV; YAHIA, 2007), (KRYSZKIEWICZ; GAJEK,

2002) such as informative rules, Guigeus-Duquenene base (stem base),(GANTER;

WILLE, 1999b),(DUQUENNE; GUIGUES, 1986), generic base (NICOLAS, 2000), and

Luxenburger base (LUXENBURGER, 1991). However, those rules apply only to the

dyadic approach. According to the literature, (BIEDERMANN, 1997) was the first
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Table 10: Triadic Concepts extracted from the Table 5

Object(s) Attribute(s) Condition(s)
{} {P,N,R} {a,b,c,d}
{5} {P,N,R} {a,d}
{4} {P,N,R} {b}
{3,4} {P,R} {a,b}
{2} {N} {b,c,d}
{2} {N,R} {b,d}
{2,5} {R} {a,b,d}
{2,5} {P,R} {a,d}
{2,5} {P,N,R} {d}
{2,4} {N,R} {b}
{2,3,4,5} {R} {a,c}
{1} {R} {a,c}
{1} {P,N} {a,b,d}
{1,5} {P,N} {a,d}
{1,5} {P,N,R} {a}
{1,4} {P,N} {b,d}
{1,3,4} {P} {a,b,d}
{1,2,4} {N} {b,d}
{1,2,3,4,5} {P} {ad}
{1,2,3,4,5} {P,R} {a}
{1,2,3,4,5} {P,R} {a}
{1,2,3,4,5} {} {a,b,c,d}
{1,2,3,4,5} {P,N,R} {}

work to deal with the problem to extract implication rules from a triadic context.

After that, different types were developed by (GANTER; OBIEDKOV, 2004), such as:

Attributes x Condition Implications (AxCIs), Conditional Attribute Implications (CAIs)

and Attributional Condition Implications (ACIs).

In the following sections, it will be described two types of triadic association

rules that can be extracted from a triadic context K = (K1,K2,K3,Y ) by combining

ideas from (BIEDERMANN, 1997) (GANTER; OBIEDKOV, 2004). The two types

are: Biedermann Conditional Attribute Association Rule (BCAAR) and Biedermann

Attributional Condition Association Rule (BACAR). In our approach, it was aggregated

those two rules into the TRIAS BDD algorithm.
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2.2.4 Conditional Attribute Association Rule

A Biedermann Conditional Attribute Association Rule (BCAAR) has the form:

(A2,1→A2,2)C(sup, con f ), A2,1,A2,2 ⊆ K2 and C ⊆ K3 (MISSAOUI; KWUIDA, 2011). Its

meaning is as follows: whenever A2,1 occurs under all conditions in C, then A2,2 also occurs

under the same conditions with support supp and confidence con f . Table 11 presents an

example of the association rule (BCAAR) of the triadic context showed in Table 5.

Table 11: Biedermann Conditional Attribute Association Rule (BCAAR) of the Table 5

Implication Rule Support Confidence
( N → P ) d 100.0% 100.0%
( P → R ) a 100.0% 100.0%
( P → N ) d 100.0% 100.0%
( R → P ) a 100.0% 100.0%
( N → P ) b 40.0% 66.7%
( N → R ) b 40.0% 66.7%
( P → N ) b 40.0% 66.7%
( P → R ) b 40.0% 66.7%

( N → PR ) a 40.0% 100.0%
( R → N ) b 40.0% 50.0%
( R → P ) b 40.0% 50.0%

( NP → R ) b 20.0% 50.0%
( NR → P ) b 20.0% 50.0%
( PR → N ) b 20.0% 50.0%
( N → P ) ab 20.0% 100.0%
( R → NP ) d 40.0% 100.0%

An example presented in the Table 11, the Biedermann Conditional Attribute

Association Rule (N → PR) a with 40.0% support and 100.0% confidence, it can be said

that in 40% (2 of 5 total objects which is the support) of the dataset, always (confidence of

100%) that customers purchase the antenna (a) product from the Norway Incorporation

(N ) Supplier, they also purchase the same product (antenna) from the Pearson Limited

(P) and Randy Incorporation (R) Suppliers.

Another example, (R → N)b with 40% support and 50% confidence. In this

case, it can be said that in 50% of cases where customers buy bumper (b) from Randy

Incorporation (R) Supplier, they also buy the same product from Norway Incorporation

(N ), and this occurs 40% of the time in the dataset (2 objects from 5 that is the support).
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2.2.5 Attributional Condition Association Rule

A Biedermann Attributional Condition Association Rule (BACAR) has the form:

(C3,1→C3,2)A(sup, con f ), C3,1,C3,2 ⊆ K3 and A ⊆ K2 (MISSAOUI; KWUIDA, 2011). Its

meaning is as follows: whenever the condition in C3,1 occurs for all attributes in A, then

the condition in C3,2 also occurs for the same attributes with support sup and a confidence

con f . Table 12 presents an example of the association rule (BACAR) of the triadic context

showed in Table 5.

Table 12: Biedermann Attributional Condition Association Rule (BACAR) of the Table 5

Implication Rule Support Confidence
( d → b ) N 60.0% 60.0%
( a → b ) P 60.0% 60.0%
( a → d ) P 100.0% 100.0%
( d → b ) P 60.0% 60.0%
( d → a ) P 100.0% 100.0%
( a → b ) R 80.0% 80.0%
( b → d ) N 60.0% 100.0%
( b → ad ) P 60.0% 100.0%
( a → b ) N 20.0% 50.0%
( a → d ) N 40.0% 100.0%
( b → d ) R 40.0% 50.0%
( b → a ) R 80.0% 100.0%

( b → d ) NP 40.0% 100.0%
( b → a ) PR 40.0% 100.0%
( c → a ) R 20.0% 100.0%

( ab → d ) N 20.0% 100.0%
( d → ab ) R 40.0% 100.0%
( c → bd ) N 20.0% 100.0%

Given the association rule (b → d)N with 60.0% support and 100.0% confidence,

it can be said that whenever (100% confidence) that any customer buys bumper (b) from

Norway Incorporation (N ) supplier the customer will buy also the door (d), and this

occurs on 40% of the dataset (2 of 5 total objects which is the support).

Another example, (a→ b)N with 20.0% support and 50.0% confidence. In this case,

it can be said that when a customer buys an antenna (a) from Norway Incorporation (N )

Supplier, the customer can buy a bumper (b) in 50% of cases (confidence). Additionally,

it can be said that it occurs in 20% (1 of 5 objects that is the support) of the dataset.
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2.3 Binary Decision Diagram

Introduced by (AKERS, 1978) and further developed by (BRYANT, 1986a), binary

decision diagrams (BDD) provide a canonical representation for a more compact boolean

formula than normal conjunctive and disjunctive forms - It is substantially more compact

than these traditional structure forms and it can be efficiently manipulated (BRYANT,

1986b) (MO et al., 2014). So, in general, it is more efficient to handling data than, for

example, bit array.

Table 13: An example of Binary Decision Tree Table

X Y Z F (X, Y, Z)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

A BDD is a directed acyclic graph with two types of nodes: terminal and

nonterminal. The nonterminal nodes represent the variables of the boolean formula and

the only two terminal nodes represent the values 0 or 1, when the function assumes a true

or false value. As in the decision tree representation, dotted and continuous transitions

represent false and positive transitions, respectively.

Figure 1: An example of Binary Decision Tree

Figure 1 represents the formal context presented in Table 13 as a binary decision

tree and Figure 2 provides an example of which the BDD is used to represent a binary

decision tree described in Figure 1. In this diagram, lines represent that the object has

the attribute and the dotted line represents the lack of that attribute.
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Note that, it is possible to represent the same information using a structure more

compact than the original. In our approach, the formal context was represented as a

BDD. Given Equation 2.1 representing a Boolean formula correspondent to Table 14. For

a better representation, attributes names have been replaced by letters as follows: Google

(a), YouTube (b), Facebook (c), Wikipedia (d).

Figure 2: Example of a BDD from Figure 1

f(a,b,c,d) = abcd +abcd +abcd +abcd +abcd (2.1)

Note that Equation 2.1 represents all the formal context in Table 14. The attribute

a means that in this part of the function the attribute is true (this object has this

attribute), whereas a means the opposite. The part abcd of the equation was created

to validate the James and David objects, abcd was created to validate the Shannon and

Greg objects and the last part abcd validates the Catheryn object.

Table 14: An example of the formal context

Google (a) Youtube (b) Facebook (c) Wikipedia (d)
James X . X .
Greg . X X X

Catheryn . X . .
David X . X .

Shanon . X X X

The generated BDD corresponding to the formal context presented in Table 14 (and
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described by Equation 2.1) can be seen in Figure 3. For a better understanding of each

object in the BDD, object names have been replaced by numbers and attributes replaced

by letters: James (1), Greg (2), Catheryn (3), David (4), Shannon (5) and Google (a),

YouTube (b), Facebook(c), Wikipedia (d). Take as an example, object 1 (James) which is

represented by the path Google, YouTube, Facebook, Wikipedia.

Figure 3: The BDD representing the formal context of the Table 14

Although BDD is a substantially more compact structure than traditional forms,

some limitations should be considered during its use since spatial complexity depends on

the order in which its variables are added. (BRYANT, 1986b) uses, as an example, a

two-bit comparator with variables a1, a2, b1 and b2. The values are identical if a1 is equal

to b1 and a2 is equal to b2, otherwise, they are different. If the BDD is built using the

order of a1 < a2 < b1 < b2 the result has 11 nodes. However, if we kept the related

variables close together, in the order a1 < b1 < a2 < b2 the resulting BDD would have 8

nodes. Depending on the order in which variables are added to the BDD complexity can

become exponential.

In order to build the BDD structure for a formal context, the BDD library Colorado

University Decision Diagram (CUDD) was chosen for providing function packages to work

with Binary Decision Diagrams (BDDs) besides having more recent updates (JAVABDD,
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2019). The CUDD also has functions for Algebraic Decision Diagrams (ADDs) and

Zero-suppressed Binary Decision Diagrams (ZDDs) that can be used to represent formal

contexts.

2.4 TRIAS Algorithm

In (JASCHKE et al., 2006), the authors defined the problem of mining all triadic

concepts of a formal context and proposed a solution called TRIAS based on dyadic

projections to resolve the problem.

The authors adapted the dyadic notion of mining all item sets of a formal dyadic

context, defined in (PEI et al., 2000) for a triadic approach. They also introduced the

TRIAS algorithm to compute all the frequent triadic concepts of a folksonomy formal

context. Given K = (K1,K2,K3,Y ) a triadic context, the TRIAS algorithm builds a

dyadic context T = (K1,K2×K3,Y ) where its columns correspond to pairs of elements

that belong to K2 and K3 and via projection, it extracts all the formal concepts.

The TRIAS algorithm was developed using NextClosure to generate concepts

(JASCHKE et al., 2006). Thus, it was decided to use the same approach. However,

the original implementation, defined in (GANTER, 2010) uses a bit structure to store

objects and their attributes and conditions. The proposed approach was implemented

using BDD that will be explained in the following section.

Basically, Algorithm 1 (Extent) receives a formal context (G, M, B, Y ) and an

attribute and condition set X ⊆ (M,B) as parameters. From these parameters, it returns

a set of objects X ′ = {g ∈G|∀m,b ∈ X : gIm,b} containing these attributes and conditions.

It manipulates a dynamic list of objects G for each searched attribute and condition -

Line 1. The algorithm runs through the list G - Line 4, adding to X ′ the objects that have

the attribute and condition - Line 8. Before going to the next attribute and condition, X ′

is assigned to G (line 9), and, in Line 3, it is restarted with an empty set. The algorithm

loops through all objects in the formal context and checks whether or not they have the

attributes and conditions in the provided attribute set. The computational complexity of

the algorithm is θ(|G| x |X |).

Algorithm 2 describes the Intent (FormalContext, X′) function. The function

parameters are the formal context (G, M, B, Y ) and the set of objects X ′ ⊆ G returned

by function Extent (FormalContext, X). The function returns a set of attributes and

conditions shared by all objects of the provided object set X ′′ = {m ∈M,b ∈ B|∀g ∈ X ′ :
gImb}. It loops through all context attributes and conditions and verifies if all objects of

the provided object set have the attribute and conditions. If all objects have the attribute

and condition, it is selected to be a part of the returned set. In Line 1, the algorithm
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Algorithm 1: Function Extent - Returns the set of objects containing the attributes x
conditions in X
Require: Formal Context (G,M,B,Y) and a set of attributes x conditions X ⊂ (M,B)
Ensure : Set of objects containing the attributes and conditions in X

1 for (all m ∈M) & (all b ∈ B) do
2 HasAttributesConditions = true
3 X ′ = /0
4 for all g ∈ G do
5 if !g I (m,b) then
6 HasAttributesConditions = f alse

7 if HasAttributesConditions = true then
8 X ′ = X ′∪g

9 G = X ′

10 return X ′

checks if each object in X ′, passed as a parameter, has the attributes and conditions in set

M and B - Line 5. In Line 8, only attributes and conditions present in an object are passed

forward and tested in the next object. The computational complexity of the algorithm is

θ(|M|x|B|x|X ′|).

Algorithm 2: Function Intent - Returns a set of attributes and conditions shared by
all objects of object set X′

Require: Formal Context (G,M,B,Y) and a set of attributes and conditions
X ′ ⊂ (M,B)

Ensure : Set of objects containing the attributes and conditions in X′

1 for all g ∈ X ′ do
2 HasAttributeConditions = true
3 X ′′ = /0
4 for (all m ∈M) & (all b ∈ B) do
5 if !g I (m,b) then
6 HasAttributeConditions = f alse

7 if HasAttributesConditions = true then
8 X ′′ = X ′′∪ (m,b)

9 returns X ′′

2.5 SCGaz - Context Synthetic Generator

Using a synthetic database for generating formal contexts becomes significant due

to the complexity of the databases obtained from real scenarios. Real databases usually

require preprocessing, a task that can, if not done correctly, directly interfere with the

results. Considering that, using tools for database simulation becomes interesting and
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extremely useful in comparative analyzes between algorithms, as realized in (MORAES

et al., 2016) (SANTOS et al., 2018).

The SCGaz tool proposed in (RIMSA; SONG; ZÁRATE, 2013) is a random

synthetic generator of dyadic formal contexts with density control. Through SCGaz it is

possible to specify the amount of objects and attributes desired in a formal context, as

well as density, to generate irreducible contexts. Density values for a given context vary

according to their dimensions and/or can be specified in advance. The generated context

is irreducible, that is, there are no attributes that are not shared by at least one object or

attributes that are shared by all objects. The same occurs with objects that do not have

any attributes or objects that share all the attributes of the context. Objects that share

the same attributes, in FCA, are considered redundant and therefore are not inserted into

the context.
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3 RELATED WORK

The identification of data behaviors and their expression through rules has been

a topic of interest in many research studies. The FCA provided a formal framework for

data representation and extraction rules, such as implication and association rules.

Studies on the use of FCA suggest several algorithms for extracting different

types of rules (NOVAIS et al., 2021). The Next-Closure algorithm, proposed by Ganter

(GANTER, 2002)(GANTER, 2010), is used to find a minimal implication bases (Stem-

Base or Duquenne-Guigues base) suggested by Duquenne and Guigues (DUQUENNE;

GUIGUES, 1986). The minimal implication base provides a complete set of implications.

In other words, any valid implication for the database can be obtained by combining the

non-redundant and implication base rules. Therefore, removing a rule of the minimum

base makes the base no longer complete.

Although it provides a minimum number of rules, the problem with using the

minimum base for practical purposes is the difficulty of deriving all valid data rules

by combining the base of implication rules. Carpineto and Romano (CARPINETO;

ROMANO, 2003) discussed this problem and presented an algorithm to find a more

readable (i.e. more easily understandable to end users) implications base. The proposed

algorithm finds implication bases with a reduced number of attributes both in the

antecedent and consequent of an implication. Taouil and Bastide (TAOUIL; BASTIDE,

2001) presented another proposal for the extraction of implication bases. Their proposed

algorithm finds a set of rules with a minimum antecedent and a consequent containing

only one element.

Implications can also be used to identify functional dependencies which describe

relationships between attributes that are valid for all elements of the universe. Functional

dependencies are implications involving multivalued attributes (attributes that can take on

many values) such as the color of a car and the gender of a person. Therefore, functional

dependencies are implications that are independent of attribute values. The following

example illustrates what functional dependencies are.

The problem of identifying functional dependencies through FCA can be reduced

to the problem of identifying implications. You can transform a multi-valued attribute

set into a univalent attribute set so that the valid implications for univalent attributes

are valid functional dependencies for multi-valued attributes. This approach was initially

presented by Wille (WILLE, 1992). Alternatively, the framework proposed by Jaume
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Baixeries (BAIXERIES, 2004) can be used. This method proposes new closure operators

for the construction of the conceptual lattice. Built the lattice, it is used to discover

implications equivalent to the functional dependencies of the conceptual lattice built with

traditional operators.

In some situations are necessary to describe facts that partially occur, for example,

if a person is over sixteen years old when he or she has a voter card. Note that there

are people over sixteen who do not have a voter card; thus the facts are partially valid.

This type of relationship can be described through association rules. They describe data

behaviors that are valid for specific groups (for this example, for the group of people over

sixteen and voter status) and not necessarily for all elements such as the implication rules.

Thus, association rules can be considered generalizations of implication rules.

Several papers (STUMME; WILLE; WILLE, 1998)(PASQUIER et al.,

1999)(BASTIDE et al., 2000b)(WILLE, 2001)(STUMME et al., 2002) discussed the use

of FCA the association rules extraction. Additionally, it demonstrated the possibility of

using closed sets to find frequent attributes in databases, Pasquier and others (PASQUIER

et al., 1999) present the AClose algorithm. The algorithm was compared with the

traditional and recognized Apriori algorithm (AGRAWAL; SRIKANT, 1994)(AGRAWAL

et al., 1996) and generally presented better results. According to Pasquier and his

coauthors (PASQUIER et al., 1999), the solution space is reduced by using conceptual

lattices for the association rules extraction, which allowed AClose to perform better than

Apriori. In addition to AClose, the main FCA-based algorithms include Pascal (BASTIDE

et al., 2000a), Titanic (STUMME et al., 2002), Galicia (VALTCHEV et al., 2002) and

Frequent Next Neighbors (CARPINETO; ROMANO, 2004).

Another approach known as 3WFCA (Three-way formal concept analysis) includes

the combination of inclusion method (acceptance) and exclusion method (rejection) which

are not supported by classical FCA. In 3WFCA, the intention and extension of a concept

must be an orthopair (QI; WEI; Y, 2014).

Different from FCA, in 3WFCA the intension or extension of a concept has two

parts: positive expresses the semantics of jointly possessed and negative expresses not

jointly possessed. In (SHIVHARE; CHERUKURI, 2017), it was extended the FCA based

BAM to 3WFCA to perform the negative recall along with the positive recall. The focus

was on recalling the input pattern from memory.

In the literature, there are various works and some of them date back to 1995

(WILLE, 1995)(LEHMANN; WILLE, 1995a) have focused on triadic context analysis,

concepts, diagrams and algorithms.

In (KUMAR et al., 2016), it was proposed an approach to models role based access

control (RBAC) using Triadic FCA without transforming the triadic access control matrix
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into dyadic formal contexts. In (SUBRAMANIAN; CHERUKURI; CHELLIAH, 2018),

they proposed a model to represent RBAC policy through 3WFCA.

In (KIS; TROANCA, 2016), the authors combined the triadic exploration technique

proposed in (RUDOLPH; SACAREA; TROANCA, 2015) with other resources for

manipulating dyadic and triadic contexts. Among these functionalities is possible to

apply basic scale operations (GANTER; WILLE, 1999b) and context projections, as well

as calculation of dyadic and triadic concepts, creation, and manipulation of dyadic lattices.

In (TRABELSI; JELASSI; YAHIA, 2012b), the authors compared the results from

three different triadic algorithms: TRICONS, TRIAS and DATA-PEELER. The same

approach was used in (IGNATOV et al., 2015). The authors presented several definitions

of optimal patterns for triadic data and results of experimental comparison of three triadic

algorithms on real-world and synthetic dataset - including TRIAS.

There are many papers about applications of TCA, especially for analyzing data

such as Folksonomy. In 2009, Cerf et al. introduced an algorithm DATA-PEELER to

compute closed patterns from n-ary relations (IGNATOV et al., 2011)(KAVTOUE et

al., 2011)(GNATYSHAK et al., 2012)(TRABELSI; JELASSI; YAHIA, 2012a). Tang et

al. proposed the notion of a triadic decision context by combining triadic contexts and

studied a rule acquisition method (TANG; FAN; LI, 2016). Analogously to FCA, many

problems in TCA can be solved, such as, acquisitions of triadic concepts, mining rules

and extraction of triadic association and implication rules.

In 1997, Biedermann proposed triadic implications. Based on studies of triadic

implications proposed by Biedermann, Ganter et al. (GANTER; OBIEDKOV, 2004) gave

a new definition of implication. According to Ganter, in a study suggested by Biederman

(BIEDERMANN, 1998) was not clear what an implication should be. Biedermann called

triadic implications the following representation (R→ S)C, which should be interpreted

as: If an object has all attributes from R under all conditions from C, then it also has all

attributes from S under all conditions from C.

Ganter started by considering a class of implications that were more restricted -

studied expressions of the form R C→ S, where R,S ⊆M,C ⊆ B. Then, it was called such

an expression a conditional attribute implication and read it as: R implies S under all

conditions from C. A conditional attribute implication R C→ S holds in a triadic context

K iff the following is satisfied: for each condition c ∈C it holds that if an object g ∈G has

all the attributes in R then it also has all the attributes in S.

Afterward, Missaoui and Kwuida obtained the way to mining triadic association

rules from a ternary relationship (MISSAOUI; KWUIDA, 2011) based on the relationship

between implications and association rules. It is important to note the algorithm

proposed, implemented in the Lattice Miner tool, used the same dyadic projection that
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was implemented in TRIAS which is objects, attributes x conditions.

In (SALLEB; MAAZOUZI; VRAIN, 2002), BDDs were used to store transaction

logs as a truth table and to find common patterns in large transactional data sets. In this

paper, the use of BDDs allowed authors to load all transactions into the main memory,

avoiding database processing on the disk.

In (MARQUEZ et al., 2017), a fault tree dynamic analysis was carried out by BDDs

to obtain the system failure probability over time and using different time increments to

evaluate the system. According to the authors, this analysis allows critical electrical

and electronic components of the converters to be identified in different conditions. The

results were used to develop a scheduled maintenance that improves the decision making

and reduces the maintenance costs.

BDDs were employed as a suitable and operational method to facilitate an analysis

of the behavior of the wind turbine system under certain conditions and to get an

analytical expression by the Boolean functions. The size of the binary decision diagram,

i.e., the computational cost for solving the problem, has an important dependence on the

order of the components or events considered (MARQUEZ et al., 2020).

Related to the use of BDD in FCA, different works were identified . An algorithm

to extract formal concepts using BDD was proposed by (YEVTUSHENKO, 2002). The

BDD was used to represent the list of concepts. However, the authors used contexts with

900 objects and 50 attributes, which proved to be efficient only for dense contexts.

Different from (YEVTUSHENKO, 2002), in (RIMSA; ZÁRATE; SONG, 2009)

the authors used BDD for extracting formal concepts, but their focus was on using

different BDD libraries to check which library best could be used in FCA. In (RIMSA;

ZÁRATE; SONG, 2009), they used brute force methods to obtain the set of intentions,

and consequently the BDDs that represented the extensions. In all experiments performed

in the study, the algorithms with BDD were more efficient when compared to the original

algorithms.

In (NETO; ZÁRATE; SONG, 2018) the authors used the binary decision diagram

to deal with high-dimensional dyadic contexts in order to extract concepts. The authors

proposed modifications in the In-Close2 through BDD to manipulate objects. However,

it was applied only for a dyadic formal context.

In (SANTOS et al., 2018) the authors proposed modifications in the algorithm to

extract implications ProperIm in a dyadic formal context, adding BDDs in the structure in

order to manipulate and extract proper rules from dyadic contexts. The ProperImplicBDD

algorithm presented a significantly better runtime. The tests varied the number of

attributes and their density for a total of 120,000 objects.
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Another approach known as 3WFCA (Three-way formal concept analysis) includes

the combination of exclusion method (rejection) and inclusion method (acceptance) which

are not supported by classical FCA. In 3WFCA, the extension and intension of a concept

must be an orthopair (QI; WEI; Y, 2014).

Different from FCA, in 3WFCA the extension or intension of a concept has two

parts: negative expresses not jointly possessed and positive expresses the semantics of

jointly possessed. In (SHIVHARE; CHERUKURI, 2017), it was extended the FCA based

BAM (bidirectional associative memory) to 3WFCA to perform the negative recall along

with the positive recall. The focus was on recalling the input pattern from memory.

There are some differences between TCA and 3WFCA, the main differences are:

in TCA the context is triadic, and in 3WFCA is dyadic. Moreover, in TCA the

context is represented by the three-dimensional table containing the relationship of the

objects, attributes and conditions, and in 3WFCA the context is represented by the two-

dimensional binary table containing the relationship between objects and attributes. Also,

the triadic concepts consist of the extent, intent and modus, and in 3WCA consists of

only the extension and intension.

In (KUMAR et al., 2016), it was proposed an approach to model RBAC (role based

access control) using Triadic FCA without transforming the triadic access control matrix

into dyadic formal contexts. In (SUBRAMANIAN; CHERUKURI; CHELLIAH, 2018),

they proposed a model to represent RBAC policy through 3WFCA.

Another important research is to handle the complexity of large contexts in FCA.

There are some approaches in the literature that deal with those problems, such as: use

proper implications extracted from reduced concept lattice to represent the behavior of

the process being studied in a symbolic and qualitative form (DIAS et al., 2020); and

selecting an appropriate reduction method to reduce the input data (LI et al., 2017).

However, no triadic approaches were found that use the data efficient manipulation

provided by BDDs. Therefore, this thesis presents an approach for triadic contexts using

BDDs through dyadic projections.
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4 APPLYING BINARY DECISION DIAGRAM IN TCA

Figure 4 represents the flowchart used in this work. Initially, it shows the

transformation of the triadic context into a projected dyadic context. Then, the

representation of the context in a BDD structure. From this representation, operations are

carried out on TRIAS BDD, within the NextClosure BDD function, in order to generate

the triadic concepts. Finally, BCAAR and BACAR rules are generated based in dyadic

and triadic concepts. The following sections will explain our approach in more detail.

Figure 4: TRIAS BDD Flowchart



65

4.1 Representation of Triadic contexts using BDD

Given a formal triadic context (K1, K2, K3, Y) where K1, K2 and K3 are called

objects, attributes and condition respectively and Y the ternary relation between K1, K2

and K3, a projection can be performed in the triadic context (Table 15) resulting in a

dyadic context (K1, K2 × K3, Y) (Table 16).

Table 15: Triadic Context (K1, K2, K3, Y )

K1/K2-K3 c1 c2 c3
a1 a2 a1 a2 a1 a2

o1 × × ×
o2 × × ×
o3 × × × ×

The projection results from the combination of attributes and conditions where

each attribute is renamed according to the condition to which it belongs. The retrieval

and manipulation of attributes and conditions can be done from the label assigned to

each attribute. In the context represented by Table 16 the dyadic incidence given by the

tuple (o1, a1c1) is equivalent to the triadic incidence given by the triple (o1, a1, c1) of the

context presented in Table 15.

Table 16: Dyadic Context Projection (K1, K2 × K3, Y)

K1/K2×K3 a1c1 a2c1 a1c2 a2c2 a1c3 a2c3
o1 × × ×
o2 × × ×
o3 × × × ×

Once projected, the triadic context, now described by a dyadic context, can be

represented by a binary decision diagram converting the context to a boolean formula

used to generate the corresponding BDD. Table 16 describes the triadic context projected

in a dyadic context and Equation 4.1 represents it through conjunctive and disjunctive

operations between objects and attributes. The symbols with a slash over the letter

represent that the attribute is false.

f(a1c1,a2c1,a1c2,a2c2,a1c3,a2c3) = a1c1.a2c1.a1c2.a2c2.a1c3.a2c3+

a1c1.a2c1.a1c2.a2c2.a1c3.a2c3 +a1c1.a2c1.a1c2.a2c2.a1c3.a2c3

(4.1)

Figure 5 represents the dyadic projection of the triadic context defined by

Expression 4.1. This representation allows manipulating triadic contexts using a BDD,
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Figure 5: Context (K1, K2 × K3, Y ) represented by a BDD.

providing efficient manipulation and storage (BRYANT, 1986b). Given a triadic context

projected and represented by a BDD, it is possible to provide strategies for recovering

objects, attributes and conditions, since any algorithm that uses this representation

requires to recovery and efficient alteration of these elements.

Given the context presented in Table 16, retrieval of objects can be done, for

example, from logical operations AND or OR under Equation 4.1 of the context. If it

is necessary to obtain all the objects of the context which have the attribute a1c2, it

can create a BDD that represents such an attribute and apply a logical operation AND

between the BDDs. Figure 6 represents such an operation, returning in a new BDD with

the objects o2 and o3 since both are sharing the attribute a1c2.

In some situations, if it is necessary to retrieve all the objects which have, for

example, the attributes a1c1 and a1c3, the same operation presented previously can be

performed (Figure 7).

As presented in our experimental results (Table 20), TRIAS did not return any

concept when processing high-dimensional contexts. For example, in the context with

120,000 objects, 15 attributes and 5 conditions it did not return a concept within 14 days.

The proposed algorithm, TRIAS BDD, in this work includes the BDD structure

in which is used to represent the triadic context. The Algorithm 3 receives as an input
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Figure 6: Logical operation between the attribute a1c2 and the BDD Context.

a file which the lines are the incidences that represent a formal triadic context. In other

words, each line represents if that object has that attribute and also the condition. Line 1

initializes BDDTemp and Line 2 initializes ContextBDD as empty sets. Then, from Line

3 to 9, the algorithm loops through all objects, attributes and conditions and, if an object

has the attribute and condition, the BDD variable indicated by (g,m,b) ∈ I is included

in the temporary BDD (true node). Otherwise, it will be added as a false node. Finally,

in Line 10, it adds the BDD which represents the object (BDDTemp) to the BDD that

represents the context (ContextBDD).

Once the BDD that represents the formal context has been created, some

operations can be performed easily, taking advantage of an optimization inherited by

the structure used as shown in Algorithm 6. The algorithm returns a BDD with the
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Figure 7: Logical operation between the attribute a1c1 and a1c3 and the BDD Context.

objects that have the desired attributes and conditions. In our example, Table 16, there

are conditions and attributes such as c1a1, c1a2, c1a3, c2a1, c2a2, c2a3, c3aC1, c3a2 and

c3a3. Note that it requires only a logical AND operation with BDD. As a result, the

”Objects” variable will contain a BDD that represents objects that shares attributes and

conditions c1a1, c1a2, c1a3, c2a1, c2a2, c2a3, c3a1, c3a2 and c3a3.

4.2 Extracting Triadic Concepts through BDD

As explained in subsection 2.4, TRIAS were implemented using the NextClosure

structure (JASCHKE et al., 2006). The basic logic of Algorithm NextClosure was not

modified. However, modifications have been implemented to this Algorithm to support

the new structure (BDD) - it has been denominated NextClosureBDD. The difference is
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Algorithm 3: LoadTCAContext() - Building a triadic formal context using BDD

Input : Formal Triadic context (G,M,B, I)
Output: Formal Triadic context structured as a BDD (ContextBDD)

1 BDDTemp = /0
2 ContextBDD = /0
3 forall the g ∈ G do
4 forall the m ∈M do
5 forall the b ∈ B do
6 if (g,m,b) ∈ I then
7 BDDTemp = BDDTemp.nodeTrue
8 else
9 BDDTemp = BDDTemp.nodeFalse ;

10 ContextBDD = ContextBDD ∪ BDDTemp

11 return ContextBDD

the data type used to represent the formal context, objects, attributes and conditions.

All of these structures are represented using BDDs.

The main algorithm for identifying and extracting formal concepts is given by the

Concepts Extraction() function described in the Algorithm 4.

Algorithm 4: Concepts Extraction

Require: Formal triadic context
Ensure : Set containing all formal concepts in the provided context

1 LoadTCAContext(T XT File,Context)
2 X = θ

3 while X .size()<Context.NumAttributesConditions.size() do
4 X = NextclosureBDD(X ,ExtentBDD, IntentBDD)
5 ConceptList.add(ExtentBDD, IntentBDD)

In Line 1, the module responsible for loading the formal context,

LoadTCAContext(), takes as input a file in TXT format file which represents the formal

context to be processed. A bit matrix stores the data. When an object has a certain

attribute and condition, the corresponding attribute and condition bit is set to a true

value. All other operations performed in the context also handle data in this format. In

Line 2, it initializes the attribute and condition set (variable X , in Algorithm 4) with an

empty set. The variable increases in lexicographical order until it has all the attributes

and conditions of the context. Then, in Line 3, the Algorithm calls NextClosureBDD

while the attributes and conditions set is not complete. Internally, Line 4 Algorithm

NextClosure calls the function DoublePrime (Algorithm 5) which is responsible for the

double derivation. The computational complexity of NextClosure algorithm is θ (|2G | G

| M | B |) (CARPINETO; ROMANO, 2005). Finally, in Line 5, it adds the concepts to
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the Concept List.

Algorithm 5 returns a set of attributes and conditions derived from the provided

attribute set. Basically, the algorithm uses two operations. In the first one - Line 1

- the Extent of provided attributes and conditions are computed. In other words, all

objects sharing the attributes and conditions provided as parameters are extracted from

the formal context. In Line 2, which is the second function (IntentBDD) computes the

final derivation, which returns the intents of the object set returned by the first derivation.

The function identifies all attributes and conditions shared by the objects obtained from

the extent. This attribute set represents the final derivation of the original attribute set.

Algorithm 5: DoublePrime Algorithm - (′′) operator

Require: Attribute and Condition set X ⊂ (M,B)
Ensure : X′′ = Attribute and Condition set derived from X

1 X ′ = ExtentBDD(FormalContext,X)
2 X ′′ = IntentBDD(FormalContext,X ′)
3 returns X ′′

An optimization in the Extent function (Algorithm 1) and Intent function

(Algorithm 2) was implemented resulting in the Algorithms 6 (ExtentBDD) and 7

(IntentBDD). In order to obtain the extent, the Algorithm 6 was implemented to

manipulate BDDs. For each searched attribute and condition, the algorithm would process

through all structure, eliminating objects that do not have the attribute and condition

specified. Therefore, for each searched attribute and condition, the BDD is reduced

proportionally to the incidence of that attribute and condition in the formal context. The

computational complexity of the algorithm is θ(|G| x |X |). Regarding the extraction of

the intent, the Algorithm 7 also manipulates attributes and conditions in BDD structure.

The algorithm checks the attributes and conditions in the set of objects passed as a

parameter, and only attributes and conditions present in an object are passed forward to

be tested in the next object.

Algorithm 6: ExtentBDD - Returns the set of objects containing the attributes and
conditions in X
Require: Formal Context (G,M,B,Y) and a set of attributes and conditions

X ⊂ (M,B)
Ensure : Set of objects containing the attributes and conditions in X

1 X ′ = BDDAnd(ContextBDD,BDDAttributesCondition)′

2 returns X ′

In Line 1, the function BDDAnd() is the responsible for computing the conjunction

of two BDDs and returns a pointer to the resulting BDD if it is successful. In

this algorithm, the first BDDs passed as a parameter is a formal context benefiting
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from structural optimizations due to BDD representation. The other BDD parameter

represents the set of attributes and conditions that must be shared by the context

objects. As described in Algorithm 3, the context BDD is formed by a sequence of

BDDs representing objects and linked by OR operators, whose attributes and conditions

are nodes of that BDD.

Algorithm 7: IntentBDD - Returns a set of attributes and conditions shared by all
objects in input parameter X′

Require: A set of objects X ′ ⊆ G in BDD structure
Ensure : Set of attributes and conditions shared by objects in X′, in BDD structure

1 for (all m ∈M) & (all b ∈ B) do
2 BDDAttributeCondition = (m,b)
3 BDDtmp = BDDAnd(X ′,(m,b))
4 if BDDtmp = X ′ then
5 AttributeConditionList = (m,b)∪AttributeConditionList

6 for all attributecondition ∈ AttributeConditionList do
7 X ′′ = BDDAnd(X ′′,attributecondition)

8 returnsX ′′

Algorithm 7 takes as an input a BDD representing a set of objects. From Lines

1 to 3, the algorithm loops through all attributes and conditions of the formal context,

assembling BDDs for each one. In Line 4, if the conjunction of an attribute and condition

BDD and an object BDD results in a BDD identical to the original object BDD, it

means that all objects represented by that object BDD have the attribute and condition

represented by that attribute and condition BDD. In Line 5, this attribute and condition

are then inserted into a separate attribute and condition list. Then, in Lines 6 and

7, the algorithm creates a BDD containing all attributes and conditions shared by the

objects. This logic is the same of the original algorithm, with the exception that the

new algorithm does not test objects one by one. The computational complexity of the

algorithm is θ(|M|x|B|x|X ′|).

4.3 Extracting BCAAR and BACAR rules

TRIAS BDD was extended to extract BCAAR and BACAR rules based on the

algorithms proposed and developed in (MISSAOUI; KWUIDA, 2011). Algorithm 8

computes triadic concepts and generators. Lines 3 to 13 collect distinct attribute and

condition values found in the intent of the current dyadic c in order to construct the

sub-context Ka j,ak and generate the corresponding concepts. In Line 3, Gen(c) is the set

of generators associated with the intent of c. Line 4 collects distinct attribute values a j ∈
c and line 5 collect distinct conditions values ak ∈ c. In Line 8, initialize the sub-context
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Ka j,ak to 0 where rows and columns are attributes and conditions found in c. Line 10

extracts the attribute value a j in e = a j×ak and line 11 extracts the conditions value ak

in e. Line 12 constructs the sub-context Ka j,ak from the intent of the concept c. Line 16

checks whether each computed triple is a triadic concept. The computation of generators

is done through lines 18 to 23. For each class of triadic concepts and their associated

generators. Line 20 collects distinct attribute values a j ∈ g and Line 21 collects distinct

conditions values ak ∈ g.

Algorithm 8: Triadic concepts and generators

Input : c: concept generated from TRIAS BDD
Output: C and G: a set of triadic concepts and a set of associated generators

1 C = /0
2 G = /0
3 U ← Gen(c)
4 A ← DistinctA(c)
5 Cond ← DistinctCond(c)
6 forall the a j ∈ A do
7 forall the ak ∈Cond do
8 Ka j,ak ← 0

9 forall the e ∈ IntentBDD(c) do
10 a j ← Attribute(e)
11 ak ← Conditions(e)
12 Ka j,ak← 1

13 ACond ← AttributeConditions(Ka j,ak)
14 forall the e ∈ ACond do
15 e1 ← Derive(e) {e1 is the (1)-derivation of e}
16 if e1 = ExtentBDD(c) then
17 Cond ← Cond ∪ {(e1, ExtentBDD(e), IntentBDD(e))}

18 if Cond 6= /0 then
19 forall the g ∈U do
20 A ← DistinctA(g)
21 C ← DistinctCond(g)
22 if Size(A) × Size(Cond) = Size(g) then
23 G ← G ∪ {(A,Cond)}

24 return C,G

Algorithm 9 is responsible for retrieving the BCAAR and BACAR triadic

association rules functions and compute them. In Line 2, it loops through all the classes,

which contain triadic concepts together with associated generators and predecessors. In

Line 3, it loops through all generators. In Line 6-8, it verifies if the class of the predecessor

is empty, if it is not, it calls the BCAAR function (Line 7) and BACAR function (Line

8).
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Algorithm 9: Function AssociationRules

Input : T= a set of classes. Each class contains triadic concepts together with
associated generators and predecessors.

Output: AR: A set of n-uples (L,R,C, s, c) representing association rules with left
hand-side L, right hand-side R, condition C and quality measures.

1 AR = /0
2 forall the CL ∈ T do
3 forall the generator ∈ Gen(CL) do
4 A ← Intent(generator)
5 D ← Conditions(generator)
6 if Pred(CL) 6= /0 then
7 AR ← AR ∪ BCAAR(CL,A,D,E)
8 AR ← AR ∪ BACAR(CL,A,D,E)

9 return AR

Algorithm 10 is the function responsible for computing the BCAAR triadic

association rules. It receives the class with the associated generator and predecessor;

the intent A, the extent E and the condition of the current generator. It loops through

all predecessors of the classes, computes the Intent(p) in B, the support s (Line 4) and

confidence c (Line 5).

Algorithm 10: Function BCAAR

Input : CL: A class of triadic concepts together with associated generators and
predecessors; A and D are the intent and the condition of the current
generator respectively while E is the extent of the current triadic concept

Output: BCAAR: a set of association rules whose confidence is less than 1.
1 BCAAR = /0
2 forall the p ∈ Predecessor(CL) do
3 B ← Intent(p)
4 s ← Extent(p)/Size(K1)
5 c ← Extent(p)/Size(E)
6 BCAAR ← BCAAR ∪ {(A,B\ A,D, s, c)}
7 return BCAAR

Algorithm 11 is the function responsible for computing the BACAR triadic

association rules. It receives the class with the associated generator and predecessor;

the intent A, the extent E and the condition of the current generator. It loops through

all predecessors, computes the Condition(p) in F, the support s (Line 4) and confidence c

(Line 5).
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Algorithm 11: Function BACAR

Input : CL: A class of triadic concepts together with associated generators and
predecessors; A and D are the intent and the condition of the current
generator respectively while E is the extent of the current triadic concept

Output: BACAR: a set of association rules whose confidence is less than 1.
1 BACAR = /0
2 forall the p ∈ Predecessor(CL) do
3 F ← Conditions(p)
4 s ← Extent(p)/Size(K1)
5 c ← Extent(p)/Size(E)
6 BACAR ← BACAR ∪ {(D,F\ D,A, s, c)}
7 return BACAR
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5 EXPERIMENTS AND RESULT ANALYSIS

The contexts used, in our experiments, correspond to two types of triadic contexts -

synthetic (subsection 5.1) and real contexts (subsection 5.2). The results (time execution)

were compared for both TRIAS and TRIAS BDD Algorithms.

The experiments were run on an Intel Core i7-4790 3.60GHz with 8 cores, 16

threads, 32GB RAM and Ubuntu 18.04 LTS operating system. It is important to

emphasize that our approach was developed to use sequential processing and the top

Linux command was used to collect RAM usage.

5.1 Results for the synthetic triadic contexts

The random synthetic generator SCGaz was used to generate several contexts.

The main objective was to evaluate the performance of the TRIAS and TRIAS BDD in

the concept extraction. Initially, synthetic triadic contexts with an arbitrary number of

objects, dimensions, conditions and densities were generated to be used in both algorithms.

In this work, contexts with 500, 1,500, 3,000, 5,000 and 10,000 objects were created with

10, 15 and 20 attributes and 5 conditions. The density was fixed at 30%, 50% and 70%

for all contexts.

In order to perform a better analysis, 10 different contexts were generated for each

testing scenario randomly.

The results presented in the Table 17, Table 18, Table 19 and Table 20 correspond

to the time execution average of the 10 contexts. In Table 17, Table 18 and Table 19,

cells with the “-” symbol represent that the algorithm failed to complete the concepts

extraction processing within 7 days.

The proposed algorithm (TRIAS BDD) consumed less memory and allowed the

algorithm to extract concepts in larger and denser contexts. The cells in bold present the

fastest times.

Initially, the number of objects of each context was increased while maintaining

the number of attributes, conditions and density. Secondly, it was varied the density of

each context. Lastly, it was increased the number of attributes to make our contexts more

complex in order to test both algorithms and observe their behaviors in high-dimensional

scenarios.
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As presented in Table 17, which considers 10 attributes and 5 conditions, it can

be seen that the TRIAS BDD algorithm showed a higher speedup than TRIAS, varying

between 28% and 36%, for density 30% and between 12% and 22% for density 50%.

Considering the density of 30%, there was no relationship of proportionality

between the increase the number of objects and the percentage variation of speedup.

However, when the 50% density is observed, a reduction in speedup is directly proportional

to the number of objects up to 5,000 objects. For 10,000 objects, TRIAS BDD’s speedup

percentage gain compared to TRIAS was exactly the same achieved for 500 objects (22%).

Analyzing the density of 70%, it can be observed that the TRIAS BDD obtained a

speedup greater than the TRIAS for 500, 1,500 and 5,000 objects, presenting a variation

between 6% and 19%. However, for 3,000 objects, TRIAS showed a speedup greater than

TRIAS BDD by 5%.

It is important to note that TRIAS did not obtain results for 10,000 objects and a

density of 70% in the same context of attributes and conditions, which did not allow the

comparison between the algorithms.

Table 17: TRIAS x TRIAS BDD Algorithm Results in 10 attributes and 5 conditions

Context
(G x M x B)

Density (%) Incidences
TRIAS
(Minutes)

TRIAS BDD
(Minutes)

SpeedUp (%)

500 x 10 x 5 30 7,500 4.55 3.57 22%
1,500 x 10 x 5 30 22,500 19.36 13.16 32%
3,000 x 10 x 5 30 45,000 30.00 21.70 28%
5,000 x 10 x 5 30 75,000 55.18 35.32 36%
10,000 x 10 x 5 30 150,000 119.53 82.48 31%
500 x 10 x 5 50 12,500 7.09 5.53 22%
1,500 x 10 x 5 50 37,500 31.62 25.61 19%
3,000 x 10 x 5 50 75,000 54.85 46.62 15%
5,000 x 10 x 5 50 125,000 130.37 114.72 12%
10,000 x 10 x 5 50 250,000 292.19 227.91 22%
500 x 10 x 5 70 17,500 9.09 7.37 19%
1,500 x 10 x 5 70 52,500 39.52 33.20 16%
3,000 x 10 x 5 70 105,000 62.22 65.33 -5%
5,000 x 10 x 5 70 175,000 128.76 121.03 6%
10,000 x 10 x 5 70 350,000 - 269.61 -

As can be observed in Figure 8, considering the context of 10 attributes, 5

conditions and 30% density, for processing context with 500 objects TRIAS spent 4.55

minutes and TRIAS BDD spent 3.57 minutes, a difference of 0.98 minutes in favor of

TRIAS BDD. For processing context with 1,500 objects, TRIAS spent 19.36 minutes and

the proposed algorithm spent 13.16 minutes, which is a difference of 6.2 minutes less.

For processing context with 3,000 objects, the original algorithm spent 30 minutes and
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the proposed algorithm spent 21.70 minutes. This difference corresponds to 8.3 minutes

in favor of TRIAS BDD. For processing context with 5,000 objects, TRIAS spent 55.18

minutes and TRIAS BDD took 35.32 minutes, which corresponds to a difference of 19.86

minutes in favor of the proposed algorithm. For processing context with 10,000 objects,

TRIAS spent 119.53 minutes while TRIAS BDD spent 82.48 minutes, corresponding to a

difference of 37.05 minutes.
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Figure 8: Contexts with 10 attributes, 5 conditions and 30% density

As indicated in Figure 9, considering the context of 10 attributes, 5 conditions

and 50% density, for processing context with 500 objects TRIAS spent 7.09 minutes and

TRIAS BDD spent 5.53 minutes, a difference of 1.56 minutes in favor of the proposed

algorithm. For processing context with 1,500 objects, TRIAS spent 31.62 minutes and

TRIAS BDD spent 25.61 minutes, which corresponds to a difference of 6.01 minutes less

for the proposed algorithm. For processing context with 3,000 objects, TRIAS spent

54.85 minutes and TRIAS BDD spent 46.62 minutes. This difference corresponds to

8.23 minutes in favor of TRIAS BDD. For processing context with 5,000 objects, the

original algorithm spent 130.37 minutes and the proposed algorithm spent 114.72, which

corresponds to a difference of 15.65 minutes in favor of the proposed algorithm. For

processing context with 10,000 objects, TRIAS spent 292.19 minutes while TRIAS BDD

spent 227.91 minutes, corresponding to a difference of 64.28 minutes.

As it might be seen in Figure 10, considering the context of 10 attributes, 5

conditions and 70% density, for processing context with 500 objects, TRIAS spent 9.09

minutes and TRIAS BDD spent 7.37 minutes, a difference of 1.72 minutes in favor of

TRIAS BDD. For processing context with 1,500 objects, the original algorithm spent

39.52 minutes and the proposed algorithm spent 33.20 minutes, which corresponds to

a difference of 6.32 minutes less. For processing context with 3,000 objects, TRIAS
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Figure 9: Contexts with 10 attributes, 5 conditions and 50% density

spent 62.22 minutes and TRIAS BDD spent 65.33 minutes. This difference corresponds

to 3.11 minutes in favor of TRIAS. For processing context with 5,000 objects, the

original algorithm spent 128.76 minutes and the proposed algorithm spent 121.03, which

corresponds to a difference of 7.73 minutes in favor of the proposed algorithm. For

processing context with 10,000 objects, the TRIAS BDD spent 269.61 minutes. TRIAS

did not generate results within 7 days. Therefore, it was not possible to compare the

algorithm’s results.
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Figure 10: Contexts with 10 attributes, 5 conditions and 70% density

As presented in Table 18, it can be seen that the TRIAS BDD algorithm presented a

higher speedup than TRIAS, varying between 19% and 22%, for density 30% and between

5% and 18% for density 50%. It is important to point out that TRIAS did not show results,
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at densities 30% and 50%, for 10,000 objects, considering 15 attributes and 5 conditions.

Therefore, it was not possible to comparate the algorithm’s results.

Analyzing the density of 70%, it is observed that the TRIAS BDD obtained results

for the five contexts with the quantity of the following objects: 500, 1,500, 3,000, 5,000

and 10,000. However, TRIAS only presented results for 500 and 1,500 objects. For these

values, TRIAS BDD showed a higher speedup than TRIAS, by 22% and 19%, respectively.

Table 18: TRIAS x TRIAS BDD Algorithm Results in 15 attributes and 5 conditions

Context
(G x M x B)

Density (%) Incidences
TRIAS
(Minutes)

TRIAS BDD
(Minutes)

SpeedUp (%)

500 x 15 x 5 30 11,250 42.68 34.39 19%
1,500 x 15 x 5 30 33,750 212.48 166.60 22%
3,000 x 15 x 5 30 67,500 376.20 297.49 21%
5,000 x 15 x 5 30 112,500 768.8 595.97 22%
10,000 x 15 x 5 30 225,000 - 1,348.12 -
500 x 15 x 5 50 18,750 53.20 50.28 5%
1,500 x 15 x 5 50 56,250 284.56 256.36 10%
3,000 x 15 x 5 50 112,500 575.94 488.09 15%
5,000 x 15 x 5 50 187,500 1,564.42 1,282.31 18%
10,000 x 15 x 5 50 375,000 - 3,155.67 -
500 x 15 x 5 70 26,250 122.35 95.48 22%
1,500 x 15 x 5 70 78,750 583.78 474.26 19%
3,000 x 15 x 5 70 157,500 - 839.92 -
5,000 x 15 x 5 70 262,500 - 1,738.24 -
10,000 x 15 x 5 70 525,000 - 4,183.66 -

In all contexts with 15 attributes, the TRIAS BDD was more efficient in all five

object variations with speedup up to 22%. However, in contexts with 10 attributes and 5

conditions, the BDD implementation was faster for contexts with 30% and 50% densities.

For density equal 70%, 3,000 objects, 10 attributes and 5 conditions the original algorithm

was 5% faster. The main benefit that the BDD provided was to manipulate a more

complex data structure.

As can be seen in Figure 11, considering the context of 15 attributes, 5 conditions

and 30% density, for processing context with 500 objects TRIAS spent 42.68 minutes and

TRIAS BDD spent 34.39 minutes, a difference of 8.29 minutes in favor of TRIAS BDD.

For processing context with 1,500 objects, the original algorithm spent 212.48 minutes and

the proposed algorithm spent 166.60 minutes, which corresponds to a difference of 45.88

minutes less. For processing context with 3,000 objects, TRIAS spent 376.20 minutes and

TRIAS BDD spent 297.49 minutes. The difference corresponds to 78.71 minutes in favor

of TRIAS BDD. For processing context with 5,000 objects, the original algorithm spent

768.8 minutes and the proposed algorithm spent 595.97, which corresponds to a difference
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of 172.83 minutes in favor of the proposed algorithm. For processing context with 10,000

objects, the TRIAS BDD spent 1,348.12 minutes. TRIAS did not generate results within

7 days. Therefore, it was not possible to compare the algorithm’s results.
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Figure 11: Contexts with 15 attributes, 5 conditions and 30% density

As presented in Figure 12, considering the context of 15 attributes, 5 conditions

and 50% density, for processing context with 500 objects TRIAS spent 53.20 minutes and

TRIAS BDD spent 50.28 minutes, a difference of 2.92 minutes in favor of TRIAS BDD.

For processing context with 1,500 objects, the original algorithm spent 284.56 minutes and

the proposed algorithm spent 256.36 minutes, which is a difference of 28.2 minutes less.

For processing context with 3,000 objects, TRIAS spent 575.94 minutes and TRIAS BDD

spent 488.09 minutes. The difference corresponds to 87.85 minutes in favor of TRIAS

BDD. For processing context with 5,000 objects, the original algorithm spent 1,564.42

minutes and the proposed algorithm spent 1,282.31, which corresponds to a difference of

282.11 minutes in favor of the proposed algorithm. For processing context with 10,000

objects, the TRIAS BDD took 3,155.67 minutes. TRIAS did not generate results within

7 days. Therefore, it was not possible to compare the algorithm’s results.

As can be observed in Figure 13, considering the context of 15 attributes, 5

conditions and 70% density, for processing context with 500 objects TRIAS spent 122.35

minutes and TRIAS BDD spent 95.48 minutes, a difference of 26.87 minutes in favor

of TRIAS BDD. For processing context with 1,500 objects, the original algorithm spent

583.78 minutes and the proposed algorithm spent 474.26 minutes, which corresponds to

a difference of 109.52 minutes less. For processing context with 3,000, 5,000 and 10,000

objects, TRIAS BDD spent 839.92, 1,738.24 and 4,183.66 minutes, respectively. TRIAS

did not generate results within 7 days for 3,000, 5,000 and 10,000 objects. Therefore, it

was not possible to compare the algorithm’s results.
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Figure 12: Contexts with 15 attributes, 5 conditions and 50% density

As presented in Table 19, it can be seen that the TRIAS BDD algorithm showed

a higher speedup than the TRIAS for contexts with 500, 3,000 and 5,000 objects,

corresponding 6%, 22% and 30%, for density equal to 30%. For context with 1,500

objects, TRIAS had a speedup 4% higher than TRIAS BDD. TRIAS did not obtain

results for the processing context with 10,000 objects, with 30% density for 20 attributes

and 5 conditions. Therefore, it was not possible to compare the algorithm’s results.

Table 19: TRIAS x TRIAS BDD Algorithm Results in 20 attributes and 5 conditions

Context
(G x M x B)

Density (%) Incidences
TRIAS
(Minutes)

TRIAS BDD
(Minutes)

SpeedUp (%)

500 x 20 x 5 30 15,000 54.56 51.29 6%
1,500 x 20 x 5 30 45,000 271.00 281.84 -4%
3,000 x 20 x 5 30 90,000 479.95 374.36 22%
5,000 x 20 x 5 30 150,000 1,293.28 903.89 30%
10,000 x 20 x 5 30 300,000 - 2,462.38 -
500 x 20 x 5 50 25,000 70.93 64.55 9%
1,500 x 20 x 5 50 75,000 379.41 318.70 16%
3,000 x 20 x 5 50 150,000 767.93 622.02 19%
5,000 x 20 x 5 50 250,000 2,885.89 1,279.88 56%
10,000 x 20 x 5 50 500,000 - 5,259.46 -
500 x 20 x 5 70 35,000 223.56 147.31 34%
1,500 x 20 x 5 70 105,000 958.98 614.45 36%
3,000 x 20 x 5 70 210,000 - 1,119.89 -
5,000 x 20 x 5 70 350,000 - 2,317.66 -
10,000 x 20 x 5 70 700,000 - 7,578.21 -

Analyzing the results for 50% density, it is observed that the proposed algorithm

presented a percentage of speedup higher than the original algorithm in 9% for context
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Figure 13: Contexts with 15 attributes, 5 conditions and 70% density

with 500, 16% for context with 1,500, 19 % for context with 3,000 and 56 % to context

with 5,000 objects. It was not possible to perform comparative analysis for 10,000 objects

because the original algorithm did not present any result.

Analyzing the same results for context with 70% density, it is observed that

the TRIAS algorithm presented processing results only for contexts with 500 and 1,500

objects. For these results, TRIAS BDD showed a higher speedup than TRIAS, at 34%

and 36%, respectively.

The concept extractions performed in contexts that have more than 250,000

incidences, TRIAS BDD was able to process contexts that the original implementation

was not able to handle. Therefore, the use of the BDD was mandatory in these cases to

enable concept extraction. As an example, contexts with 5,000 objects, 20 attributes, 5

conditions and 70% density - only TRIAS BDD was able to extract the concepts.

As a summary, the execution time for TRIAS become faster than TRIAS BDD in

only two contexts (3,000 objects x 10 attributes x 5 conditions x 70% density and 1,500

objects x 20 attributes x 5 conditions x 30% density). However, the speedup in both cases

was 5% and 4% when compared to TRIAS BDD. On the other hand, TRIAS BDD was

faster in all remaining contexts (42 of 45 total).

As presented in Figure 14, considering the context of 20 attributes, 5 conditions

and 30% density, for processing context with 500 objects, TRIAS spent 54.56 minutes and

TRIAS BDD spent 51.29 minutes, a difference of 3.27 minutes in favor of TRIAS BDD.

For processing context with 1,500 objects, TRIAS spent 271.00 minutes and TRIAS BDD

spent 281.84 minutes, which corresponds to a difference of 10.84 minutes less for TRIAS.

For processing context with 3,000 objects, the original algorithm required 479.95 minutes
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and the proposed algorithm required 374.36 minutes. This difference corresponds to 105.59

minutes in favor of the proposed algorithm. For processing context with 5,000 objects,

TRIAS spent 1,293.28 minutes and TRIAS BDD spent 903.89, which corresponds to a

difference of 389.39 minutes in favor of TRIAS BDD. For processing context with 10,000

objects, TRIAS BDD spent 2,462.38 minutes. TRIAS did not generate results within 7

days. Therefore, it was not possible to compare the algorithm’s results.
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Figure 14: Contexts with 20 attributes, 5 conditions and 30% density

As can be seen in Figure 15, considering the context of 20 attributes, 5 conditions

and 50% density, for processing context with 500 objects TRIAS spent 70.93 minutes and

TRIAS BDD spent 64.55 minutes, a difference of 6.38 minutes in favor of TRIAS BDD.

For processing context with 1,500 objects, the original algorithm spent 379.41 minutes and

the proposed algorithm spent 318.70 minutes, which corresponds to a difference of 60.71

minutes less. For processing context with 3,000 objects, TRIAS spent 767.93 minutes

and TRIAS BDD spent 622.02 minutes. This difference corresponds to 145.91 minutes in

favor of TRIAS BDD. For processing context with 5,000 objects, the original algorithm

spent 2,885.89 minutes and the proposed algorithm spent 1,279.88, which corresponds to

a difference of 1,606.01 minutes in favor of the proposed algorithm. For processing context

with 10,000 objects, TRIAS BDD spent 5,259.46 minutes. TRIAS did not generate results

within 7 days. Therefore, it was not possible to compare the algorithm’s results.

As presented in Figure 16, considering the context of 20 attributes, 5 conditions

and 70% density, for processing context with 500 objects TRIAS spent 223.56 minutes and

TRIAS BDD spent 147.31 minutes, a difference of 76.25 minutes in favor of TRIAS BDD.

For processing context with 1,500 objects, the original algorithm spent 958.98 minutes

and the proposed algorithm spent 614.45 minutes, which corresponds to a difference of

344.53 minutes less. For processing the contexts with 3,000, 5,000 and 10,000 objects,
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Figure 15: Contexts with 20 attributes, 5 conditions and 50% density

TRIAS BDD spent 1,119.89, 2,317.66 and 7,578.21 minutes, respectively. TRIAS did not

generate results within 7 days for 3,000, 5,000 and 10,000. Therefore, it was not possible

to compare the algorithm’s results.
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Figure 16: Contexts with 20 attributes, 5 conditions and 70% density

In 2006, the ICFCA (International Conference on Formal Concept Analysis) at

Desdren (OLD; PRISS, 2006) discussed the main challenges of formal analysis. Since

that date, the requirements to deal with dense and high-dimensional formal contexts have

been discussed, such as contexts with 120,000 objects and 70,000 attributes, which are

considerably larger than the experiments made here. In order to attend partially to the

challenge, new synthetic triadic contexts were created using SCGaz (Table 20). Tests

were performed and compared TRIAS and TRIAS BDD results for contexts with 120,000
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objects, 5, 10 and 15 attributes, 5 and 10 conditions and 30%, 50% and 70% density.

Initially, the number of objects and density of each context were fixed in 120,000 and

30% while changing the number of attributes and conditions. Secondly, it was varied the

density of each context.

In Table 20, cells with the“-”symbol represent that the algorithm failed to complete

the concepts extraction processing within 14 days. Note that in these scenarios the

algorithms were dealing with contexts that have a high number of incidences, varying

from 1,776,769 a 6,299,886.

Table 20: TRIAS x TRIAS BDD Algorithm Results for High-dimensional Contexts

Context
(G x M x B)

Density Incidences
TRIAS
(Days)

TRIAS BDD
(Days)

120,000 x 15 x 5 30% 2,699,984 - 12.79
120,000 x 10 x 5 30% 1,776,769 - 10.88
120,000 x 5 x 10 30% 1,776,769 - 10.46
120,000 x 15 x 5 50% 4,498,986 - -
120,000 x 10 x 5 50% 2,999,948 - 13.16
120,000 x 5 x 10 50% 2,999,948 - 13.54
120,000 x 15 x 5 70% 6,299,886 - -
120,000 x 10 x 5 70% 4,199,988 - -
120,000 x 5 x 10 70% 4,199,988 - -

As presented in Table 20, in none of the experiments, the TRIAS algorithm was

able to extract concepts within 14 days. The algorithm was not able to deal with those

contexts called high-dimensional. However, TRIAS BDD retrieved concepts before 14

days in all cases of contexts with 30% density. As an example, it completed the execution

in 10.88 days for a context with a density of 30%, 120,000 objects, 10 attributes and

5 conditions. It was also able to extract concepts for contexts with a density of 50%

considering the limit of 2,999,948 incidences. In these cases, with the use of BDDs,

optimizing the representation, it confirmed to be an efficient solution. Therefore, the use

of BDD is an interesting approach in high-dimensional contexts.

Table 20 shows the results obtained for high-dimensional contexts. Considering

120,000 objects, for densities 30%, 50% and 70%, three different combinations between the

number of attributes and conditions were tested, such as: 15 attributes and 5 conditions,

10 attributes and 5 conditions and 5 attributes and 10 conditions.

According to Table 20, considering the density of 30%, it can be seen that TRIAS

did not generate results for the three combinations of attributes and conditions. TRIAS

BDD spent 12.79 days to process context with 120,000 objects, 15 attributes and 5 objects.

The processing of the context with 120,000 objects, with 10 attributes and 5 conditions,

TRIAS BDD spent 10.88 days. Also, for processing context with 120,000 objects, 5
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attributes and 10 conditions, TRIAS BDD spent 10.46 days. A variation of 3.86% is

perceived between the time spent by both.

Moreover, it can be observed in Table 20, considering the density of 50%, TRIAS

did not generate results for the three combinations of attributes and conditions. TRIAS

BDD did not generate results for context with 120,000 objects, 15 attributes and 5

conditions. A variation of 2.88% is perceived between the time spent by TRIAS BDD for

processing context with 120,000 objects, 10 attributes and 5 conditions (13.16 days) and

the time spent by TRIAS BDD for processing context with 120,000 objects, 5 attributes

and 10 conditions (13.54 days).

Also, according to Table 20, it is observed that, considering the density 70%,

context with 120,000 objects and the three combinations of attributes and conditions (15

attributes x 5 conditions, 10 attributes x 5 conditions and 5 attributes x 10 conditions),

neither TRIAS nor TRIAS BDD were able to generate results.

However, note that even this new solution is not efficient when the number of

incidences exceeds 3,000,000 - both algorithms were not able to complete the concept

extractions for all contexts with 70% density within 14 days. But, for the contexts

presented in Table 20, only the TRIAS BDD was able to extract the concepts.

5.2 Results for real datasets contexts

The use of synthetic databases is an interesting strategy to evaluate algorithms.

However, understand the behavior of the algorithm in real scenarios is extremely

important to understand its real efficiency. Considering that, it was applied both

algorithms to an extensive database of movie ratings called MovieLens1. The database

consists of ratings of more than 6,000 anonymous users in approximately 4,000 movies. It

has more than 1,000,000 records with users rate movies from 1 to 5 ratings. This base is

considered sparse, meaning despite the huge number of ratings, there is no guarantee that

users rated the same movies, consequently generating sparse triadic contexts regarding

the number of incidences. For example, it is not possible to confirm if user A has rated the

same movies as user B. Additionally, in the movie range (attributes) that are required to

be evaluated, it is not possible to confirm that the user rated (conditions) all movies. In

other words, the user may have evaluated only a single movie within the possible movies

available in the context.

The contexts generated from the database have as a set of objects the users who

have made classifications, the attributes of the context are the classified movies and the

conditions are the rates received. Then, the triadic context can be defined as K =

1https://grouplens.org
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(K1,K2,K3,Y ) where K1 are the set of users in the dataset, K2 are set of movies, K3 the

set of rates given by users and Y are the relation between users and movies and their

respective rates.

Figure 17 represents one example of a triadic concept extract from the dataset

movie. Note that in the first concept users 646, 1015 rated the same movie with the same

rate.

Figure 17: Example of triconcepts from MovieLens Dataset

In Table 21, cells with the“-”symbol represent that the algorithm failed to complete

the concepts extraction processing within 7 days. It shows the results of the algorithms

applied to contexts generated from the real dataset MovieLens. It was decided to fix the

number of objects (users) and conditions (rates), using the maximum number of objects

available in the dataset, and varied the number of attributes (movies) of the context.

Table 21: TRIAS x TRIAS BDD Algorithm Results for MovieLens dataset

Context (G,M,B)
(G = Users × M = Movies × B = Rates)

Density Incidences
TRIAS
(Days)

TRIAS BDD
(Days)

6,000 x 100 x 5 17.3% 105,986 - 5.88
6,000 x 150 x 5 16.4% 158,029 - 6.12
6,000 x 200 x 5 14.3% 203,898 - 6.85

As presented in Table 21, the TRIAS and TRIAS BDD algorithms were applied to

the MovieLens dataset. Three different scenarios were considered, such as: 1) 6,000 users

(objects), 100 movies (attributes) and a rates (conditions) equal to 5; 2) 6,000 users, 150

movies and 5 rates; 3) 6,000 users, 200 movies and 5 rates. It is noticeable, the number

of users and the rate were maintained in all analyzes. Only the quantity of movies was

varied between 100, 150 and 200. For the context of 100 movies, a density of 17.3% was

considered. For 150 movies, a density of 16.4% was considered and, finally, for 200 movies,

a density of 14.3% was considered.

Note that TRIAS Algorithm did not complete the computation of all formal
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concepts, during a period of seven days. TRIAS BDD obtained results for 100, 150

and 200 movies, it spent 5.88, 6.12 and 6.85 days, respectively.

The larger formal context created from MovieLens (6,000 x 200 x 5) has

approximately only 20% of the full database, reinforcing that the triadic approach using

the algorithm TRIAS was not able to deal with the dataset, even in small subsets of real

data. However, TRIAS BDD was able to compute the results for the context with 100

and 150 attributes before 7 days.

5.3 RAM Memory Usage Analysis

Figures, 18, 19, 20, below, present the behavior of the RAM memory in three

situations that were evaluated in this research. The purpose of these figures is to present

a comparative analysis between the RAM memory usage by TRIAS and TRIAS BDD.

In order to have a better understanding of the behavior of the RAM memory,

an analysis of three scenarios was evaluated. The first, which considers 5,000 objects,

20 attributes and 5 conditions, where TRIAS BDD presented a shorter processing time

than TRIAS. And the second and third figures reflect the behavior of the memory where

TRIAS BDD spent more processing time than TRIAS.

Figure 18: Memory Usage of the context with 5,000 objects, 20 attributes and 5 conditions -
presented in Table 19

It can be seen in Figure 18 that in the first 250 minutes of processing, TRIAS
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BDD had consumed 22% of RAM and TRIAS had consumed 34%, that is, in 250 minutes,

TRIAS had consumed 55% more RAM memory than TRIAS BDD, for processing of 5,000

objects, 20 attributes and 5 conditions.

After 250 minutes, the memory consumption by TRIAS and TRIAS BDD showed

a steady growth, but less accentuated. TRIAS BDD spent 1279.88 minutes to complete

the entire processing of 5,000 objects, 20 attributes and 5 conditions. After 250 minutes,

the RAM memory consumption of TRIAS BDD went from 22% to 26% in 500 minutes,

29% in 1,000 minutes and 31% in 1,279.88 minutes, when processing was completed, a

41% increase in memory consumption RAM from 250 minutes to 1,250 minutes.

In contrast, TRIAS spent 2,885.89 minutes to complete the processing of 5,000

objects, 20 attributes and 5 conditions. After 250 minutes, the RAM memory consumption

went from 34% to 37% in 500 minutes, 41% in 1,000 minutes, 49% in 2,000 minutes and

58% in 2,885.89, when the processing was finished.

As presented in Figure 18, it can be said that TRIAS BDD consumed 22% of RAM

in the first 250 minutes of processing and 31% at 1,279.88 minutes, when processing was

finished. TRIAS consumed 34% of RAM in the first 250 minutes of processing and 58%

at 2,885.89 minutes, when processing was completed.

A comparative analysis between TRIAS and TRIAS BDD processing enables us to

understand that TRIAS, between 250 minutes and 1,250 minutes, had a 32% increase in

memory consumption, going from 34% to 45% of RAM memory usage. In contrast, TRIAS

BDD had a 41% increase in RAM memory consumption, from 22% to 31% in memory

usage. It is important to note that, in the same time interval, TRIAS BDD demanded

9% more memory increase than TRIAS. However, TRIAS BDD finished processing 5,000

objects, 20 attributes and 5 conditions in 1,279.88 minutes, consuming 31% of memory,

while TRIAS finished processing only at 2,885.89 minutes, with 58% of memory usage.

Another information that Figure 18 present is that, considering the processing time

of 250 minutes, TRIAS BDD had consumed 22% of RAM, while TRIAS had consumed

34%, that is, 55% more than TRIAS BDD.

Finally, considering the final time of the comparative analysis, that is, the interval

between 250 and 1,250 minutes, TRIAS BDD had consumed 31% of RAM memory and

TRIAS 45%, 45% more of RAM memory consumption.

As presented in Figure 19, it can be observed that TRIAS BDD spent 65.33 minutes

to perform all the processing of 3,000 objects, 10 attributes and 5 conditions and TRIAS

took 62.22 minutes to perform the same processing, in other words, TRIAS was 5% faster.

However, analyzing the consumption of RAM memory, during 60 minutes of processing,

it is evident that TRIAS BDD consumed 26% of RAM memory, while TRIAS consumed



90

Figure 19: Memory Usage of the context with 3,000 objects, 10 attributes and 5 conditions -
presented in Table 17

31%, that is, TRIAS consumed 19% more than the TRIAS BDD.

In the first 5 minutes of processing, TRIAS BDD had consumed 11% of RAM

memory and TRIAS had consumed 14%, that is, in 5 minutes, TRIAS consumed 27%

more RAM memory than TRIAS BDD, for the processing of 3,000 objects, 10 attributes

and 5 conditions.

Evaluating the interval between 5 and 30 minutes of processing of TRIAS and

TRIAS BDD, it can be observed that TRIAS BDD went from 11% to 25% of RAM

memory, an increase of 127%. TRIAS increased from 14% to 29% of RAM memory

usage, which corresponds to an increase of 107%. After 30 minutes of processing, there

was a small variation between the percentage of RAM memory used by the two algorithms,

tending to a constant. Conform can be seen in Figure 19, TRIAS BDD went from 25%

to 26%, an increase of 4% and TRIAS went from 29% to 31%, which corresponds to 7%.

A comparative analysis between TRIAS and TRIAS BDD processing demonstrates

us to understand that TRIAS that the TRIAS BDD, between 5 minutes and 60 minutes,

had an increase of 136% in memory consumption, going from 11% to 26% of RAM

memory usage, in this interval. TRIAS, on the other hand, had a 121% increase in

RAM consumption, from 14% to 31% in memory usage. However, although TRIAS BDD

has a greater memory variation than TRIAS in this interval, when evaluating the total

amount of memory consumed in 60 minutes, it is evident that TRIAS BDD used 26% of
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the memory in its processing, while TRIAS used 31%, as previously presented. Finally,

when evaluating the beginning of this period, in other words, 5 minutes of processing, it

is evident that TRIAS used 14% of RAM memory and TRIAS BDD, 11%, that is, TRIAS

BDD used 27% less RAM memory than TRIAS. At the end of the evaluated period, the

memory consumption by TRIAS, 31%, was higher than that of TRIAS BDD, 26%, by

19%.

Figure 20: Memory Usage of the context with 1,500 objects, 20 attributes and 5 conditions -
presented in Table 19

As presented in Figure 20, it can be seen that TRIAS BDD spent 281.84 minutes

to perform all the processing of 1,500 objects, 20 attributes and 5 conditions and TRIAS

took 271 minutes to perform the same processing, in other words, TRIAS was 4%

faster. However, analyzing the consumption of RAM memory, during the 271 minutes

of processing, it is evident that TRIAS BDD consumed 15% of RAM, while TRIAS

consumed 19%, that is, TRIAS consumed 27% more than the TRIAS BDD.

In the first 25 minutes of processing, TRIAS BDD had consumed 7% of RAM and

TRIAS had consumed 9%, that is, in 25 minutes, TRIAS had consumed 29% more RAM

than TRIAS BDD, for the processing of 1,500 objects, 20 attributes and 5 conditions.

Evaluating the interval between 25 and 150 minutes of processing of TRIAS and

TRIAS BDD, it can be observed that TRIAS BDD went from 7% to 15% of RAM memory
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usage, an increase of 114%. TRIAS increased from 9% to 17% of RAM memory usage,

which corresponds to an increase of 89%. After 125 minutes of processing, TRIAS BDD

kept the consumption of RAM memory constant, at 15%. TRIAS also showed constant

memory consumption after 175 minutes, when the memory consumption remained at 19%

until the end of processing.

A comparative analysis between the TRIAS and TRIAS BDD processing permits

us to understand that the TRIAS BDD, between 25 minutes and 271 minutes, had an

increase of 114% in memory consumption, going from 7% to 15% of RAM memory use,

in this interval. TRIAS, on the other hand, had a 111% increase in RAM consumption,

from 9% to 19% in memory usage. However, despite the fact that TRIAS BDD has a

greater memory variation than TRIAS in this interval, when evaluating the total amount

of memory consumed in 271 minutes, it is noticed that TRIAS BDD used 15% of the

memory in its processing, while TRIAS used 19%, as previously presented. Finally, when

evaluating the beginning of this period, that is, 25 minutes of processing, it is evident

that TRIAS used 9% of RAM and TRIAS BDD, 7%, that is, 29% less than TRIAS. At

the end of the evaluated period, memory consumption by TRIAS, 19%, was higher than

that of TRIAS BDD, 15% by 27%.

5.4 Ordering the triadic context by attributes and conditions (column)

As described in section 2.3, the JavaBDD library was used in this research. One

of its characteristics is the random selection of the input order of the variables. In other

words, the variables are randomly ordered. However, it is extremely important to evaluate

the order of entry of the variables, as it impacts the number of nodes generated in the

BDD directly, the volume of data to be stored in RAM memory and, later, processed in

the algorithm, changing the processing time.

For the contexts in which the results of the TRIAS BDD algorithm obtained less

processing time results in relation to TRIAS. For example, in those contexts where the

execution time of TRIAS BDD was greater than the execution time of TRIAS, a heuristic

of prior ordering of the variables was created, manipulating an order of priority in the

entry of variables in the BDD.

In order to analyze the impact of ordering variables on the data to be processed

the following heuristics were implemented:

• Sorting per column (attribute x condition) from the higher to lower density, as

presented in the Table 23;

• Sorting per column (attribute x condition) from the lower to higher density, as
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presented in the Table 24

Table 22 presents an example of a triadic context used for this test. As it can be

seen, the ordering of the input of the variables is random and a triadic to dyadic projection

can be observed. Thus, according to the example, for eight objects, where K1 represents

the set of objects, K2 the attributes and K3 the conditions, the following occurrences

were found: attribute 1 and condition 1, 4 occurrences; attribute 2 and condition 1, 5

occurrences; attribute 1 and condition 2, 3 occurrences; attribute 2 and condition 2, 7

occurrences; attribute 1 and condition 3, 6 occurrences; attribute 2 and condition 3, 3

occurrences.

Table 22: Dyadic Context Projection Example

K1/K2×K3 a1c1 a2c1 a1c2 a2c2 a1c3 a2c3
ob ject1 × × × × ×
ob ject2 × × ×
ob ject3 × × × ×
ob ject4 × ×
ob ject5 × × × ×
ob ject6 × × ×
ob ject7 × × × ×
ob ject8 × × ×

Quantity 4 5 3 7 6 3

Tables 23 and 24 present the same objects, attributes and conditions. However, in

a different ordering. In Table 23, objects were ordered from highest to lowest density, and

in Table 24, objects were ordered from lowest to highest density, as presented below.

Table 23: Sorting per column (attribute x condition) from the higher to a lower density of the
Table 22

K1/K2×K3 a2c2 a1c3 a2c1 a1c1 a1c2 a2c3
ob ject1 × × × × ×
ob ject2 × × ×
ob ject3 × × × ×
ob ject4 × ×
ob ject5 × × × ×
ob ject6 × × ×
ob ject7 × × × ×
ob ject8 × × ×

Quantity 7 6 5 4 3 3

As presented in Table 25, it can be observed a comparative analysis between the

processing time spent by TRIAS, TRIAS BDD, TRIAS BDD ordered from the highest

density to the lowest (Descending order) and in Table 26 TRIAS BDD ordered from the

lowest density to the highest density (Ascending order).
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Table 24: Sorting per column (attribute x condition) from the lower to a higher density of the
Table 22

K1/K2×K3 a1c2 a2c3 a1c1 a2c1 a1c3 a2c2
ob ject1 × × × × ×
ob ject2 × × ×
ob ject3 × × × ×
ob ject4 × ×
ob ject5 × × × ×
ob ject6 × × ×
ob ject7 × × × ×
ob ject8 × × ×

Quantity 3 3 4 5 6 7

It is noticed that, for the context of 1,500 objects, 20 attributes and 5 conditions,

TRIAS spent 271 minutes to perform all the processing and TRIAS BDD spent 281.84,

that is, TRIAS BDD spent 4% more time to finish processing.

Analyzing the information regarding the processing performed by TRIAS BDD

ordered from highest to lowest density, it can be observed that the TRIAS BDD ordered

from highest to lowest density spent 246.21 minutes to perform the processing, that is,

9% less than TRIAS and 13% less than TRIAS BDD.

Observing the processing data performed by TRIAS BDD ordered from the lowest

to the highest density, it can be seen that the TRIAS BDD ordered from the lowest to

the highest density spent 254.79 minutes to perform the processing, that is, 6% less than

TRIAS and 10% less than TRIAS BDD.

Evaluating the context of 3,000 objects, 10 attributes and 5 conditions, where

TRIAS spent 62.22 minutes and TRIAS BDD 65.33 minutes, that is, TRIAS BDD spent

5% more than TRIAS for processing the context.

Analyzing the information referring to the processing performed by TRIAS BDD

ordered from highest to lowest density, it is observed that the TRIAS BDD ordered from

highest to lowest density took 53.21 minutes to perform the processing, that is, 14% less

than TRIAS and 19% less than TRIAS BDD.

Verifying the processing data performed by the TRIAS BDD ordered from the

lowest to the highest density, it can be seen that the TRIAS BDD ordered from the

lowest to the highest density spent 56.92 minutes to perform the processing, that is, 9%

less than TRIAS and 13% less than TRIAS BDD.

5.4.1 TRIAS × TRIAS BDD Descending and Ascending Order Analysis

In Table 25, TRIAS BDD Descending order represents the behavior of the TRIAS

BDD ordered from the highest to the lowest density, and in Table 26 TRIAS BDD
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Ascending order represents the behavior of the TRIAS BDD ordered from the lowest

to the highest density.

Table 25: TRIAS, TRIAS BDD and TRIAS BDD Descending Order

Context TRIAS TRIAS BDD
TRIAS BDD

Descending Order
Descending Order

x TRIAS
Descending Order

x TRIAS BDD
1,500x20x5 (30%) 271.00 281.84 246.21 9% 13%
3,000x10x5 (70%) 62.22 65.33 53.21 14% 19%

Table 26: TRIAS, TRIAS BDD and TRIAS BDD Ascending Order

Context TRIAS TRIAS BDD
TRIAS BDD

Ascending Order
Ascending Order

x TRIAS
Ascending Order
x TRIAS BDD

1,500x20x5 (30%) 271.00 281.84 254.79 6% 10%
3,000x10x5 (70%) 62.22 65.33 56.92 9% 13%

In the following, the behavior of RAM memory will be presented, using the ordering

from highest to lowest density, for the two contexts that TRIAS BDD presented a longer

processing time than TRIAS: 1- 3,000 objects, 10 attributes and 5 conditions; 2- 1,500

objects, 20 attributes and 5 conditions.

The Figure 21 shows the behavior of RAM memory for 3,000 objects, 10 attributes

and 5 conditions, with ordering the entry of variables from higher to lower density.

Through a comparative analysis between Figures 21 and 19, it can be seen that,

ordering the input of the variables from the highest to the lowest density, the consumption

of RAM memory by TRIAS BDD, at the end of the processing, was equal at 26%, while

TRIAS BDD from higher to lower density consumed 24%, a reduction of 8%.

Analyzing the first five minutes of processing, TRIAS BDD had consumed 11% of

RAM and TRIAS had consumed 14%, that is, TRIAS used 27% more RAM.

Between 5 and 30 minutes of processing, both showed an increase in RAM

consumption. TRIAS BDD went from 11% to 21%, an increase of 91% and TRIAS

went from 14% to 29%, which corresponds to 107%.

From 30 minutes of processing to 53.21 minutes, TRIAS BDD went from 21%

to 24%, an increase that corresponds to 14%. TRIAS went from 29% to 31%, which

corresponds to an increase of 7%.

In Figure 22, a comparative analysis was performed between the behavior of

memory consumption by TRIAS BDD ordered from highest to lowest density and TRIAS

in the interval between 5 minutes and 50 minutes of processing. At the end of the

processing, TRIAS BDD had consumed 24% of RAM memory and TRIAS 31%, that

is, TRIAS BDD consumed 29% less RAM memory than TRIAS.
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Figure 21: Descending Ordering - Memory Usage of the context with 3,000 objects, 10 attributes
and 5 conditions - presented in Table 19

In the same interval, memory consumption by TRIAS increased from 14% to 31%,

an increase of 121%. TRIAS BDD went from 11% to 24%, which corresponds to a variation

of 118%.

From the results obtained, it can be seen that the usage of TRIAS BDD from lower

to higher density, for 3,000 objects, 10 attributes and 5 conditions, generated a reduction

in processing time and in RAM usage.

The Figure 22 presents the behavior of RAM memory for 3,000 objects, 10

attributes and 5 conditions, with ordering the entry of attributes x condition from lower

to higher density.

Through a comparative analysis between graph 22 and graph 19, it can be seen

that, by ordering the entry of the attributes x conditions from the lowest to the highest

density, the consumption of RAM memory by TRIAS BDD, at the end of processing, was

equal at 26%, while TRIAS BDD from lower to higher density consumed 25%, a reduction

of 4%.

Analyzing the first five minutes of processing, TRIAS BDD had consumed 12% of

RAM and TRIAS had consumed 14%, that is, TRIAS used 17% more of RAM.

Between 5 and 30 minutes of processing, both showed an increase in the RAM
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Figure 22: Ascending Ordering - Memory Usage of the context with 3,000 objects, 10 attributes
and 5 conditions - presented in Table 19

consumption. TRIAS BDD went from 12% to 22%, an increase of 83% and TRIAS went

from 14% to 29%, which corresponds to 107%.

From 30 minutes of processing to 56.92 minutes, TRIAS BDD went from 22% to

25%, an increase that corresponds to 14%. TRIAS went from 29% to 31%, that is, an

increase of 7%.

Observing Figure 22, a comparative analysis was performed between the behavior

of memory consumption by TRIAS BDD ordered from lowest to highest density and

TRIAS in the interval between 5 minutes and 55 minutes of processing. At the end of the

processing, TRIAS BDD had consumed 25% of RAM memory and TRIAS 31%, that is,

TRIAS BDD consumed 24% less RAM memory than TRIAS.

In the same interval, memory consumption by TRIAS increased from 14% to 31%,

an increase of 121%. TRIAS BDD went from 12% to 25%, which corresponds to a variation

of 108%.

From the results obtained, it can be seen that the usage of TRIAS BDD from

higher to lower density, for 3,000 objects, 10 attributes and 5 conditions, generated a

reduction in processing time and in RAM usage.

Figure 23 shows the behavior of RAM memory for 1,500 objects, 20 attributes and

5 conditions, with ordering the entry of variables from higher to lower density.
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Through a comparative analysis between Figures 23 and 19, it can be seen that, by

ordering the input of the attributes x conditions from the highest to the lowest density,

the RAM memory consumption by TRIAS BDD, at the end of the processing, was equal

at 15%, while TRIAS BDD from higher to lower density consumed 13%, a reduction of

13%.

Figure 23: Descending Order - Memory Usage of the context with 1,500 objects, 20 attributes
and 5 conditions - presented in Table 19

Analyzing the first 25 minutes of processing, TRIAS BDD had consumed 6% of

RAM and TRIAS had consumed 9%. In other words, TRIAS used 50% more of RAM

memory.

Between 25 and 125 minutes of processing, both presented an increase in the RAM

consumption. TRIAS BDD went from 6% to 12%, an increase of 100% and TRIAS went

from 9% to 17%, which corresponds to 89%.

From 125 minutes of processing to 246.21 minutes, TRIAS BDD went from 12%

to 13%, an increase that corresponds to 8%. TRIAS went from 17% to 19%. In other

words, an increase of 12%.

Observing Figure 23, a comparative analysis was performed between the behavior

of memory consumption by TRIAS BDD ordered from highest density to lowest density

and TRIAS in the interval between 25 minutes and 225 minutes of processing. At the end
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of the processing, TRIAS BDD had consumed 13% of RAM memory and TRIAS 19%. In

other words, TRIAS BDD consumed 46 % less RAM memory than TRIAS.

In the same interval, memory consumption by TRIAS increased from 9% to 19%,

an increase of 111%. TRIAS BDD went from 6% to 13%, which corresponds to a variation

of 117%.

From the results obtained, it can be seen that the use of TRIAS BDD from higher

to lower density, for 1,500 objects, 20 attributes and 5 conditions, generated a reduction

in processing time and in RAM usage.

Figure 24 presents the RAM memory behavior for 1,500 objects, 20 attributes

and 5 conditions, with ordering the entry of attributes x conditions from lower to higher

density.

Through a comparative analysis between Figures 23 and 19, it can be seen that,

by ordering the entry of the attributes x conditions from the lowest to the highest, the

RAM memory consumption by TRIAS BDD, at the end of processing, was equal at 15%,

while TRIAS BDD from lower to higher density consumed 14%, a reduction of 7%.

Figure 24: Ascending Order - Memory Usage of the context with 1,500 objects, 20 attributes
and 5 conditions - presented in Table 19

Analyzing the first 25 minutes of processing, TRIAS BDD had consumed 7% of

RAM and TRIAS had consumed 9%. In other words, TRIAS used 29% more of RAM.
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Between 25 and 125 minutes of processing, both presented an increase in the RAM

consumption. TRIAS BDD went from 7% to 13%, an increase of 86% and TRIAS went

from 9% to 17%, which corresponds to 89%.

From 125 minutes of processing to 254.79 minutes, TRIAS BDD went from 13%

to 14%, an increase that corresponds to 8%. TRIAS went from 17% to 19%, that is, an

increase of 12%.

Observing 24, a comparative analysis was performed between the memory

consumption behavior by TRIAS BDD ordered from lowest to highest density and TRIAS

in the interval between 25 minutes and 250 minutes of processing. At the end of the

processing, TRIAS BDD had consumed 14% of RAM memory and TRIAS 19%. In other

words, TRIAS BDD consumed 36% less RAM memory than TRIAS.

In the same interval, memory consumption by TRIAS increased from 9% to 19%,

an increase of 111%. TRIAS BDD went from 7% to 14%, which corresponds to a 100%

variation.

From the results obtained, it can be seen that the usage of TRIAS BDD from lower

to higher density, for 1,500 objects, 20 attributes and 5 conditions, generated a reduction

in processing time and in RAM usage.

5.4.2 TRIAS BDD × TRIAS BDD Descending and Ascending Order
Analysis

This section analyzes the two contexts, where the processing time of TRIAS BDD

was greater than the processing time of TRIAS, that is, 3,000 objects, 10 attributes

and 5 conditions and 1,500 objects, 20 attributes and 5 conditions. This analysis aims

to understand the behavior of the TRIAS BDD algorithm, after ordering the density

obtained, from highest to lowest (Descending order) and lowest to highest (Ascending

order).

The first context evaluated comprises the processing of 3,000 objects, 10 attributes

and 5 conditions, where the processing time spent by TRIAS was 62.22 minutes and the

time spent by TRIAS BDD was 65.33, 5% more.

In order to have a better understanding of the behavior of the TRIAS BDD

algorithm, an analysis of the RAM memory behavior was performed, comparing TRIAS

BDD and TRIAS BDD in decreasing and increasing order, according to their density, as

shown in Figures 25 and 26.

Figure 25 shows the memory behavior of the TRIAS BDD and TRIAS BDD

algorithms in Decreasing order. It is observed that, in the first five minutes of processing,
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the memory consumption by the algorithms was the same, 11%.

Between 5 minutes and 53.21 minutes of processing, both increase memory

consumption. In this interval, which ends with the processing by the TRIAS BDD

Descending order, the TRIAS BDD went from 11% of memory consumption to 25%,

an increase of 127%.

The TRIAS BDD Descending order consumed 118 % in the same range, going from

11% to 24%. It can be said that the TRIAS BDD Descending order consumed 9% less

RAM than the TRIAS BDD in the interval. TRIAS BDD completed the processing at

65.33 minutes, reaching 26% of RAM memory usage.

Figure 25: Descending Order - Memory Usage of the context with 3,000 objects, 10 attributes
and 5 conditions - presented in Table 19

Figure 26 shows the behavior of the memory of the TRIAS BDD and TRIAS BDD

algorithms in Ascending order. In the first five minutes of processing, there is a variation of

9% between the consumption of RAM by TRIAS BDD, 11%, and TRIAS BDD Ascending

order, 12%.

Between 5 minutes and 56.92 minutes of processing both increase memory

consumption. In this interval, which ends with the processing by the TRIAS BDD

Ascending order, the TRIAS BDD went from 11% of memory consumption to 26%, an

increase of 136%.

The TRIAS BDD Ascending order consumed 108% in this same interval, going
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Figure 26: Ascending Order - Memory Usage of the context with 3,000 objects, 10 attributes
and 5 conditions - presented in Table 19

from 12% to 25%. It can be said that the TRIAS BDD Ascending order consumed 28%

less RAM than the TRIAS BDD in the interval. TRIAS BDD finished processing at 65.33

minutes, reaching 26% of RAM memory usage.

The second context evaluated comprises the processing of 1,500 objects, 20

attributes and 5 conditions, where the processing time spent by TRIAS was 271 minutes

and the time spent by TRIAS BDD was 281.84, 4% more.

In order to have a better understanding of the behavior of the TRIAS BDD

algorithm, an analysis of the RAM memory behavior was performed, comparing TRIAS

BDD and TRIAS BDD in Decreasing and Increasing order, according to their density, as

shown in Figures 27 and 28.

Figure 27 shows the memory behavior of the TRIAS BDD and TRIAS BDD

algorithms in decreasing order. It is observed that, in the first twenty five minutes of

processing, there is a variation of 17% in the memory consumption by the algorithms.

TRIAS BDD consumed 7% and TRIAS descending order 6%.

In the interval from 25 minutes and 125 minutes, both increase memory

consumption. TRIAS BDD went from 7% to 15%, an increase of 114% and TRIAS

BDD descending went from 6% to 12%, growth of 100%.
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Figure 27: Descending Order - Memory Usage of the context with 1,500 objects, 20 attributes
and 5 conditions - presented in Table 19

From 125 minutes to 246.21, when TRIAS BDD descending order finishes

processing, TRIAS BDD descending goes from 12% to 13%, varying 8% and TRIAS BDD

remains at 15% of memory consumption RAM up to 281.84 minutes, when processing is

complete.

Figure 28 shows the behavior of the memory of the TRIAS BDD and TRIAS BDD

algorithms in increasing order. It is observed that, in the first twenty five minutes of

processing, there is no variation between the processing time by the algorithms. Both

consumed 7% of RAM.

In the interval from 25 minutes and 125 minutes, both increase memory

consumption. TRIAS BDD went from 7% to 15%, an increase of 114% and TRIAS

BDD ascending went from 7% to 13%, an increase of 86%.

From 125 minutes to 254.79, when the TRIAS BDD ascending order finishes

processing, the TRIAS BDD ascending goes from 13% to 14%, varying 8% and the

TRIAS BDD remains at 15% of memory consumption RAM up to 281.84 minutes, when

processing is complete.
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Figure 28: Ascending Order - Memory Usage of the context with 1,500 objects, 20 attributes
and 5 conditions - presented in Table 19

5.5 BCAAR and BACAR triadic rules of the real context MovieLens

As described in the previous sections, synthetic and real contexts were used in

this research. Rules are comprehensible information that contains data from a specific

dataset and using synthetic contexts to perform some analysis should not be an interesting

approach. Therefore, in this section, only results from the MovieLens context described

in Section 5.2 will be presented. Also, the dataset used contains 8,545 objects (users), 50

movies (attributes) and 5 ratings (condition).

Table 27 shows the BCAAR rules for movies {Star Wars, Toy Story, I.Q., The

Net}. To extract all rules, they were passed as parameters those rules that have support

and confidence greater than 15%.

Given the first rule (Star Wars→ Toy Story) 5 presented in Table 27 with 31.11%

support and 72.28% confidence. In this example, it can be said that in 31.11% (support)

of cases (2,659 objects of 8,545 total in the context) where it has the attribute Star Wars

under the condition 5, it also has the attribute Toy Story under the same condition (rate

5). It occurs 72.28% (confidence) in the sub dataset where, at least, the movie Star Wars

was rated with 5 and from the sub dataset where the movie Toy Story was also rated with
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5 (1,922 of 2,659 objects).

Table 27: Biedermann Conditional Attribute Association Rule (BCAAR) of the MovieLens sub
dataset

Rule Support Confidence
(Star Wars → Toy Story) 5 31.11% 72.28%
(Star Wars → The Net) 3 26.74% 53.65%

(I.Q. → The Net) 5 18.91% 44.33%
(I.Q. → Toy Story) 3 15.43% 34.22%

(Toy Story → Star Wars) 1 22.33% 34.22%
(Star Wars → The Net) 2 29.47% 49.55%

Table 28 shows the BACAR rules for movies {Free Willy 2, Batman Forever, Doom

Generation, Mad Love, Toy Story, Star Wars, Crimson Tid, Brothers McMullen, Quiz

Show}. To extract all rules, they were passed as parameters those rules that have support

greater than 0% and confidence greater than 50%.

Given the first rule (1 → 3) Free Willy 2, Batman Forever presented in Table

28 with 0.00% support and 100.00% confidence. In this example, it can be said that in

00.00% (support) of cases (0 objects of 6,985 total) where it has the condition 1 under the

attribute Free Willy 2 and Batman Forever, it also has the condition 3 under the same

attributes, and this occurs 100.00% (confidence) in the dataset.

Table 28: Biedermann Attributional Condition Association Rule (BACAR) of the MovieLens
sub dataset

Rule Support Confidence
(1 → 3) Free Willy 2, Batman Forever 0.0% 100.00%
(5 → 4) Doom Generation, Mad Love 0.0% 100.00%

(5 → 4) Toy Story 0.0% 100.00%
(3 → 4) Star Wars 0.0% 100.00%

(5 → 2) Crimson Tid 0.0% 100.00%
(4 → 3) Brothers McMullen 0.0% 100.00%

(5 → 4) Quiz Show 0.0% 100.00%

5.6 BCAAR and BACAR triadic rules of the real context for network access control

In this section, only results from the Role-Based Access Control (RBAC) will

be presented. RBAC is an access control method that manages permissions to end-

users based on their role within your organization. It provides fine-grained control,
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offering a simple, manageable approach to access management that is less error-prone

than individually assigning permissions. The dataset used contains 6,985 objects (roles),

3 types of permissions (attributes) and 50 document types (condition).

Table 29: Biedermann Conditional Attribute Association Rule (BCAAR) of the RBAC dataset

Rule Support Confidence
(Read→ Write) installation guide 21.31% 66.42%

(Read→ Write) template 45.54% 69.35%
(Write→ Approve) template 15.51% 39.57%

(Write → Read) design 18.22% 25.55%
(Approval→ Read) budget 15.22% 19.22%

(Approval → Read) design document 19.77% 39.52%

Table 29 shows some of the BCAAR rules for permissions {Read, Write, Approve}.
To extract all rules, they were passed as parameters those rules that have support and

confidence greater than 15%.

Given the first rule (Write→ Approve)installation guide presented in Table 29 with

21.31% support and 66.42% confidence. In this example, it can be said that in 21.31%

(support) of cases (1,489 objects of 6,985 total in the context) where it has the attribute

Write under the condition installation guide, it also has the attribute Approve under the

same condition. It occurs 66.42% (confidence) in the sub dataset where, at least, the

permission Write was defined as installation guide and from the sub dataset where the

permission Approve was also classified with installation guide (989 of 1,489 objects). In

other words, in 989 objects denominated Write was classified as installation guide of 1,489

total where the permission Write was also installation guide.

Table 30: Biedermann Attributional Condition Association Rule (BACAR) of the RBAC dataset

Rule Support Confidence
(marketing document → user manual, external technical interface document)Read 25.52% 76.22%

(marketing document → term of use document, rating entry)Read 19.37% 65.14%
(rating entry → marketing document, term of use document)Read 28.41% 56.74%

(installation guide → design document)Read 47.16% 57.56%
(term of use document → installation guide)Read 49.32% 66.29%

Table 30 shows some of the BACAR rules extracted from the RBAC context. To

extract the rules, they were passed as parameters those rules that have support greater

and confidence greater than 15%.

Given the first rule (marketing document → user manual, external technical

interface document)Read presented in Table 30 with 25.52% support and 76.25%
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confidence. In this example, it can be said that in 25.52% (support) of cases (1,783

objects of 6,985 total) where it has the condition marketing document under the attribute

Read, it also has the condition user manual, external technical interface document under

the same attribute, and this occurs 76.22% (confidence) in the dataset (1,359 objects of

1,783 total).
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6 CONCLUSIONS AND FUTURE WORK

Due to the third dimension, the process of extracting concepts from a triadic

context is much more complex than in the classic approach of FCA (dyadic). The

representation of the data in three dimensions leads to the high-dimensional of the

databases. Considering that and due to the growth of contexts, techniques like the TRIAS

algorithm might not be the best approach to extract information.

The usage of BDD has been shown to be a better option for many contexts. The

BDD enables the execution of the algorithm in contexts that would be difficult to analyze.

As presented previously, the proposed algorithm was faster in all contexts used in the

experiments. In some cases, the algorithm can be up to 56% times faster than the original

- see Table 17.

In synthetic contexts with 120,000 objects, which is close to the challenge defined

in (OLD; PRISS, 2006), the TRIAS BDD algorithm was able to extract concepts before

14 days - see Table 20. However, the original TRIAS algorithm did not return any results

within 14 days.

In the real dataset, presented in Table 21, the TRIAS, within 7 days, was not able

to extract concepts in contexts that contain more than 100,000 incidences. However, using

TRIAS BDD the algorithm retrieved triadic concepts before 7 days in two scenarios. In

other words, it was able to find concepts that the original algorithm was not.

This research presents the behavior of the TRIAS and TRIAS BDD algorithms

in different contexts. Among 45 triadic synthetic contexts used, between 500 and 10,000

objects, only two TRIAS BDD has a longer processing time than the original algorithm

(TRIAS). They are: context with 3,000 objects, 10 attributes and 5 conditions and context

with 1,500 objects, 20 attributes and 5 conditions. In the context of synthetic studies,

results were also obtained from algorithms for high-dimensional contexts. In addition,

contexts of real databases were studied and in the three contexts obtained, TRIAS BDD

presented a better processing time than TRIAS.

A study was also carried out on the use of RAM memory for both algorithms,

in addition to the ordering of the variables of the triadic context by attributes and

conditions to analyze the impact of this ordering on BDD’s creation. In the two cases that

TRIAS BDD presented the longest processing time, for synthetic triadic contexts. Despite

demanding more data processing time, the two TRIAS BDD contexts studied in relation

to the behavior of RAM memory showed a lower percentage of memory utilization.
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In order to aim the complementation of the studies, the variables ordering of the

triadic context was carried out by attributes and conditions, from higher density to lower

density, and from lower density to higher density, in the two cases that TRIAS BDD

presented a longer processing time than the TRIAS, in synthetic triadic contexts. In all

cases, TRIAS BDD reduced the processing time, having a better time than the time spent

by TRIAS.

Finally, an analysis was made of the use of RAM memory between the TRIAS

BDD, TRIAS BDD ordered from the highest density to the lowest (Descending) and

TRIAS BDD ordered from the lowest density to the highest (Ascending), in the two cases

that the TRIAS BDD presented a longer processing time than the TRIAS.

In the two contexts evaluated (3,000 objects, 10 attributes and 5 conditions and

for 1,500 objects, 20 attributes and 5 conditions), TRIAS BDD required more processing

time than the ordered models. Besides, TRIAS BDD also consumed more RAM than

the TRIAS BDD descending order and TRIAS BDD ascending order approaches. It is

important to note that, in both contexts, the TRIAS BDD descending order consumed

less RAM and less time to perform the processing.

As future work, in the Parallel Computing area we intend to reduce the processing

time by distributing the workload, paralleling the generation of the BDD and/or the

concurrent extraction of the concepts.

Also, using the concepts of the Computer Architecture, we would like to implement

the parallelization of the algorithms via threads or GPU (Graphics Processing Unit),

besides the possibility to distribute the execution of this in computers within the same

network. The main idea is to distribute the algorithm execution on different computers.

Another important implementation would be using FPGA (Field Programmable Gate

Array) to have a better execution time performance. Finally, on the performance aspect,

there are other topics that we should consider, such as: page fault, cache miss and etc.

Also, we intend to include the BDD structure which was used in this work into

DATA-PEELER algorithm (CERF et al., 2008) (CERF et al., 2009), recognized as state-

of-art to extracts all closed n-sets from a n-ary relation, to evaluate its performance.

We also intend to implement the function to extract the rules based on the triadic

concepts directly. Additionally, we suggest that TRIAS BDD would be evaluated in

contexts of the real-world problems with a large number of attributes and conditions.
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