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Abstract. Operating systems with a microkernel architecture aim for an appro-
ach where essential functions are maintained in a minimalist core. Additional
functionalities run as user mode processes. Since these services are separa-
ted, communication requires indirect message passing, which poses a challenge.
Zero-copy communication optimizes data transfer between processes by elimi-
nating intermediate memory copies between the sender and the recipient of a
message. This reduces processing overhead and improves system efficiency. In
this context, the present work aims to propose an abstraction of interprocess
communication using the zero-copy technique, involving the direct transfer of
data between processes or components without the need for intermediate data

copying.

Resumo. Sistemas operacionais com arquitetura microkernel visam uma abor-
dagem em que fungoes essenciais sdo mantidas em um niicleo minimalista, en-
quanto funcionalidades adicionais executam como processos em modo usudrio.
Como esses servigos estdo separados, a comunicagdo requer a passagem de
mensagens de forma indireta, tornando-se um desafio. A comunicacdo zero
copia otimiza a transferéncia de dados entre processos, eliminando cdpias de
memdria intermedidrias entre o remetente e o destinatdrio de uma mensagem.
Isso reduz a sobrecarga de processamento e melhora a eficiéncia do sistema.
Nesse contexto, o presente trabalho tem como objetivo propor uma biblioteca
de comunicagdo entre processos, usando a técnica de zero copia, que envolve
a transferéncia direta de dados entre processos ou componentes sem a necessi-
dade de copiar os dados intermediariamente.

1. Introducao

A arquitetura microkernel ¢ um modelo de sistema operacional que implementa apenas
fungdes essenciais no kernel, como gerenciamento de processos, memoria € comunicagao
entre processos, enquanto servicos nao essenciais sao executados em espacos de usuario
separados, chamados servidores [Liedtke 1995]. Isso resulta em um kernel menor, mais
seguro, flexivel e escaldvel, permitindo a substitui¢do de servicos sem afetar o nicleo do
sistema, promovendo modularidade. No entanto, a extragdo de componentes como device
drivers para o espaco de usuario aumenta a complexidade e a sobrecarga na comunica¢ao
entre processos.

A comunicagdo entre processos em um microkernel enfrenta desafios como sobre-
carga, desempenho, gerenciamento de memoria compartilhada, seguranca, sincronizacao,
escalabilidade, tolerancia a falhas e gerenciamento de recursos. Este trabalho propde uma



biblioteca de comunicagdo entre processos utilizando a técnica de zero-copy, que permite
a transferéncia direta de dados entre processos sem replicacdo, aumentando a eficiéncia e
desempenho na transmissdo de informacdes.

2. Fundamentacao Teérica

Nesta secdo, sao apresentados os conceitos de microkernel e os mecanismos de
comunicacao entre processos.

2.1. Sistemas Operacionais Microkernel

Um sistema operacional microkernel é caracterizado por possuir um conjunto minimo
de abstracdes de hardware em sua camada principal, que opera em modo kernel,
como o escalonador, suporte bdsico a comunicagdo entre processos € memoria virtual
[Herder 2005]. Outras funcionalidades, sdo implementadas em servidores independentes
e executadas em espaco de usudrio, contrastando com sistemas operacionais monoliticos,
que incorporam todas essas funcionalidades dentro de um tnico nucleo.
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Figura 1. Arquitetura de um sistema operacional microkernel.

A Figura 1 mostra a disposi¢do dos dispositivos de abstragdo de hardware em
um sistema operacional microkernel. Para o funcionamento basico do sistema, existe
uma comunicag¢ao direta entre o kernel e dois componentes que sdo executados no modo
usudrio: o Application IPC, que ¢ um mecanismo que permite a comunicacdo entre pro-
cessos a nivel de usuario, e o File Server, um servico que gerencia o acesso a arquivos e
sistemas de arquivos, podendo ser implementado como um processo de usudrio.

2.2. Mecanismos de Comunicacao entre Processos

A comunicag¢do entre processos possibilita a troca de informacdes entre processos. Porém,
em um sistema microkernel, os servidores estio em modo usudrio e sdo separados entre
si, ou seja, cada servidor possui um espaco de memoria exclusivo. Assim, a comunicacdo
direta entre processos fica descentralizada, sendo necessario utilizar outras abordagens.
Para uma comunicagdo entre processos sincrona, existem duas abordagens principais:
comunicacao por memoria compartilhada e por troca de mensagens.



2.3. Comunicac¢ao por Memoria Compartilhada

Regioes de memoria compartilhadas (SM) sdo regides de memoria disponiveis geral-
mente para mais de uma entidade, podendo ser programas, threads ou processos. Esse
acesso cria um espaco em que entidades podem compartilhar dados sem a necessidade de
copias adicionais e trocas de contexto (TC).
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Figura 2. Mapeamento de uma regiao de memaria compartilhada entre dois pro-
Cessos.

Para a comunicagdo entre processos, esta regidao € utilizada para disponibilizacao
de informacdes. A memoria compartilhada € criada pelo kernel e mapeada para o seg-
mento de dados do espaco de endereco do processo solicitante. Supondo uma regido
de memoria compartilhada mapeada para dois processos, o processo P1 grava dados no
segmento de memoria compartilhada. A Figura 2 mostra o mapeamento de uma regido
de memodria compartilhada entre dois processos. Assim que os dados sdo escritos, fi-
cam disponiveis para o processo P2. Esta forma de comunicagdo possui problemas de
sincronizac¢do, pois em um espaco onde cada entidade tem permissdo para ler e escrever,
€ necessario garantir exclusdo mutua nesta secao critica.

2.4. Comunicacao por Troca de Mensagens

A comunicagdo feita via kernel aproveita recursos disponiveis no proprio kernel para
estabelecer e gerenciar a comunicacdo entre diferentes processos. No entanto, ela
necessita de um canal indireto para o estabelecimento da comunicacdo. Existem vérios
recursos que podem ser utilizados como canal de comunicagdo, tais como: pipes, filas
de mensagens ou sockets. Suponha a passagem de dados entre dois processos, Pl e
P2. O processo P1 faz uma chamada de sistema para enviar dados ao processo P2. A
mensagem € copiada do espaco de endereco do processo P1 para o espago do kernel
durante a chamada de sistema para enviar a mensagem. Em seguida, o processo P2 faz
uma chamada de sistema para receber a mensagem. A mensagem € copiada do espaco do
kernel para o espaco de endereco do processo P2.

A passagem de dados entre processos com cOpia ocorre com a mediagdo do
kernel. O microkernel facilita essa operacao copiando os dados do espago de memoria
do processo de origem para um espaco compartilhado gerenciado pelo kernel. Posterior-
mente, o processo destinatério solicita ao kernel a copia desses dados para o seu proprio
espaco de memoria. A Figura 3 mostra o funcionamento da passagem de dados entre os
buffers de cada processo e do kernel, utilizando a abordagem de copia da mensagem. A
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Figura 3. Passagem de mensagem com copia tradicionalmente usada em siste-
mas operacionais microkernel.

transferéncia de dados em sistemas de arquitetura microkernel é descrita por Herder et al.
[Herder et al. 2006].

3. Trabalhos Correlatos

Nesta secdo, sdo apresentados estudos correlatos que contribuem para embasar o tema
abordado no artigo.

3.1. Zerializer: Towards Zero-Copy Serialization

O artigo "Zerializer: Towards Zero-Copy Serialization” [Wolnikowski et al. 2021] dis-
cute a importancia de alcangar entrada/saida (E/S) sem cépias (zero-copy) entre diferentes
computadores. No entanto, a pratica de serializacdo de dados para transmissao pode anu-
lar os beneficios do zero-copy, pois exige que a unidade central de processamento (CPU)
leia, transforme e escreva os dados da mensagem, resultando em cépias adicionais. Para
superar esse desafio, os autores propdem transferir a 16gica de serializagdo para o caminho
de direct memory access (DMA) usando hardware especializado. O estudo avaliou os be-
neficios e a viabilidade da utilizacdo do Zerializer em aplica¢des do mundo real, focando
no software de andlise de rede Deep Insight da Intel. Os resultados indicaram que a in-
clusdo desse médulo em um SmartNIC baseado em FPGA permitiria um processamento
de aproximadamente 19 Gbps, enquanto um ASIC poderia alcancar 128 Gbps.

3.2. The Demikernel Datapath OS Architecture for Microsecond-Scale Datacenter
Systems

O artigo ”"The Demikernel Datapath OS Architecture for Microsecond-Scale Datacen-
ter Systems” [Zhang et al. 2021] propde o Demikernel, um sistema operacional projetado
para dispositivos de baixa laténcia em centros de dados, alcangando laténcias na ordem de
microssegundos (us). Utilizando dispositivos que contornam o kernel (kernel-bypass), o
Demikernel permite que aplicativos realizem E/S diretamente, eliminando o kernel do ca-
minho de dados e, assim, alterando a arquitetura tradicional do SO. O objetivo é preencher
a lacuna deixada pela remogao do kernel, fornecendo uma substituicdo de SO de caminho
de dados geral para sistemas de microssegundos. Experimentos avaliaram o desempenho
do Demikernel, incluindo laténcias de operagdes de eco (echo), execucao de um servidor
de relé UDP, testes de desempenho do Redis [Sanfilippo 2009] e avaliacao do TxnStore,
um sistema de armazenamento transacional distribuido. Em todos os testes, o Demikernel
demonstrou laténcias competitivas, mostrando resultados positivos em compara¢ao com
outras solucoes.



3.3. TAS - TCP Acceleration as an OS Service

O artigo “TAS - TCP Acceleration as an OS Service” [Kaufmann et al. 2019] apresenta
um desafio crescente nos centros de dados, onde o processamento de pacotes transmis-
sion control protocol (TCP) consome uma parcela do ciclo de processamento CPUs dos
servidores, especialmente para chamadas de procedimento remoto (RPCs). Existem abor-
dagens que buscam otimizar esses processamentos, como evitar o kernel do sistema ope-
racional, personalizar a pilha TCP para uma aplicacdo especifica ou transferir o proces-
samento de pacotes para hardware dedicado. No entanto, essas abordagens muitas vezes
sacrificam segurancga, agilidade ou generalidade em troca de eficiéncia. O artigo propde
uma solucdo chamada acceleration as a service TAS, que divide o processamento TCP
comum para RPCs em data centers do kernel do SO e o executa como um servigo de ca-
minho rapido em CPUs dedicadas, mantendo todas as funcionalidades de uma pilha TCP
padrao, incluindo seguranca, agilidade e generalidade. O estudo analisa a sobrecarga do
processamento de pacotes TCP, considerando a arquitetura moderna de processadores.
Em comparacdo com sistemas de transporte de soffware tradicionais, o TAS demonstrou
melhorias no desempenho das operacdes de chamada de procedimento remoto (RPC). A
laténcia das RPCs foi significativamente reduzida com o uso do TAS.

3.4. zI10O: Accelerating I0-Intensive Applications with Transparent Zero-Copy 10

O artigo “zIO: Accelerating 10-Intensive Applications with Transparent Zero-Copy 10”
[Stamler et al. 2022] propde zIO. Um acelerador que executa em modo usudrio e utiliza
mecanisco zero copy para aplicacdes que possuem uso intenso de entrada e saida E/S. O
zIO faz rastreamento de dados de E/S eliminando as copias desnecessdrias desses dados,
garantindo também a consisténcia dos mesmos. Para isso em chamadas de recebimento
da pilha IO a localizagdo do buffer é registrado pelo zIO a partir de chamadas Portable
Operating System Interface (POSIX). Com este registro o zIO filtra e localiza buffers
intermedidrios através de skiplists que gravam informacdes que dardo a localiza¢ao dos
mesmos. Ap0s a copia de dados em buffers intermedidrios e com a localizacao a partir das
chamadas memcpy e memmove, o z10O registra o buffer de destino fornecido pela aplicagdo
como o buffer original, juntamente com um buffer intermediario. Este registro filtra os
buffers de E/S para rastreamento e eliminacdo de cdpias. Os resultados da avaliagao
demonstram que o zIO melhora o desempenho de aplicativos em até 1,8 vezes no Linux
e até 2,5 vezes nas pilhas de E/S que evitam o kernel, quando usado em conjunto com
otimizagdes de persisténcia do receptor de rede.

3.5. RedLeaf: Isolation and Communication in a Safe Operating System

O artigo “RedLeaf: Isolation and Communication in a Safe Operating System”
[Narayanan et al. 2020] propde um sistema operacional chamado RedLeaf, construido
completamente do zero usando a linguagem de programacao Rust. O foco principal é
entender como a seguranga embutida na linguagem Rust pode impactar a estrutura de
um sistema operacional. Uma das novidades trazidas pelo RedLeaf é uma abstracdo cha-
mada “dominio de isolamento leve baseado em linguagem”, que oferece uma unidade de
ocultacdo de informagdes e isola falhas por meio de 5 princpios: heap isolation, exchan-
geable types, ownership tracking, interface validation e cross-domain call proxying. O
estudo RedLeaf realizou uma série de testes de desempenho em diversos cendrios para
avaliar a eficdcia do uso da linguagem Rust em sistemas de alto desempenho com isola-
mento de falhas. Alguns dos testes e seus resultados.



3.6. Userspace Bypass: Accelerating Syscall-intensive Applications

O artigo “Userspace Bypass: Accelerating  Syscall-intensive Applications”
[Zhou et al. 2023] propde o Userspace Bypass (UB) para acelerar aplicagdes que
fazem uso intensivo de chamadas ao sistema. A principal estratégia do UB € transferir
instrucdes do espaco do usudrio para o espago do kernel. Ele monitora a execu¢ao de um
aplicativo, rastreando as chamadas de sistema feitas por um thread especifico. Quando
detecta vérias chamadas de sistema consecutivas em um curto periodo, identifica essas
chamadas como “quentes”. O UB analisa e registra as instrugdes de espago de usudrio
executadas entre essas chamadas, traduzindo-as para o formato Binary Translation Cache
(BTC). Os resultados mostram que o UB melhora significativamente o desempenho de
aplicativos como Redis, com aumentos de 4,4% a 10,8% para tamanhos de dados de 1B
a 4KiB, em uma méquina virtual com KPTI ativado. O UB também acelera operacdes de
E/S em um micro benchmark, com melhorias de 30,3% a 88,3%.

3.7. z-READ: Towards Efficient and Transparent Zero-copy Read

O artigo “z-READ: Towards Efficient and Transparent Zero-copy Read”
[Park et al. 2019] apresenta um esquema eficiente e transparente de leitura de (I/0O)
sem copia. Ele permite que as aplicacdes obtenham os beneficios da leitura sem cépia
através das interfaces tradicionais de leitura/escrita do (POSIX). O esquema ¢ baseado
em técnicas de remapeamento de paginas e copy-on-write (CoW) minimizando as sobre-
cargas de remapeamento de paginas, reduzindo o nimero de operacdes de Translation
lookaside buffer (TLB) shootdown remotas. Os resultados experimentais mostram que
o desempenho dos workloads intensivos em memoria co-localizados pode ser afetado
negativamente pelos workloads intensivos em (I/O) no caso de (I/O) baseado em cépia
(até 1,96x de desaceleracdo nas configuracdes em memoria), enquanto o z-READ incorre
apenas em até 1,07x de desaceleracio para a respectiva configuracao.

3.8. Snap: a Microkernel Approach to Host Networking

O artigo “Snap: a Microkernel Approach to Host Networking” [Marty et al. 2019] propde
um novo sistema de rede host inspirado em microkernels chamado Snap. Um sistema de
rede em espaco de usudrio que suporta as necessidades em constante evolucdo do Go-
ogle com moddulos flexiveis que implementam uma gama de funcdes de rede, incluindo
comutacdo de pacotes de borda, virtualizagao para nossa plataforma de nuvem, execugao
de politicas de modelagem de trafego e um servico de mensagens confidveis de alto de-
sempenho e RDMA-like. O Snap apresentou uma melhoria substancial na taxa de trans-
feréncia e laténcia em comparagdo com a pilha de TCP/IP do kernel Linux, alcangando
uma taxa de transferéncia de 82.2 Gbps usando apenas um nucleo, em comparagdo com os
22 Gbps do TCP. Além disso, a laténcia do Snap/Pony foi inferior a 10us em configuracdes
otimizadas.

3.9. SkyBridge: Fast and Secure Inter-Process Communication for Microkernels

O artigo “SkyBridge: Fast and Secure Inter-Process Communication for Microker-
nels” [Mi et al. 2019] apresenta uma nova facilidade de comunicagdo projetada para
comunicacao inter-processos sincrona em microkernels, eliminando a necessidade do en-
volvimento do kernel. O SkyBridge permite que um processo mude diretamente para o
espaco de endereco do processo de destino e invoque a func@o necessaria, mantendo o



isolamento do espaco de endereco virtual, facilitando sua integracdo com microkernels
existentes. O SkyBridge utiliza o recurso de virtualizacdo VMFUNC para comunicagao
eficiente entre processos, reduzindo a laténcia de IPC. Em testes de IPC em um tnico
nucleo, alcangou melhorias de 1.49x, 5.86x e 19.6x para os microkernels selL4, Fiasco.OC
e Zircon, respectivamente. Para IPC entre ndcleos, as melhorias foram ainda mais signi-
ficativas, com aumentos de 16.08x, 20.31x e 49.76x.

3.10. Cornflakes: Zero-Copy Serialization for Microsecond-Scale Networking

O artigo “Cornflakes: Zero-Copy Serialization for Microsecond-Scale Networking”
[Raghavan et al. 2023] apresenta o Cornflakes, um framework de serializacao zero-copy
para redes de microssegundos, visando minimizar a sobrecarga de copia de dados na
rede. Cornflakes utiliza um novo algoritmo de serializacdo que encapsula dados em um
unico buffer, permitindo envio direto pela rede. A biblioteca hibrida de serializagcdo usa
scatter-gather e é co-projetada com uma pilha de rede integrada, oferecendo uma API de
serializagdo geral que gerencia acessos de scatter-gather a memoria do aplicativo, com-
pativel com NICs de commodity em servidores modernos. A avaliacdo do Cornflakes bus-
cou responder a questdes sobre desempenho e flexibilidade, comparando-o com aborda-
gens tradicionais de serializac¢ao, analisando seu desempenho com diferentes distribui¢des
de tamanhos de campos em mensagens e sua capacidade de integracdo em sistemas exis-
tentes, bem como sua compatibilidade com diferentes NICs.

4. Estudo comparativo

A Tabela 1 resume as principais caracteristicas exploradas nos trabalhos relacionados e
como a proposta do presente trabalho diferencia das demais.

zero | comunicacao| serializacido| passagem de | kernel | reduzir
copia| sincrona dado via bypass | overhead
memoria
comparilhada
[Zhang et al. 2021] X X
[Kaufmann et al. 2019] X
[Stamler et al. 2022] X X X X
[Narayanan et al. 2020] X X X
[Zhou et al. 2023] X
[Mi et al. 2019] X X X X
[Raghavan et al. 2023] X X X X
[Marty et al. 2019] X X
[Wolnikowski et al. 2021] X X
[Park et al. 2019] X
[Penna 2021] X X X X X

Tabela 1. Comparacao entre trabalhos relacionados e recursos utilizados

Na Tabela 1, a primeira coluna mostra os trabalhos que implementam zero copia,
uma técnica fundamental que a maioria dos trabalhos adota. Este artigo propde uma bi-
blioteca de comunicag¢do utilizando zero copia. A segunda coluna apresenta trabalhos que




buscam minimizar o overhead em chamadas de sistema, foco que nao é abordado na pro-
posta, pois o objetivo é remover as chamadas de sistema e implementar uma comunicagao
em espaco de usudrio sem envolver o kernel. A terceira coluna apresenta projetos que
utilizam comunicagdo sincrona entre processos, enquanto a proposta deste artigo utiliza
memoria compartilhada com seméforos e mutex para controle de acesso concorrente. A
quarta coluna lista trabalhos que utilizam serializacdo para envio entre processos ou dispo-
sitivos; nossa proposta aplica serializagdo na comunicagdo entre processos via memoria
compartilhada. A quinta coluna mostra trabalhos que utilizam memoria compartilhada
para diversos problemas; nossa proposta visa usa-la para troca de mensagens entre pro-
cessos. A sexta coluna apresenta projetos que utilizam kernel bypass, recurso também
adotado neste artigo a0 mover a comunicagdo entre processos para o espago de usudrio.

Nossa proposta utiliza quase todos os recursos listados, exceto a minimizacao
do overhead nas chamadas de sistema, pois a abstracdo de comunicacdo em espago
de usudrio elimina a necessidade frequente de chamadas send e receive, tornando essa
minimizacao desnecessaria. Outros recursos sao utilizados para melhorar o desempenho
da comunicagdo entre processos.

5. Medotologia

Esta secdo apresenta as ferramentas adotadas para o desenvolvimento da proposta do ar-
tigo, assim como o método pelo qual o desenvolvimento serd realizado.

Para obter resultados, foram utilizados sistemas operacionais baseados em UNIX,
com implementa¢ao no padrdo POSIX. A programacao foi realizada em C, utilizando o
GNU Compiler Collection (GCC) e o GNU Debugger (GDB). Os testes foram realizados
em uma maquina GNU/Linux com 16GB de RAM e processador Intel Core 17-1165G7
@ 2.80GHz. A biblioteca proposta sera desenvolvida para facil implementacdo em sis-

temas microkernel, com testes de integracao no sistema microkernel Nanvix, que suporta
chamadas de sistema POSIX.

Para analisar o desempenho, foram definidos trés experimentos. O primeiro expe-
rimento proposto neste estudo compreende a andlise comparativa de desempenho entre a
“biblioteca implementada”, referida como a proposta do artigo, e a conexao socket pipe.
Denominado como “pingpong”, o experimento envolveu a troca de mensagens entre dois
processos, variando o tamanho do buffer de 0,064KB a 8KB, dobrando o valor a cada
execucdo. O segundo experimento compreendeu a taxa de inje¢cdo de mensagens por se-
gundo em uma conexao pipe e a “biblioteca implementada”, analisando como intervalos
de injecao e tamanhos de mensagens afetam a eficiéncia da comunica¢do entre processos.
O experimento foi realizado variando o tempo de 0,5 até 5 segundos, também variando o
tamanho das mensagens entre 100, 500, 1000 e 2000, todas com tamanho fixo de 65KB. O
terceiro experimento teve o objetivo de analisar e comparar o desempenho entre a conexao
pipe e a “biblioteca implementada” em relacdo a laténcia na transferéncia de mensagens,
variando o tamanho das mensagens de 64B até 8KB, dobrando o valor a cada execucao.

6. Implementacao

Para a implementacao, foi utilizada a linguagem de programacdo C. A parte central da
biblioteca esta em uma estrutura implementada com o comando “struct” em C, chamada
“ipc” como mostra a Listing 1.



typedef struct ipc {
_ _pid_t first_pid;
__pid_t second_pid;
shmseg =*shm;

} ipc_t;

Listing 1. Implementacao da estrutura principal da biblioteca denominada “ipc”.

Ela cria a memoria compartilhada por meio da funcdo “ipc_init()”. A Listing 2

mostra a implementacao realizada.

mutex, full;
reader;

sem_t empty,
pthread_t writer,
static void ipc_init(__pid_t p1l,

/* ipc library reference =*/

ipc_t ipc;

/* IPC receiving process x/
ipc.first_pid = pl;
ipc.second_pid = p2;

/* Shared memory
ipc.shm = shm_init ();
semaphore_init (mutex,
semaphore_init (empty, 0);
semaphore_init (full, 0 );
/* Semaphore initialized x/

0);

—pid_t p2){

initialized =/

phthread_create (&writer, NULL, ipc_send, NULL);
pthread_create (&reader, NULL, ipc_receive, NULL);
pthread_join(writer, NULL);

pthread_join (reader, NULL);

Listing 2. Fungéao que inicializa os agentes do processo de comunicagao.

Para que os processos se comuniquem, a biblioteca fornece as fungdes
“ipc_send(msg)” e “ipc_receive(msg)’. Ambas implementam um sistema de sincronizag¢ao
utilizando seméforos para acesso a sessdo critica (memoria compartilhada). A Listing 3

mostra a implementacao das funcoes.

static void ipc_send(ipc_t ipc,
while (true) {

message_bufferingx mb) {

/* Check if message buffering’s process is allowed to

write the message */
if (mb.pid

ipc.first_pid ||

mb.pid ipc.second_pid) {

semaphore_wait (empty) ;
semaphore_wait (mutex) ;
/* Process writing from shared memory =/

shm_write (ipc.shm,

message_buffering.message);

semaphore_signal (mutex) ;
semaphore_signal (full);

lelse{

/+ Process not allowed to send message */

ipc_panic (" [Permission Denied!]");
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static void ipc_receive (ipc_t ipc,

while (true) {

message_bufferingx mb) {

/+ Check if message buffering’s process is allowed

to receive the message */
if(mb.pid == ipc.first_pid
semaphore_wait (full);

|| mb.pid ==

semaphore_wait (mutex) ;

ipc.second_pid) {

/* Process reading from shared memory =/

shm_read (ipc.shm,

received_buffer);
semaphore_signal (mutex) ;
semaphore_signal (empty) ;

}else{

message_buffering.

/+ Process not allowed to receive message =/
ipc_panic (" [Permission Denied!]");

Listing 3. Funcoes de envio e recebimento de mensagens.

Cada estrutura denominada “ipc” vincula dois processos pelos seus identificadores
de processo (PIDs). Cada processo possui um buffer para recebimento de mensagens, de-
nominado “message buffering”. As fungdes “ipc_send(msg)” e “ipc_receive(msg)” trans-
ferem mensagens entre os buffers e a memoria compartilhada, que é implementada como
uma fila. A implementacdo utiliza seméaforos para controle de acesso. A Figura 4 mostra

a estrutura da implementacao.

ipc_write(msg)

Process A - —|- ] Process A ISR
Message Buffering |~
ipc_read()

Semaphore

Shared Memor

ipc_read()

—

~——

ipc_write(msg)

Semaphore

Process B - -|- - Process B
Message Buffering

Zero copy IPC library

Figura 4. Implementacgao da biblioteca de comunicac¢ao entre processos.

Ao final da comunicacdo, a fun¢do “ipc_destroy()” libera a memoria comparti-
lhada e desvincula os processos como mostra a Listing 4.

static void ipc_destroy (ipc_t ipc) {
/+ unlink process of interprocess communication "ipc" x/

process_ipc_destroy (ipc.first_pid);

process_1ipc_destroy (ipc.second_pid);

message_buffering ipc_destroy (ipc);



shm_destroy (ipc.shm) ;
/* Free ipc reference */
free (ipc);

Listing 4. Destruicao do processo de comunicacao.

7. Experimentos

Para a extracdo dos resultados, inicialmente foi executado um experimento com o ob-
jetivo de analisar o desempenho relacionado ao tempo de execucao da proposta deste
artigo, denominada “biblioteca implementada”, em comparagdo com a conexdo socket
pipe. No primeiro experimento, as implementacdes foram executadas no formato “ping-
pong”, onde um nimero x de mensagens é enviado em formato de buffer do processo 1
para o processo 2. O processo 2 realiza a leitura e envia novamente o buffer para que o
processo 1 faca a leitura. Os testes sdo executados variando x, que € o nimero de men-
sagens presentes no buffer, comecando com tamanho de 0,064KB até 8KB, dobrando o
valor em cada execucdo.

—8— Pipe Connection
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Figura 5. Desempenho no envio e recebimento de mensagem no formato “ping-
pong’.

O primeiro experimento buscou analisar o tempo de execucao das conexdes pipe
e da “biblioteca implementada” em funcdo do tamanho do buffer. O objetivo foi verificar
se a proposta deste artigo mantém um desempenho superior a conexao pipe a medida que
o tamanho do buffer aumenta. A Figura 5 mostra que, ao dobrar o tamanho do buffer, o
tempo da conexdo pipe dobra, enquanto a “biblioteca implementada” apresenta um au-
mento menos acentuado no tempo de execucao, demonstrando melhoria no desempenho.
A conexao pipe torna-se menos eficiente com o aumento do buffer devido a necessidade
de copiar os dados para o espaco do kernel, o que consome tempo e recursos de forma
desproporcional. Em contraste, a “biblioteca implementada” realiza operagdes direta-
mente no espago do usudrio, eliminando a copia para o kernel e sendo mais eficiente para
a transferéncia de dados.



No segundo experimento, mediu-se a taxa de injecdo de mensagens por segundo
em uma conexao pipe e na “biblioteca implementada”. Foram enviadas mensagens de
64 bytes através de ambos os métodos, variando o nuimero de mensagens por inje¢ao
e os intervalos de injecdo, para compreender como esses fatores afetam a eficiéncia da
comunicacao entre processos.
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Figura 6. Taxa de injecao de envio de mensagens em segundos.

Na Figura 6, o grafico superior mostra os resultados da comunicagdo via pipe.
Observa-se uma queda acentuada na taxa de mensagens por segundo conforme o vo-
lume de mensagens aumenta, especialmente para volumes de 500 e 1000 mensagens
por injecdo. O sistema mantém uma alta taxa para 100 mensagens por injecdo, mas
a eficiéncia diminui com o aumento do volume. No gréafico inferior, que representa a
comunicacao via “biblioteca implementada”, a taxa de mensagens por segundo é mais
alta para todos os volumes de mensagens. Além disso, a taxa permanece estavel mesmo
com o aumento do volume, indicando que a "biblioteca implementada”lida melhor com
grandes volumes de dados sem degradagdo de desempenho.

No terceiro experimento, o objetivo foi analisar e comparar o desempenho entre
duas implementacdes de comunicacio entre processos: pipe € a “biblioteca implemen-
tada”, em termos de laténcia a medida que o tamanho da mensagem aumenta. A andlise
foi realizada medindo o tempo necessario para um processo enviar uma mensagem até



que o segundo processo a receba. Variamos o tamanho da mensagem de 64B a 8KB,
dobrando o tamanho a cada execucao.

Comparagdo de Laténcia
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Figura 7. Laténcia na transferéncia de mensagens em milisegundo.

Os resultados apresentados na figura 7 revelam que a laténcia aumenta com o
tamanho da mensagem para ambas as implementa¢cdes. No entanto, a taxa de aumento é
maior para a implementacdo pipe em compara¢do com a “biblioteca implementada” para
todos os valores de tamanho de mensagem.

8. Conclusao e Trabalhos Futuros

Neste artigo, exploramos uma biblioteca de comunicagdo entre processos baseada na
técnica de zero-copy, com o objetivo de otimizar a transferéncia de dados em siste-
mas operacionais com arquitetura microkernel. Através dos experimentos realizados,
demonstramos que a “biblioteca implementada” apresenta um desempenho superior em
comparacao com a comunicagdo entre processos via pipe tradicional, especialmente a
medida que o tamanho do buffer aumenta. A técnica de zero-copy mostrou-se eficaz na
reducgdo da sobrecarga causada pelas copias intermedidrias de dados, resultando em uma
melhoria na eficiéncia e desempenho do sistema. Os resultados obtidos indicam varias
direcdes para trabalhos futuros. Implementar a técnica de comunicacao remote procedure
call (RPC) em memoria compartilhada, investigar a integracido de otimizacdes de hard-
ware explorando o direct memory access (DMA) pode aumentar ainda mais a eficiéncia
da comunicagdo zero-copy. Avaliar o desempenho da “biblioteca implementada” em
aplicacdes de tempo real, analisando seu comportamento sob diferentes cargas de tra-
balho. Essas dire¢des futuras podem ampliar o impacto da técnica zero-copy proposta
neste artigo e contribuir para a eficiéncia na comunicag@o entre processos em sistemas
operacionais modernos.
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