

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS*

Instituto de Ciências Exatas e de Informática

A Proposal of a Multi-Platform Application Architecture

with React Native

Diogo Rafael Perillo1

Pedro Alves de Oliveira2

Abstract

Before developing an application, it is essential to consider that users

are spread across multiple platforms, creating a requirement to

deploy the app to as many operating systems as possible. However,

in most cases, individual and financial resources and a short deadline

are typical constraints that prevent this from happening. These

challenges lead companies and developers to choose one or two

platforms in order to start distributing their products. The objective

of this project is to design and implement a framework for building

cross-platform applications with React Native and other JavaScript

libraries, using a single code base that will be running on Windows,

macOS, Linux, Android, iOS, and Web.

Keywords: React Native. React. Cross-Platform. Multi-Platform

Application

* Article presented to the Instituto de Ciências Exatas e de Informática of Pontificia Universidade Católica de

Minas Gerais.

1 Student of Information Systems Program, Brazil – diogo.perillo@gmail.com

2 Professor of Information Systems Program, Brazil – pedroalves@pucminas.br

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 1

1 INTRODUCTION

Building an application nowadays is much more complicated than it was a couple of

decades ago. Today’s applications run on multiple devices and operating systems, are reliably

connected to the internet, storing and processing large amounts of data. In the beginning of

this millennium the majority of personal computers were based on the Windows operating

system, there were already a wide variety of programming languages a developer could use to

build an application, but most of them would be compiled to run on the same platform and be

distributed to almost all personal computer users.

Since 2009, more operating systems, including other desktop platforms like MacOS

and Linux, and mobile platforms like iOS and Android, became popular around the world,

this new distribution of users and platforms has resulted in a new need for applications to be

released for those different operating systems. Figure 1 illustrates that scenario.

Figure 1 - Operating System Market Share Worldwide

Source: StatCounter – GlobalStats – October 2019

https://gs.statcounter.com/os-market-share#yearly-2009-2019

Web 2.0 brought a new paradigm where the applications are hosted, no longer running

in the user’s computer, but on a server. It can be accessed by any internet browser from any

platform. The distribution and infrastructure are centralized, breaking the barrier of having to

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 2

build for, and install on multiple operating systems. Since then, developing a web application

or migrating desktop applications to the cloud has been one of the most popular decisions

made by software development companies.

In 2007, the first Apple iPhone was announced and released, changing the way people

were using cell phones. Not too much later, Google announced a new mobile and open-source

operating system, the Android OS, which started the competition with Apple for the users of

the recently invented smartphones. In the last ten years, the number of mobile devices started

to increase drastically (Figure 2), creating a new demand for companies, governments and

universities to adjust to the new reality.

Figure 2 - Desktop vs Mobile Market Share Worldwide

Source: StatCounter – GlobalStats – October 2019

https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-201910

Along with the smartphone devices and mobile platforms also came the application

marketplaces and new popular programming languages. Building a mobile application for at

least the two major platforms started to become mandatory for a software project to succeed.

In this context, in order to build an application that will execute in Android and iOS, using

their native architectures, at least two codebases are necessary, with the probability of a

minimal, if any, code sharing between them. Besides that, users still expect to be able to use

those applications on their personal computers, which makes a web and desktop application

still significantly important.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 3

Having to support so many platforms increases, even more, the number of codebases

and maintenance needed for an application. All this complexity makes a software

development project unfeasible for most companies with small budgets and tight deadlines,

forcing them to either choose one or two specific platforms or search for nonnative solutions.

Several libraries and software architectures were created seeking to solve this issue. Some of

them targeted mobile and web platforms, while others were targeting desktop and mobile

platforms (Ionic, Adobe Air, Flutter, and others).

1.1 Objective

The main objective of this paper is to propose an architecture for building applications

that will run on as many platforms and operating systems as possible. The specific objectives

are to accomplish it with a single codebase, leveraging more technical resources than

individuals and with a low development cost achieve maximum efficiency, writing

components once and running everywhere.

2 METHODOLOGICAL PROCEDURES

As mentioned before, we have the objective to release an application on all major

platforms, using a single codebase. Before exploring our solution, we will mention some of

the most popular tools and languages used to build cross-platform apps.

With C# and Visual Studio IDE it is possible to write applications for Windows, web

and mobile (with Xamarin) (MICROSOFT, 2019), but even though you can share a good

amount of code and logic, the user interface components will need to be different for each

specific platform. In Java we could also build for web, desktop with IDEs such as Eclipse

(ECLIPSE FOUNDATION, 2019) and NetBeans (APACHE, 2019) and Android with

Android Studio (GOOGLE, 2019), but the same problem occurs for UI components and

multiple codebases would be required.

Google released a library called Flutter (GOOGLE, 2019) for building cross-platform

and native mobile and web applications that provides fast development and great

performance. However, it is not available for desktop at the moment and it should be

considered a new technology, still building a solid community (SKUZA, MROCZKOWSKA

e WłODARCZYK, 2019).

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 4

According to a recent research from Stack Overflow (STACKOVERFLOW, 2018),

JavaScript became the most popular programming language in 2018. With JavaScript it is

possible to write code that will run in a server or build interfaces for web, desktop and mobile

devices. Because JavaScript is so popular, there is a variety of modules and resources

available along with a great and active community and many companies investing in tools and

infrastructure to support JS applications.

For user interface solutions for example, we can find a large number of libraries

(GITHUB, 2019), including the most popular Angular and React JS. With both technologies,

it is possible to build for web, and when combined to Ionic, it is possible to build mobile

applications. However, even having access to native features, Ionic uses a Hybrid-Web

approach, rendering UI components in web views which can cause performance loss and

other issues. On the other hand, React can also be combined with React Native, making it is

possible to build for Android and iOS. Differently than Ionic, React Native uses a Hybrid-

Native approach, where the UI components will be translated to native elements, taking the

advantages of each operating system performance (DOSSEY, 2019).

Each one of the resources and technologies described above have their pros and cons.

We have decided to use React and React Native not only because it fulfills our needs in

supporting multiple platforms, but we are also considering the large demand for professionals

(GREIF, BENITTE e RAMBEAU, 2019), the increasing adoption of React and React Native

in production applications (Facebook, Instagram, Skype, Uber and others), (FACEBOOK,

2019) and the exponential learning curve of these libraries. React has a small API to work

with, so you can spend more time familiarizing yourself with it, experimenting with it, and so

on. The opposite is true for large frameworks, where all your time is devoted to figuring out

how everything works (BODUCH, 2017).

2.1 The Architecture

The proposed architecture is composed of a collection of JavaScript libraries that

when combined provide a simple way to start developing a cross-platform application using

React Native. The architecture code was designed, planned and written by one senior engineer

in about eighty working hours, but the expertise and initiative to build the architecture came

from years of previous professional experience in a startup.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 5

In 2016, we were challenged to rewrite an application in order to grow the number of

users in a small period of time with limited number of engineers. It was a messaging

application, so the need to release it to as many operating systems and platforms, including

mobile, web and desktop was inherent. We couldn’t find a solution in the market that would

address all of our needs, so we decided to explore ways to use React to accomplish our task.

We were already using React and Electron JS to build the desktop application and started to

rebuild the iOS application in React Native in order to have it deployed to Android as well,

but even having the same logic to connect to the backend and the same requirements in

desktop and mobile, it was still a problem to reuse UI components in both places since React

Native wouldn’t work directly on web or Electron. In our search for a solution, we found the

react-native-web library that was still in beta releases at that point but gave us the opportunity

to start aggregating all the front-end code in a single codebase.

 The experiment was successful. We were able to release the application on all major

platforms and build the entire front-end code in about five months of work with a team of four

engineers. From that experience came the desire to provide to the community an open source

framework with a basic structure of the architecture with some adjustments and updated

resources.

 In Figure 3 we can see the design of the architecture, with each specific layer up

through having the app running on multiple platforms. All the code is written in React Native

syntax, in which the developers build UI components, screens, define the application context

and data providers. All of this is compiled and distributed in multiple layers until they reach

each targeted platform. For mobile, the React Native code is wrapped by Expo and gets ready

to run in Android and iOS via the Expo Client app. For web and desktop, the React Native

code is converted to DOM element via React Native Web, gets compiled and bundled by

Webpack and is ready to run on the browser. However, for desktop Electron is needed in

order to generate Windows, MacOS and Linux applications. Each one of these technologies

are explained in more details later in this paper.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 6

Figure 3 - Architecture Design

Source: The Author

2.2 Source Control

In this project we have used Git as the source control system, and GitHub as the

application to maintain and provide access to the code. The code for the architecture can be

found in this URL: https://github.com/diogoperillo/react-native-x-platform

We have also written a proof of concept application, explained in more detail later in

this paper, that is located in the same repository, but in a separate branch named “xp-

messaging” and can be found in this URL: https://github.com/diogoperillo/react-native-x-

platform/tree/xp-messaging

2.3 Development Environment

Writing code in React Native and JavaScript can be done in many code editors. For

this project it was decided to use the open source application Visual Studio Code, that can

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 7

also be installed on all major operating systems and provides a vast library of plugins and

resources for multiple programming languages.

For this react native code, the following plugins were installed for a better coding

experience:

• ES7 React/Redux/GraphQL/React-Native snippets (dsznajder.es7-react-js-snippets)

• ESLint (dbaeumer.vscode-eslint)

• Babel JavaScript (mgmcdermott.vscode-language-babel)

• Path Autocomplete (ionutvmi.path-autocomplete)

• Prettier - Code formatter (esbenp.prettier-vscode)

• React Native Snippet (jundat95.react-native-snippet)

• vscode-flow-ide (gcazaciuc.vscode-flow-ide)

The following built in plugin was disabled because it creates conflicts with flow IDE:

• TypeScript and JavaScript Language Features (vscode.typescript-language-features)

2.4 React

According to its website (FACEBOOK, 2019), React JS is an open source JavaScript

library for building user interfaces. It was released by Facebook with the intent to solve

problems they were having in their own applications and it's now maintained by the Facebook

team and a large community of developers.

Among other challenges, building JavaScript applications was complicated when

trying to unify logic and styles, synchronize data across different areas of the app and

manipulate the UI. With React, these problems no longer exist (CHINNATHAMBI, 2018).

You can split the code into smaller components that have their own logic and state,

responding differently to user interactions and incoming properties. React components can

also have their own specific visual styles and be responsible to update it when state or

properties change.

We can compare a React application with the famous Russian matryoshka dolls, where

a big project is composed of many smaller independent pieces (Figure 4).

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 8

Figure 4 – An example of how the visuals of your app can be broken into smaller

pieces

Source: Learning React (CHINNATHAMBI, 2018)

2.4.1 JSX

React also introduces a new syntax for writing elements called JSX that embraces the

fact that rendering logic is inherently coupled with other UI logic: how events are handled,

how the state changes over time, and how the data is prepared for display.

Instead of artificially separating technologies by putting markup and logic in separate

files, React separates concerns with loosely coupled units called “components” that contain

both. (FACEBOOK, 2019)

2.4.2 Handling Global Data

In React applications, data is passed top-down through properties from parent

components to their children, but very often, it is convenient to handle data in a single source

and update the necessary components when this data changes. There are some libraries made

for this purpose such as Flux and Redux. In this aspect, after version 16.x of React the

Context API became very useful as a built-in resource.

Context provides a way to pass data through the component tree without having to

pass properties down manually at every level (FACEBOOK, 2019). It's designed to store

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 9

global data and provide methods to update that data replicating the changes to every

component listening to it.

2.4.3 Class Components, Stateless Components and Hooks

React components used to be classified into two categories: Class Component and

Stateless Component. The former one is written as a class that extends React.Component and

contains lifecycle methods, a state object and a render method; while a Stateless Component

is written as a simple function that receives properties as parameters and returns the elements

based on those properties. Function components couldn't have a state or hold their own data

until the release of React 16.8, when introduced the concept of Hooks, a collection of APIs

that lets you use state and other React features without writing classes (FACEBOOK, 2019).

In our platform and proof of concept application we were able to use all these modern

React features such as Context and Hooks.

2.5 React Native

React Native was released by Facebook in 2015, allowing developers to build

applications for iOS and Android using a single codebase and programming language. React

Native apps are also built with React and JSX. However, instead of web elements, it uses

native components, so the code written in JavaScript is rendered in each platform specific

native element.

React Native also provides a collection of APIs to determine platform specific code

and create stylesheets in order to apply visual styles to components. As seen in a Railsware

blog post (HEBDA, 2018), the framework uses platform-specific UI controls for native

rendering. However, it’s orchestrated by a single-threaded JS code. Also, JS bridge executes

the JS runtime and connects the app with its native parts. No hybrid’s WebView

implementation makes the app’s functionality and view, resulting in a native product. (Figure

5)

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 10

Figure 5 – React Native architecture diagram

Source: Railsware (HEBDA, 2018)

2.6 Expo

If we are building a mobile application in React Native, it is important to understand

that there are two layers in our app architecture: the JavaScript layer and the native layer that

is implemented to convert the JS components into native elements. It is the native layer that

will provide to the JavaScript one the ability to use the device features.

In order to help with the native layer, we are using Expo, a set of tools and services for

building, deploying and using the native features of Android and iOS devices such as camera,

local authentication and other resources. Expo also provides UI components to handle some

use-cases not covered by React Native core, e.g. icons, blur views, and more (Expo, 2019).

With Expo it is possible to install and utilize the majority of JS packages. However, if

a native resource not provided by Expo is needed, it is possible to eject the application, or in

other words, unwrap it from the Expo shell and deal with the native dependencies by

ourselves. Since this architecture is designed to provide the basic setup for an application, we

are using the wrapped version of Expo.

2.7 React Native for Web

"React Native for Web" is an implementation of React Native components and APIs

using DOM elements, making it possible to run React Native code on the web. With some

Webpack configuration it is possible to alias all react-native imports and point it to 'react-

native-web' when compiling the JavaScript code.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 11

2.8 Babel, Webpack and Create React App (CRA)

Every software project tends to grow and needs to be well maintained, split in multiple

files and well organized. The JavaScript language is being upgraded along the years to add

new features and follow the best standards of coding, but not all browsers have support to

these new syntaxes and resources. With the intention to bring a solution to this problem, a

group of volunteer developers brought to the community the Babel library, a toolchain used to

convert ECMAScript 2015 ahead to older versions of JavaScript that will be supported by

more browsers and JavaScript interpreters.

Although it’s not impossible to write React code in earlier versions of JavaScript, it is

much better when using the new ECMAScript features such as classes, type annotations,

imports, exports and JSX. It is also necessary to have a way to put together all the different

JS, CSS, HTML and other types of files into an optimized and minified bundle, so we can

have a lightweight application, especially for the web. For this purpose, another tool called

Webpack is used. At its core, Webpack is a static module bundler for modern JavaScript

applications. When webpack processes your application, it internally builds a dependency

graph which maps every module your project needs and generates one or more bundles

(WEBPACK, 2019).

When React was released, setting up a new application codebase was complicated and

a lot of configuration for Babel and Webpack was needed. Ultimately the React team released

a tooling library called Create React App (CRA), that works on Mac, Windows or Linux in

order to encapsulate all the build configuration and make it easy to start developing, running

and generating production bundles. It also supports by default the aliasing of react native web

when a user needs to import and use React Native components on the web.

In our architecture we chose to use CRA for our web app and also for the desktop

application as described later in this paper.

2.9 ESLint and Prettier

A productive development environment should help the developer write good quality

code by offering snippets, highlighting and flagging possible errors and formatting the code

automatically. With the intention to have a pattern, help code reviews and readability, it is

important to define the rules and formats for our JavaScript codebase.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 12

In this project, we are using two libraries that when combined, give us a simple way to

keep the code in good quality. Since JavaScript is a loosely typed language, it can easily lead

to errors that won’t be found until the code is executed. ESLint is the first library that helps us

solve these problems, it is an opensource tool that helps the JS code be analyzed without

executing it, so developers can discover possible problems with their code during

development. ESLint is also pluggable and easily configurable, to allow each project or team

to set their own combinations of rules and patterns. The other library used was Prettier, an

opinionated code formatter that loads ESLint rules and configurations and applies to the code

after you save a file or type new lines (ESLINT, 2019).

2.10 JS Strong Typing with Flow

Another important consideration for a rich JavaScript codebase is to deal with type

checking. As we discussed above, JavaScript itself is dynamically typed, so we need ways to

check for errors that may occur when passing and expecting different types of variables.

There are some tools or languages that can be converted to JavaScript such as

TypeScript, but in our project, we decided to use Flow. Instead of a new language, Flow is a

static type checker that verifies the code for errors by using static type annotations. With Flow

it’s possible to define what type of variables each parameter of a method expects to receive. It

is also possible to create custom types of objects specifying each property and method

(FACEBOOK, 2019).

2.11 Electron JS

Electron JS is another open source tool released by GitHub that allows you to build

cross-platform desktop applications using HTML, CSS, and JavaScript. It was originally

released in July 2013 by Cheng Zhao, an engineer at Github, as part of their effort to produce

a new code editor, Atom. Initially, the project was known as the Atom Shell but was soon

rebranded simply as Electron.

Electron uses Chromium, the open source version of Google’s Chrome web browser.

What is included with Electron is technically the Chromium Content Module (CCM), the core

code that makes a web browser a web browser. It includes the Blink rendering engine and its

own V8 JavaScript engine. The CCM will handle retrieving and rendering HTML, loading

and parsing CSS, and executing JavaScript as well (GRIFFITH e WELLS, 2017). Electron

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 13

also provides other tools to auto update applications and generate binaries for Windows, Mac

and Linux from any of these operating systems. We are using Electron to wrap the React web

application into a desktop app.

2.12 Navigation

One of the most important pieces of any application is how to connect and navigate

between different screens, passing data and parameters. This was one of the challenges in our

architecture. Since we couldn’t find a library that would work well on web and mobile, we’ve

decided to implement an abstraction using two popular modules for each platform. For web

and desktop, we’ve used react-router and for Android and iOS we’ve chosen react-navigation,

using react-navigation API as the model. The implementation can be found here:

https://github.com/diogoperillo/react-native-x-platform/tree/master/src/navigation

2.13 Folder Structure

Figure 6 shows the architecture folder structure. The navigation folder contains the

abstraction mentioned before, the screens folder should contain each one of the React

components that will represent a route or screen of the application. Styles contains global

variables and stylesheets, while components folder holds each reusable component, fonts and

assets contains images and font files that should be used in the app. The Root.js file is the

entry point where the context is applied, and the Router is rendered.

Figure 6 – Architecture folder structure

Source: The Author

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 14

3 PROOF OF CONCEPT APPLICATION

In order to prove the efficiency of our architecture, this article also includes a simple

application built with this codebase that will be running on all targeted platforms. This app

was developed by one person in about thirty working hours, proving, even for a proof of

concept, that it is a very interesting exercise to deploy for Windows, Mac, Linux, Android,

iOS and Web.

The application is called XP Messaging (Cross-Platform Messaging), a direct message

app that allows users to send and receive text messages. XP Messaging enables approved

contacts to access their received messages with an account on multiple devices, with live

updates. Since the focus of this prototype is the front-end part of an application, we decided to

use Google Firebase as the data provider.

Firebase is a suite of functionalities including web hosting, real time noSQL database,

file storage, authentication provider and other features such as analytics, crash reporting and

more. Firebase uses google cloud infrastructure and it is free for small and under development

projects. It has a friendly JavaScript SDK that works very well integrated with React Native.

In this application we used the authentication provider for login and account creation,

real time Firestore database to store the messages and keep the UI in sync and file storage to

store the profile pictures.

Figure 7 illustrates the database structure described as flow types.

Figure 7 – Database Structure

Source: The Author

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 15

3.1 Application Screens

Another tool used in this project was Figma, a tool to design screens and wireframes

used by designers and front-end engineers. In Figure 8 we can see some screens

demonstrating the result of our experiment.

Figure 8 – Welcome screen in multiple platforms

Source: The Author

In Figure 8 it is possible to see the application running on three platforms. The left one

is an iPhone simulator running the native version, the middle window is a desktop application

in macOS and the right one runs in a Chrome web browser. In Figure 9 we can see two

different users logged into the app, one on the left in a mobile device and the right one in the

desktop version. Figure 10 shows the contact request made to each other.

Figure 9 – Home screen on multiple platforms

Source: The Author

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 16

Figure 10 – Friendship request

Source: The Author

After the request made and accepted by the other side, the friendship is started, and

they can finally send messages to each other in real time as seen in Figure 11.

Figure 11 – Friendship request

Source: The Author

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 17

4 CONCLUSION

In this project, we had the experience of designing and implementing the architecture

of a framework to build cross-platform applications. The process of development started with

researches around possible technologies and contemplated the importance of delivering apps

to as many operating systems as possible in order to support a higher number of users. After

careful consideration and comparison with other solutions, it was decided to use React Native

combined with a collection of JavaScript libraries. In order to prove not only the efficiency of

the project but also significant aspects such as development speed and code quality, a proof of

concept application was built. With one single developer, it was possible to generate a version

of the app for desktop (Windows, macOS, and Linux), mobile (iOS and Android) and web

(https://xp-messaging.web.app). The number of hours used to build and have the app ready to

be distributed for all mentioned targets was very close, if not the same, as it would be to

accomplish it for only one platform (mobile, desktop, or web).

The framework is still open for future improvements, such as adding automated tests

and using the project in a production environment: a real-life application with a significative

number of users. It is also planned to develop a command-line interface (CLI) to generate new

app codebases by downloading the architecture source and saving to a local folder named by

the user, as well as providing shortcut commands to create production binaries and bundles

for each platform. Besides that, it is desired to build a collection of essential UI components

such as text fields, buttons, and other common elements to accelerate the process of

developing an app.

REFERENCES

APACHE. Apache NetBeans, 2019. Disponivel em:

<https://netbeans.org/features/java/index.html>. Acesso em: October 2019.

BABEL. What is Babel? Babel. Disponivel em: <https://babeljs.io/docs/en/index.html>.

Acesso em: September 2019.

BODUCH, A. React and React Native. [S.l.]: Packt, 2017.

BODUCH, A. React 16 Tooling. [S.l.]: Packt, 2018.

CAIRNS, B. Flutter - A Beginners Course. [S.l.]: Packt , 2018.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 18

CHINNATHAMBI, K. Learning React: A Hands-On Guide to Building Web Applications

Using React and Redux. Second Edition. ed. [S.l.]: Addison-Wesley Professional, 2018.

DOBBS, S. How are mobile devices changing the Web? Micro Mart, 30 April 2015. p. 58.

DOSSEY, A. A Guide to Mobile App Development: Web vs. Native vs. Hybrid.

clearbridgemobile.com, 2019. Disponivel em: <https://clearbridgemobile.com/mobile-app-

development-native-vs-web-vs-hybrid/>. Acesso em: September 2019.

ECLIPSE FOUNDATION. Eclipse, 2019. Disponivel em:

<http://www.eclipse.org/downloads/packages/release/kepler/sr1/eclipse-ide-java-developers>.

Acesso em: October 2019.

ESLINT. About ESLint, 2019. Disponivel em: <https://eslint.org/docs/about/>. Acesso em:

15 September 2019.

EXPO , 2019. Disponivel em: <https://docs.expo.io/versions/v33.0.0/>. Acesso em:

September 2019.

FACEBOOK. Getting Started. Flow, 2019. Disponivel em: <https://flow.org/en/docs/getting-

started/>. Acesso em: 15 September 2019.

FACEBOOK. React JS. React JS, 10 September 2019. Disponivel em: <https://reactjs.org>.

Acesso em: September 2019.

FACEBOOK. React Native Showcase, 2019. Disponivel em:

<https://facebook.github.io/react-native/showcase>. Acesso em: October 2019.

GITHUB. Front-end JavaScript frameworks. Github Collections, 2019. Disponivel em:

<https://github.com/collections/front-end-javascript-frameworks>. Acesso em: 20 October

2019.

GLOBALSTATS. Desktop vs Mobile Market Share Worldwide. StatCounter, 2019.

Disponivel em: <https://gs.statcounter.com/platform-market-share/desktop-

mobile/worldwide/#monthly-200901-201910>. Acesso em: 15 October 2019.

GLOBALSTATS. Operating System Market Share Worldwide. StatCounter, 2019.

Disponivel em: <https://gs.statcounter.com/os-market-share#yearly-2009-2019>. Acesso em:

15 October 2019.

GOOGLE. Android Studio, 2019. Disponivel em: <https://developer.android.com/studio>.

Acesso em: October 2019.

GOOGLE. Flutter, 2019. Disponivel em: <https://flutter.dev/>. Acesso em: September 2019.

GREIF, S.; BENITTE, R.; RAMBEAU, M. State of JS 2018, 2019. Disponivel em:

<https://2018.stateofjs.com/front-end-frameworks/react>. Acesso em: September 2019.

GRIFFITH, C.; WELLS, L. Electron: From Beginner to Pro: Learn to Build Cross Platform

Desktop Applications using Github's Electron. [S.l.]: Apress, 2017.

A Proposal of a Multi-Platform Application Architecture with React Native

Belo Horizonte, Oct. 2019 19

HEBDA, A., 7 August 2018. Disponivel em: <https://railsware.com/blog/react-native-vs-

native-app-development-ios-and-android-in-one-go>. Acesso em: September 2019.

LI, D. Building Enterprise JavaScript Applications. [S.l.]: Packt, 2018.

MICROSOFT. Xamarin. Xamarin, 2019. Disponivel em:

<https://dotnet.microsoft.com/apps/xamarin>. Acesso em: 10 October 2019.

SKUZA, B.; MROCZKOWSKA, A.; WłODARCZYK, D. Flutter vs React Native – what to

choose in 2019? , 2019. Disponivel em: <https://www.thedroidsonroids.com/blog/flutter-vs-

react-native-what-to-choose-in-2019>. Acesso em: October 2019.

STACKOVERFLOW. Programming, Scripting, and Markup Languages. Developer Survey

Results, 2018. Disponivel em: <https://insights.stackoverflow.com/survey/2018#technology-

_-programming-scripting-and-markup-languages>. Acesso em: October 2019.

WEBPACK. Webpack, 2019. Disponivel em: <https://webpack.js.org/>. Acesso em:

September 2019.

	1 Introduction
	1.1 Objective

	2 Methodological Procedures
	2.1 The Architecture
	2.2 Source Control
	2.3 Development Environment
	2.4 React
	2.4.1 JSX
	2.4.2 Handling Global Data
	2.4.3 Class Components, Stateless Components and Hooks

	2.5 React Native
	2.6 Expo
	2.7 React Native for Web
	2.8 Babel, Webpack and Create React App (CRA)
	2.9 ESLint and Prettier
	2.10 JS Strong Typing with Flow
	2.11 Electron JS
	2.12 Navigation
	2.13 Folder Structure

	3 Proof of Concept Application
	3.1 Application Screens

	4 Conclusion
	References

