
Maximizando a Eficiência na Comunicação entre Processos:
Explorando uma Abstração de Zero-Cópia

Vinicius Francisco da Silva, Henrique Cota de Freitas, Pedro Henrique Penna

1Instituto de Ciências Exatas e Informática – PUC Minas – Belo Horizonte – MG – Brasil

viniciusfrancisco@pucminas.br, cota@pucminas.br, pedrohenriquepenna@gmail.com

Abstract. Operating systems with a microkernel architecture aim for an appro-
ach where essential functions are maintained in a minimalist core. Additional
functionalities run as user mode processes. Since these services are separa-
ted, communication requires indirect message passing, which poses a challenge.
Zero-copy communication optimizes data transfer between processes by elimi-
nating intermediate memory copies between the sender and the recipient of a
message. This reduces processing overhead and improves system efficiency. In
this context, the present work aims to propose an abstraction of interprocess
communication using the zero-copy technique, involving the direct transfer of
data between processes or components without the need for intermediate data
copying.

Resumo. Sistemas operacionais com arquitetura microkernel visam uma abor-
dagem em que funções essenciais são mantidas em um núcleo minimalista, en-
quanto funcionalidades adicionais executam como processos em modo usuário.
Como esses serviços estão separados, a comunicação requer a passagem de
mensagens de forma indireta, tornando-se um desafio. A comunicação zero
cópia otimiza a transferência de dados entre processos, eliminando cópias de
memória intermediárias entre o remetente e o destinatário de uma mensagem.
Isso reduz a sobrecarga de processamento e melhora a eficiência do sistema.
Nesse contexto, o presente trabalho tem como objetivo propor uma biblioteca
de comunicação entre processos, usando a técnica de zero cópia, que envolve
a transferência direta de dados entre processos ou componentes sem a necessi-
dade de copiar os dados intermediariamente.

1. Introdução
A arquitetura microkernel é um modelo de sistema operacional que implementa apenas
funções essenciais no kernel, como gerenciamento de processos, memória e comunicação
entre processos, enquanto serviços não essenciais são executados em espaços de usuário
separados, chamados servidores [Liedtke 1995]. Isso resulta em um kernel menor, mais
seguro, flexı́vel e escalável, permitindo a substituição de serviços sem afetar o núcleo do
sistema, promovendo modularidade. No entanto, a extração de componentes como device
drivers para o espaço de usuário aumenta a complexidade e a sobrecarga na comunicação
entre processos.

A comunicação entre processos em um microkernel enfrenta desafios como sobre-
carga, desempenho, gerenciamento de memória compartilhada, segurança, sincronização,
escalabilidade, tolerância a falhas e gerenciamento de recursos. Este trabalho propõe uma

biblioteca de comunicação entre processos utilizando a técnica de zero-copy, que permite
a transferência direta de dados entre processos sem replicação, aumentando a eficiência e
desempenho na transmissão de informações.

2. Fundamentação Teórica
Nesta seção, são apresentados os conceitos de microkernel e os mecanismos de
comunicação entre processos.

2.1. Sistemas Operacionais Microkernel
Um sistema operacional microkernel é caracterizado por possuir um conjunto mı́nimo
de abstrações de hardware em sua camada principal, que opera em modo kernel,
como o escalonador, suporte básico à comunicação entre processos e memória virtual
[Herder 2005]. Outras funcionalidades, são implementadas em servidores independentes
e executadas em espaço de usuário, contrastando com sistemas operacionais monolı́ticos,
que incorporam todas essas funcionalidades dentro de um único núcleo.

Figura 1. Arquitetura de um sistema operacional microkernel.

A Figura 1 mostra a disposição dos dispositivos de abstração de hardware em
um sistema operacional microkernel. Para o funcionamento básico do sistema, existe
uma comunicação direta entre o kernel e dois componentes que são executados no modo
usuário: o Application IPC, que é um mecanismo que permite a comunicação entre pro-
cessos a nı́vel de usuário, e o File Server, um serviço que gerencia o acesso a arquivos e
sistemas de arquivos, podendo ser implementado como um processo de usuário.

2.2. Mecanismos de Comunicação entre Processos
A comunicação entre processos possibilita a troca de informações entre processos. Porém,
em um sistema microkernel, os servidores estão em modo usuário e são separados entre
si, ou seja, cada servidor possui um espaço de memória exclusivo. Assim, a comunicação
direta entre processos fica descentralizada, sendo necessário utilizar outras abordagens.
Para uma comunicação entre processos sı́ncrona, existem duas abordagens principais:
comunicação por memória compartilhada e por troca de mensagens.

2.3. Comunicação por Memória Compartilhada

Regiões de memória compartilhadas (SM) são regiões de memória disponı́veis geral-
mente para mais de uma entidade, podendo ser programas, threads ou processos. Esse
acesso cria um espaço em que entidades podem compartilhar dados sem a necessidade de
cópias adicionais e trocas de contexto (TC).

Figura 2. Mapeamento de uma região de memória compartilhada entre dois pro-
cessos.

Para a comunicação entre processos, esta região é utilizada para disponibilização
de informações. A memória compartilhada é criada pelo kernel e mapeada para o seg-
mento de dados do espaço de endereço do processo solicitante. Supondo uma região
de memória compartilhada mapeada para dois processos, o processo P1 grava dados no
segmento de memória compartilhada. A Figura 2 mostra o mapeamento de uma região
de memória compartilhada entre dois processos. Assim que os dados são escritos, fi-
cam disponı́veis para o processo P2. Esta forma de comunicação possui problemas de
sincronização, pois em um espaço onde cada entidade tem permissão para ler e escrever,
é necessário garantir exclusão mútua nesta seção crı́tica.

2.4. Comunicação por Troca de Mensagens

A comunicação feita via kernel aproveita recursos disponı́veis no próprio kernel para
estabelecer e gerenciar a comunicação entre diferentes processos. No entanto, ela
necessita de um canal indireto para o estabelecimento da comunicação. Existem vários
recursos que podem ser utilizados como canal de comunicação, tais como: pipes, filas
de mensagens ou sockets. Suponha a passagem de dados entre dois processos, P1 e
P2. O processo P1 faz uma chamada de sistema para enviar dados ao processo P2. A
mensagem é copiada do espaço de endereço do processo P1 para o espaço do kernel
durante a chamada de sistema para enviar a mensagem. Em seguida, o processo P2 faz
uma chamada de sistema para receber a mensagem. A mensagem é copiada do espaço do
kernel para o espaço de endereço do processo P2.

A passagem de dados entre processos com cópia ocorre com a mediação do
kernel. O microkernel facilita essa operação copiando os dados do espaço de memória
do processo de origem para um espaço compartilhado gerenciado pelo kernel. Posterior-
mente, o processo destinatário solicita ao kernel a cópia desses dados para o seu próprio
espaço de memória. A Figura 3 mostra o funcionamento da passagem de dados entre os
buffers de cada processo e do kernel, utilizando a abordagem de cópia da mensagem. A

Figura 3. Passagem de mensagem com cópia tradicionalmente usada em siste-
mas operacionais microkernel.

transferência de dados em sistemas de arquitetura microkernel é descrita por Herder et al.
[Herder et al. 2006].

3. Trabalhos Correlatos

Nesta seção, são apresentados estudos correlatos que contribuem para embasar o tema
abordado no artigo.

3.1. Zerializer: Towards Zero-Copy Serialization

O artigo ”Zerializer: Towards Zero-Copy Serialization” [Wolnikowski et al. 2021] dis-
cute a importância de alcançar entrada/saı́da (E/S) sem cópias (zero-copy) entre diferentes
computadores. No entanto, a prática de serialização de dados para transmissão pode anu-
lar os benefı́cios do zero-copy, pois exige que a unidade central de processamento (CPU)
leia, transforme e escreva os dados da mensagem, resultando em cópias adicionais. Para
superar esse desafio, os autores propõem transferir a lógica de serialização para o caminho
de direct memory access (DMA) usando hardware especializado. O estudo avaliou os be-
nefı́cios e a viabilidade da utilização do Zerializer em aplicações do mundo real, focando
no software de análise de rede Deep Insight da Intel. Os resultados indicaram que a in-
clusão desse módulo em um SmartNIC baseado em FPGA permitiria um processamento
de aproximadamente 19 Gbps, enquanto um ASIC poderia alcançar 128 Gbps.

3.2. The Demikernel Datapath OS Architecture for Microsecond-Scale Datacenter
Systems

O artigo ”The Demikernel Datapath OS Architecture for Microsecond-Scale Datacen-
ter Systems” [Zhang et al. 2021] propõe o Demikernel, um sistema operacional projetado
para dispositivos de baixa latência em centros de dados, alcançando latências na ordem de
microssegundos (µs). Utilizando dispositivos que contornam o kernel (kernel-bypass), o
Demikernel permite que aplicativos realizem E/S diretamente, eliminando o kernel do ca-
minho de dados e, assim, alterando a arquitetura tradicional do SO. O objetivo é preencher
a lacuna deixada pela remoção do kernel, fornecendo uma substituição de SO de caminho
de dados geral para sistemas de microssegundos. Experimentos avaliaram o desempenho
do Demikernel, incluindo latências de operações de eco (echo), execução de um servidor
de relé UDP, testes de desempenho do Redis [Sanfilippo 2009] e avaliação do TxnStore,
um sistema de armazenamento transacional distribuı́do. Em todos os testes, o Demikernel
demonstrou latências competitivas, mostrando resultados positivos em comparação com
outras soluções.

3.3. TAS - TCP Acceleration as an OS Service
O artigo “TAS - TCP Acceleration as an OS Service” [Kaufmann et al. 2019] apresenta
um desafio crescente nos centros de dados, onde o processamento de pacotes transmis-
sion control protocol (TCP) consome uma parcela do ciclo de processamento CPUs dos
servidores, especialmente para chamadas de procedimento remoto (RPCs). Existem abor-
dagens que buscam otimizar esses processamentos, como evitar o kernel do sistema ope-
racional, personalizar a pilha TCP para uma aplicação especı́fica ou transferir o proces-
samento de pacotes para hardware dedicado. No entanto, essas abordagens muitas vezes
sacrificam segurança, agilidade ou generalidade em troca de eficiência. O artigo propõe
uma solução chamada acceleration as a service TAS, que divide o processamento TCP
comum para RPCs em data centers do kernel do SO e o executa como um serviço de ca-
minho rápido em CPUs dedicadas, mantendo todas as funcionalidades de uma pilha TCP
padrão, incluindo segurança, agilidade e generalidade. O estudo analisa a sobrecarga do
processamento de pacotes TCP, considerando a arquitetura moderna de processadores.
Em comparação com sistemas de transporte de software tradicionais, o TAS demonstrou
melhorias no desempenho das operações de chamada de procedimento remoto (RPC). A
latência das RPCs foi significativamente reduzida com o uso do TAS.

3.4. zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy IO
O artigo “zIO: Accelerating IO-Intensive Applications with Transparent Zero-Copy IO”
[Stamler et al. 2022] propõe zIO. Um acelerador que executa em modo usuário e utiliza
mecanisco zero copy para aplicações que possuem uso intenso de entrada e saı́da E/S. O
zIO faz rastreamento de dados de E/S eliminando as cópias desnecessárias desses dados,
garantindo também a consistência dos mesmos. Para isso em chamadas de recebimento
da pilha IO a localização do buffer é registrado pelo zIO a partir de chamadas Portable
Operating System Interface (POSIX). Com este registro o zIO filtra e localiza buffers
intermediários através de skiplists que gravam informações que darão a localização dos
mesmos. Após a cópia de dados em buffers intermediários e com a localização a partir das
chamadas memcpy e memmove, o zIO registra o buffer de destino fornecido pela aplicação
como o buffer original, juntamente com um buffer intermediário. Este registro filtra os
buffers de E/S para rastreamento e eliminação de cópias. Os resultados da avaliação
demonstram que o zIO melhora o desempenho de aplicativos em até 1,8 vezes no Linux
e até 2,5 vezes nas pilhas de E/S que evitam o kernel, quando usado em conjunto com
otimizações de persistência do receptor de rede.

3.5. RedLeaf: Isolation and Communication in a Safe Operating System
O artigo “RedLeaf: Isolation and Communication in a Safe Operating System”
[Narayanan et al. 2020] propõe um sistema operacional chamado RedLeaf, construı́do
completamente do zero usando a linguagem de programação Rust. O foco principal é
entender como a segurança embutida na linguagem Rust pode impactar a estrutura de
um sistema operacional. Uma das novidades trazidas pelo RedLeaf é uma abstração cha-
mada “domı́nio de isolamento leve baseado em linguagem”, que oferece uma unidade de
ocultação de informações e isola falhas por meio de 5 princpios: heap isolation, exchan-
geable types, ownership tracking, interface validation e cross-domain call proxying. O
estudo RedLeaf realizou uma série de testes de desempenho em diversos cenários para
avaliar a eficácia do uso da linguagem Rust em sistemas de alto desempenho com isola-
mento de falhas. Alguns dos testes e seus resultados.

3.6. Userspace Bypass: Accelerating Syscall-intensive Applications

O artigo “Userspace Bypass: Accelerating Syscall-intensive Applications”
[Zhou et al. 2023] propõe o Userspace Bypass (UB) para acelerar aplicações que
fazem uso intensivo de chamadas ao sistema. A principal estratégia do UB é transferir
instruções do espaço do usuário para o espaço do kernel. Ele monitora a execução de um
aplicativo, rastreando as chamadas de sistema feitas por um thread especı́fico. Quando
detecta várias chamadas de sistema consecutivas em um curto perı́odo, identifica essas
chamadas como “quentes”. O UB analisa e registra as instruções de espaço de usuário
executadas entre essas chamadas, traduzindo-as para o formato Binary Translation Cache
(BTC). Os resultados mostram que o UB melhora significativamente o desempenho de
aplicativos como Redis, com aumentos de 4,4% a 10,8% para tamanhos de dados de 1B
a 4KiB, em uma máquina virtual com KPTI ativado. O UB também acelera operações de
E/S em um micro benchmark, com melhorias de 30,3% a 88,3%.

3.7. z-READ: Towards Efficient and Transparent Zero-copy Read

O artigo “z-READ: Towards Efficient and Transparent Zero-copy Read”
[Park et al. 2019] apresenta um esquema eficiente e transparente de leitura de (I/O)
sem cópia. Ele permite que as aplicações obtenham os benefı́cios da leitura sem cópia
através das interfaces tradicionais de leitura/escrita do (POSIX). O esquema é baseado
em técnicas de remapeamento de páginas e copy-on-write (CoW) minimizando as sobre-
cargas de remapeamento de páginas, reduzindo o número de operações de Translation
lookaside buffer (TLB) shootdown remotas. Os resultados experimentais mostram que
o desempenho dos workloads intensivos em memória co-localizados pode ser afetado
negativamente pelos workloads intensivos em (I/O) no caso de (I/O) baseado em cópia
(até 1,96x de desaceleração nas configurações em memória), enquanto o z-READ incorre
apenas em até 1,07x de desaceleração para a respectiva configuração.

3.8. Snap: a Microkernel Approach to Host Networking

O artigo “Snap: a Microkernel Approach to Host Networking” [Marty et al. 2019] propõe
um novo sistema de rede host inspirado em microkernels chamado Snap. Um sistema de
rede em espaço de usuário que suporta as necessidades em constante evolução do Go-
ogle com módulos flexı́veis que implementam uma gama de funções de rede, incluindo
comutação de pacotes de borda, virtualização para nossa plataforma de nuvem, execução
de polı́ticas de modelagem de tráfego e um serviço de mensagens confiáveis de alto de-
sempenho e RDMA-like. O Snap apresentou uma melhoria substancial na taxa de trans-
ferência e latência em comparação com a pilha de TCP/IP do kernel Linux, alcançando
uma taxa de transferência de 82.2 Gbps usando apenas um núcleo, em comparação com os
22 Gbps do TCP. Além disso, a latência do Snap/Pony foi inferior a 10µs em configurações
otimizadas.

3.9. SkyBridge: Fast and Secure Inter-Process Communication for Microkernels

O artigo “SkyBridge: Fast and Secure Inter-Process Communication for Microker-
nels” [Mi et al. 2019] apresenta uma nova facilidade de comunicação projetada para
comunicação inter-processos sı́ncrona em microkernels, eliminando a necessidade do en-
volvimento do kernel. O SkyBridge permite que um processo mude diretamente para o
espaço de endereço do processo de destino e invoque a função necessária, mantendo o

isolamento do espaço de endereço virtual, facilitando sua integração com microkernels
existentes. O SkyBridge utiliza o recurso de virtualização VMFUNC para comunicação
eficiente entre processos, reduzindo a latência de IPC. Em testes de IPC em um único
núcleo, alcançou melhorias de 1.49x, 5.86x e 19.6x para os microkernels seL4, Fiasco.OC
e Zircon, respectivamente. Para IPC entre núcleos, as melhorias foram ainda mais signi-
ficativas, com aumentos de 16.08x, 20.31x e 49.76x.

3.10. Cornflakes: Zero-Copy Serialization for Microsecond-Scale Networking

O artigo “Cornflakes: Zero-Copy Serialization for Microsecond-Scale Networking”
[Raghavan et al. 2023] apresenta o Cornflakes, um framework de serialização zero-copy
para redes de microssegundos, visando minimizar a sobrecarga de cópia de dados na
rede. Cornflakes utiliza um novo algoritmo de serialização que encapsula dados em um
único buffer, permitindo envio direto pela rede. A biblioteca hı́brida de serialização usa
scatter-gather e é co-projetada com uma pilha de rede integrada, oferecendo uma API de
serialização geral que gerencia acessos de scatter-gather à memória do aplicativo, com-
patı́vel com NICs de commodity em servidores modernos. A avaliação do Cornflakes bus-
cou responder a questões sobre desempenho e flexibilidade, comparando-o com aborda-
gens tradicionais de serialização, analisando seu desempenho com diferentes distribuições
de tamanhos de campos em mensagens e sua capacidade de integração em sistemas exis-
tentes, bem como sua compatibilidade com diferentes NICs.

4. Estudo comparativo

A Tabela 1 resume as principais caracterı́sticas exploradas nos trabalhos relacionados e
como a proposta do presente trabalho diferencia das demais.

zero
cópia

comunicação
sincrona

serialização passagem de
dado via
memória

comparilhada

kernel
bypass

reduzir
overhead

[Zhang et al. 2021] X X
[Kaufmann et al. 2019] X
[Stamler et al. 2022] X X X X
[Narayanan et al. 2020] X X X
[Zhou et al. 2023] X
[Mi et al. 2019] X X X X
[Raghavan et al. 2023] X X X X
[Marty et al. 2019] X X
[Wolnikowski et al. 2021] X X
[Park et al. 2019] X
[Penna 2021] X X X X X

Tabela 1. Comparação entre trabalhos relacionados e recursos utilizados

Na Tabela 1, a primeira coluna mostra os trabalhos que implementam zero cópia,
uma técnica fundamental que a maioria dos trabalhos adota. Este artigo propõe uma bi-
blioteca de comunicação utilizando zero cópia. A segunda coluna apresenta trabalhos que

buscam minimizar o overhead em chamadas de sistema, foco que não é abordado na pro-
posta, pois o objetivo é remover as chamadas de sistema e implementar uma comunicação
em espaço de usuário sem envolver o kernel. A terceira coluna apresenta projetos que
utilizam comunicação sı́ncrona entre processos, enquanto a proposta deste artigo utiliza
memória compartilhada com semáforos e mutex para controle de acesso concorrente. A
quarta coluna lista trabalhos que utilizam serialização para envio entre processos ou dispo-
sitivos; nossa proposta aplica serialização na comunicação entre processos via memória
compartilhada. A quinta coluna mostra trabalhos que utilizam memória compartilhada
para diversos problemas; nossa proposta visa usá-la para troca de mensagens entre pro-
cessos. A sexta coluna apresenta projetos que utilizam kernel bypass, recurso também
adotado neste artigo ao mover a comunicação entre processos para o espaço de usuário.

Nossa proposta utiliza quase todos os recursos listados, exceto a minimização
do overhead nas chamadas de sistema, pois a abstração de comunicação em espaço
de usuário elimina a necessidade frequente de chamadas send e receive, tornando essa
minimização desnecessária. Outros recursos são utilizados para melhorar o desempenho
da comunicação entre processos.

5. Medotologia
Esta seção apresenta as ferramentas adotadas para o desenvolvimento da proposta do ar-
tigo, assim como o método pelo qual o desenvolvimento será realizado.

Para obter resultados, foram utilizados sistemas operacionais baseados em UNIX,
com implementação no padrão POSIX. A programação foi realizada em C, utilizando o
GNU Compiler Collection (GCC) e o GNU Debugger (GDB). Os testes foram realizados
em uma máquina GNU/Linux com 16GB de RAM e processador Intel Core i7-1165G7
@ 2.80GHz. A biblioteca proposta será desenvolvida para fácil implementação em sis-
temas microkernel, com testes de integração no sistema microkernel Nanvix, que suporta
chamadas de sistema POSIX.

Para analisar o desempenho, foram definidos três experimentos. O primeiro expe-
rimento proposto neste estudo compreende a análise comparativa de desempenho entre a
“biblioteca implementada”, referida como a proposta do artigo, e a conexão socket pipe.
Denominado como “pingpong”, o experimento envolveu a troca de mensagens entre dois
processos, variando o tamanho do buffer de 0,064KB a 8KB, dobrando o valor a cada
execução. O segundo experimento compreendeu a taxa de injeção de mensagens por se-
gundo em uma conexão pipe e a “biblioteca implementada”, analisando como intervalos
de injeção e tamanhos de mensagens afetam a eficiência da comunicação entre processos.
O experimento foi realizado variando o tempo de 0,5 até 5 segundos, também variando o
tamanho das mensagens entre 100, 500, 1000 e 2000, todas com tamanho fixo de 65KB. O
terceiro experimento teve o objetivo de analisar e comparar o desempenho entre a conexão
pipe e a “biblioteca implementada” em relação à latência na transferência de mensagens,
variando o tamanho das mensagens de 64B até 8KB, dobrando o valor a cada execução.

6. Implementação
Para a implementação, foi utilizada a linguagem de programação C. A parte central da
biblioteca está em uma estrutura implementada com o comando “struct” em C, chamada
“ipc” como mostra a Listing 1.

1 typedef struct ipc {
2 __pid_t first_pid;
3 __pid_t second_pid;
4 shmseg *shm;
5 } ipc_t;

Listing 1. Implementação da estrutura principal da biblioteca denominada “ipc”.

Ela cria a memória compartilhada por meio da função “ipc init()”. A Listing 2
mostra a implementação realizada.

1 sem_t empty, mutex, full;
2 pthread_t writer, reader;
3 static void ipc_init(__pid_t p1, __pid_t p2){
4 /* ipc library reference */
5 ipc_t ipc;
6 /* IPC receiving process */
7 ipc.first_pid = p1;
8 ipc.second_pid = p2;
9 /* Shared memory initialized */

10 ipc.shm = shm_init();
11 semaphore_init(mutex, 0);
12 semaphore_init(empty, 0);
13 semaphore_init(full, 0);
14 /* Semaphore initialized */
15 phthread_create(&writer, NULL, ipc_send, NULL);
16 pthread_create(&reader, NULL, ipc_receive, NULL);
17 pthread_join(writer, NULL);
18 pthread_join(reader, NULL);
19 }

Listing 2. Função que inicializa os agentes do processo de comunicação.

Para que os processos se comuniquem, a biblioteca fornece as funções
“ipc send(msg)” e “ipc receive(msg)”. Ambas implementam um sistema de sincronização
utilizando semáforos para acesso à sessão crı́tica (memória compartilhada). A Listing 3
mostra a implementação das funções.

1 static void ipc_send(ipc_t ipc, message_buffering* mb){
2 while(true){
3 /* Check if message buffering’s process is allowed to

write the message */
4 if(mb.pid == ipc.first_pid || mb.pid == ipc.second_pid){
5 semaphore_wait(empty);
6 semaphore_wait(mutex);
7 /* Process writing from shared memory */
8 shm_write(ipc.shm, message_buffering.message);
9 semaphore_signal(mutex);

10 semaphore_signal(full);
11 }else{
12 /* Process not allowed to send message */
13 ipc_panic("[Permission Denied!]");

14 }
15 }
16 }
17

18 static void ipc_receive(ipc_t ipc, message_buffering* mb){
19 while(true){
20 /* Check if message buffering’s process is allowed

to receive the message */
21 if(mb.pid == ipc.first_pid || mb.pid == ipc.second_pid){
22 semaphore_wait(full);
23 semaphore_wait(mutex);
24 /* Process reading from shared memory */
25 shm_read(ipc.shm, message_buffering.

received_buffer);
26 semaphore_signal(mutex);
27 semaphore_signal(empty);
28 }else{
29 /* Process not allowed to receive message */
30 ipc_panic("[Permission Denied!]");
31 }
32 }
33 }

Listing 3. Funções de envio e recebimento de mensagens.

Cada estrutura denominada “ipc” vincula dois processos pelos seus identificadores
de processo (PIDs). Cada processo possui um buffer para recebimento de mensagens, de-
nominado “message buffering”. As funções “ipc send(msg)” e “ipc receive(msg)” trans-
ferem mensagens entre os buffers e a memória compartilhada, que é implementada como
uma fila. A implementação utiliza semáforos para controle de acesso. A Figura 4 mostra
a estrutura da implementação.

Figura 4. Implementação da biblioteca de comunicação entre processos.

Ao final da comunicação, a função “ipc destroy()” libera a memória comparti-
lhada e desvincula os processos como mostra a Listing 4.

1 static void ipc_destroy(ipc_t ipc){
2 /* unlink process of interprocess communication "ipc" */
3 process_ipc_destroy(ipc.first_pid);
4 process_ipc_destroy(ipc.second_pid);
5 message_buffering_ipc_destroy(ipc);

6 shm_destroy(ipc.shm);
7 /* Free ipc reference */
8 free(ipc);
9 }

Listing 4. Destruição do processo de comunicação.

7. Experimentos
Para a extração dos resultados, inicialmente foi executado um experimento com o ob-
jetivo de analisar o desempenho relacionado ao tempo de execução da proposta deste
artigo, denominada “biblioteca implementada”, em comparação com a conexão socket
pipe. No primeiro experimento, as implementações foram executadas no formato “ping-
pong”, onde um número x de mensagens é enviado em formato de buffer do processo 1
para o processo 2. O processo 2 realiza a leitura e envia novamente o buffer para que o
processo 1 faça a leitura. Os testes são executados variando x, que é o número de men-
sagens presentes no buffer, começando com tamanho de 0,064KB até 8KB, dobrando o
valor em cada execução.

Figura 5. Desempenho no envio e recebimento de mensagem no formato “ping-
pong”.

O primeiro experimento buscou analisar o tempo de execução das conexões pipe
e da “biblioteca implementada” em função do tamanho do buffer. O objetivo foi verificar
se a proposta deste artigo mantém um desempenho superior à conexão pipe à medida que
o tamanho do buffer aumenta. A Figura 5 mostra que, ao dobrar o tamanho do buffer, o
tempo da conexão pipe dobra, enquanto a “biblioteca implementada” apresenta um au-
mento menos acentuado no tempo de execução, demonstrando melhoria no desempenho.
A conexão pipe torna-se menos eficiente com o aumento do buffer devido à necessidade
de copiar os dados para o espaço do kernel, o que consome tempo e recursos de forma
desproporcional. Em contraste, a “biblioteca implementada” realiza operações direta-
mente no espaço do usuário, eliminando a cópia para o kernel e sendo mais eficiente para
a transferência de dados.

No segundo experimento, mediu-se a taxa de injeção de mensagens por segundo
em uma conexão pipe e na “biblioteca implementada”. Foram enviadas mensagens de
64 bytes através de ambos os métodos, variando o número de mensagens por injeção
e os intervalos de injeção, para compreender como esses fatores afetam a eficiência da
comunicação entre processos.

Figura 6. Taxa de injeção de envio de mensagens em segundos.

Na Figura 6, o gráfico superior mostra os resultados da comunicação via pipe.
Observa-se uma queda acentuada na taxa de mensagens por segundo conforme o vo-
lume de mensagens aumenta, especialmente para volumes de 500 e 1000 mensagens
por injeção. O sistema mantém uma alta taxa para 100 mensagens por injeção, mas
a eficiência diminui com o aumento do volume. No gráfico inferior, que representa a
comunicação via ”biblioteca implementada”, a taxa de mensagens por segundo é mais
alta para todos os volumes de mensagens. Além disso, a taxa permanece estável mesmo
com o aumento do volume, indicando que a ”biblioteca implementada”lida melhor com
grandes volumes de dados sem degradação de desempenho.

No terceiro experimento, o objetivo foi analisar e comparar o desempenho entre
duas implementações de comunicação entre processos: pipe e a “biblioteca implemen-
tada”, em termos de latência à medida que o tamanho da mensagem aumenta. A análise
foi realizada medindo o tempo necessário para um processo enviar uma mensagem até

que o segundo processo a receba. Variamos o tamanho da mensagem de 64B a 8KB,
dobrando o tamanho a cada execução.

Figura 7. Latência na transferência de mensagens em milisegundo.

Os resultados apresentados na figura 7 revelam que a latência aumenta com o
tamanho da mensagem para ambas as implementações. No entanto, a taxa de aumento é
maior para a implementação pipe em comparação com a “biblioteca implementada” para
todos os valores de tamanho de mensagem.

8. Conclusão e Trabalhos Futuros
Neste artigo, exploramos uma biblioteca de comunicação entre processos baseada na
técnica de zero-copy, com o objetivo de otimizar a transferência de dados em siste-
mas operacionais com arquitetura microkernel. Através dos experimentos realizados,
demonstramos que a “biblioteca implementada” apresenta um desempenho superior em
comparação com a comunicação entre processos via pipe tradicional, especialmente à
medida que o tamanho do buffer aumenta. A técnica de zero-copy mostrou-se eficaz na
redução da sobrecarga causada pelas cópias intermediárias de dados, resultando em uma
melhoria na eficiência e desempenho do sistema. Os resultados obtidos indicam várias
direções para trabalhos futuros. Implementar a técnica de comunicação remote procedure
call (RPC) em memória compartilhada, investigar a integração de otimizações de hard-
ware explorando o direct memory access (DMA) pode aumentar ainda mais a eficiência
da comunicação zero-copy. Avaliar o desempenho da “biblioteca implementada” em
aplicações de tempo real, analisando seu comportamento sob diferentes cargas de tra-
balho. Essas direções futuras podem ampliar o impacto da técnica zero-copy proposta
neste artigo e contribuir para a eficiência na comunicação entre processos em sistemas
operacionais modernos.

Referências
Herder, J. N. (2005). Towards a true microkernel operating system. Master’s thesis, Vrije

Universiteit Amsterdam, (2005).

Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum, A. S. (2006). Minix 3:
A highly reliable, self-repairing operating system. ACM SIGOPS Operating Systems
Review, 40(3):80–89.

Kaufmann, A., Stamler, T., Peter, S., Sharma, N. K., Krishnamurthy, A., and Anderson,
T. (2019). Tas: Tcp acceleration as an os service. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–16.

Liedtke, J. (1995). On micro-kernel construction. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, page 237–250, New York,
NY, USA. Association for Computing Machinery.

Marty, M., de Kruijf, M., Adriaens, J., Alfeld, C., Bauer, S., Contavalli, C., Dalton, M.,
Dukkipati, N., Evans, W. C., Gribble, S., et al. (2019). Snap: A microkernel approach
to host networking. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 399–413.

Mi, Z., Li, D., Yang, Z., Wang, X., and Chen, H. (2019). Skybridge: Fast and secure inter-
process communication for microkernels. In Proceedings of the Fourteenth EuroSys
Conference 2019, pages 1–15.

Narayanan, V., Huang, T., Detweiler, D., Appel, D., Li, Z., Zellweger, G., and Burtsev,
A. (2020). {RedLeaf}: Isolation and communication in a safe operating system. In
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 21–39.

Park, J., Min, C., Yeom, H. Y., and Son, Y. (2019). z-read: Towards efficient and transpa-
rent zero-copy read. In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pages 367–371. IEEE.

Penna, P. H. (2021). Nanvix: A Distributed Operating System for Lightweight Manycore
Processors. PhD thesis, Université Grenoble Alpes [2020-....]; Pontifı́cia universidade
católica de

Raghavan, D., Ravi, S., Yuan, G., Thaker, P., Srivastava, S., Murray, M., Penna, P. H.,
Ousterhout, A., Levis, P., Zaharia, M., et al. (2023). Cornflakes: Zero-copy seriali-
zation for microsecond-scale networking. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 200–215.

Sanfilippo, S. (2009). Redis: An open source, in-memory data structure store.

Stamler, T., Hwang, D., Raybuck, A., Zhang, W., and Peter, S. (2022). {zIO}: Accelera-
ting {IO-Intensive} applications with transparent {Zero-Copy}{IO}. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pages 431–
445.

Wolnikowski, A., Ibanez, S., Stone, J., Kim, C., Manohar, R., and Soulé, R. (2021).
Zerializer: Towards zero-copy serialization. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 206–212.

Zhang, I., Raybuck, A., Patel, P., Olynyk, K., Nelson, J., Leija, O. S. N., Martinez, A., Liu,
J., Simpson, A. K., Jayakar, S., et al. (2021). The demikernel datapath os architecture
for microsecond-scale datacenter systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 195–211.

Zhou, Z., Bi, Y., Wan, J., Zhou, Y., and Li, Z. (2023). Userspace bypass: Accelera-
ting syscall-intensive applications. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 33–49.

