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RESUMO

Formal Concepts Analysis (FCA) é uma teoria matemática orientada para representação
e aquisição de conhecimento. Ela fornece um ferramental para o entendimento dos dados
representando-os como uma estrutura de conceitos ou, mais precisamente, uma hierarquia
conhecida como reticulado conceitual. Um dos potenciais da FCA está na possibilidade
da análise e visualização das informações via conceitos. Entretanto, à medida que a base
de dados utilizada cresce, a pesquisa e principalmente a visualização e exploração dos
conceitos se torna proibitiva. Com a extensão da abordagem clássica FCA para Triadic
Concept Analysis (TCA) ou 3FCA este problema se torna ainda mais evidente dada a
complexidade das estruturas inerentes à relação triádica. Desta forma, este trabalho tem
como objetivo propor uma abordagem, baseada em aproximações, para pesquisa de con-
ceitos em reticulados triádicos possibilitando a visualização e exploração das informações
presentes na base.

Palavras-chave: Análise Formal de Conceitos, Análise Formal de Conceitos Triádicos,
Aproximação de Conceitos Triádicos.



ABSTRACT

Formal Concept Analysis (FCA) is a mathematical theory oriented to knowledge repre-
sentation and acquisition, as well as data analysis and visualization. It provides a tool
for understanding data by representing it as a conceptual framework or, more precisely,
a concept hierarchy. FCA assists in processing by providing a framework for applying
different data analysis techniques for knowledge acquisition. As pointed out, one of the
potentials of FCA lies in the mathematical foundation that enables the generation, or-
dering, and visualization of information in the form of formal concepts described in a
hierarchy known as a conceptual lattice. However, as the database used grows, research,
and especially the visualization and exploration of concepts becomes prohibitive. With
the extension of the classical approach FCA to TCA or 3FCA this problem becomes even
more evident given the complexity of the structures inherent in the triadic relationship.
Thus, this work aims to propose an approach, based on approximations, for research of
concepts in triadic lattices allowing the visualization and exploration of the information
present in the base.

Formal Concept Analysis, Triadic Formal Concept Analysis, Triadic Concept Approxima-
tion.
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1 INTRODUCTION

With the advent of the web and the large volume of data generated by different
applications, the exploration and extraction of knowledge have become important ways to
understand human behavior and assist in decision making in various scenarios. To obtain
useful information, different approaches can be used, such as the Formal Concept Analysis
(FCA) which provides a mathematical framework for representing knowledge from data.

Originally proposed by Ganter e Wille (1999), dyadic FCA (generally referred to as
FCA) is based on the binary relationship between two sets of elements, named objects and
attributes. The growing interest in the use of FCA for data mining is due to the fact that
it represents and organizes what is known as formal concepts in a mathematical structure
called conceptual lattice (WILLE, 1982). The lattice allows hierarchical visualization and
understanding of data, as well as the extraction of implication rules, helping to discover
useful and non-trivial knowledge.

Although successful in many applications, some situations require an extension of
the classic approach, adding a third dimension for better characterization and representa-
tion of the data. The main example of such a scenario is the social resource sharing system
represented by folksonomies (JAY; KOHLER; NAPOLI, 2008). This example consists of
resources assigned with tags by users, this ternary relation can be represented as a triadic
context.

The dyadic FCA was extended by Lehmann e Wille (1995) by adding a third di-
mension frequently called modus or conditions, featuring a ternary relationship between
objects, attributes and conditions. This new approach is known as Triadic Concept Analy-
sis (TCA or 3FCA). Lehmann e Wille (1995) proposed a graphical representation of the
triadic network (trilattice) using a three-dimensional diagram and Biedermann (1997)
showed how to read these diagrams and extract triadic implications from it. Despite co-
ming from FCA, whose graphical representation is intuitive, the three-dimensional com-
plexity of TCA makes the use of this structure prohibitive. Graphical representation is
not intuitive, even in small data sets, due to the large number of triadic concepts that
can be generated, losing the power of interpretation and knowledge extraction of FCA.



26

Figure 1 – Trilattice of "Hostels".

Fonte: (GLODEANU, 2013)

The graphical representation of a triadic lattice (Figure 1) is made through a 3-net
whose central circles represent triadic concepts. Its extents, intents, and conditions can
be read by following the dotted lines that connect the elements to the Hasse diagrams
around and above the central triangle (WILLE, 1995). The exploration and knowledge
extraction using this structure becomes extremely complex even in small data sets, as
mentioned previously. In large data sets, the use of such a diagram as a data mining
process is impractical.

Some works in the literature try to reduce the complexity of visualization and
navigation of the triadic lattice (RUDOLPH; SĂCĂREA; TROANCĂ, 2015; MISSAOUI
et al., 2020), by proposing strategies and graphic representation for the triadic setting
based on the classic Hasse diagram. Missaoui et al. (2020) adapted the iPred algorithm
(BAIXERIES et al., 2009) used to compute dyadic lattices and proposed a new algorithm
called T-iPred to order and represent triadic lattices.

This new representation proposed in (MISSAOUI et al., 2020), simplify the visuali-
zation of the Hasse diagram using the classic FCA approach. Although this representation
is easier to read and understand, stills a need for techniques of information and knowledge
extraction from triadic data. One way to improve the use of TCA as a framework to mani-
pulate data is by creating algorithms to query information related to the triadic concepts
from the Hasse diagram. For example, it would be possible to identify in the lattice
concepts formed by objects, attributes, and conditions that meet certain triadic relati-
onships, present in the data set, as a result of a query mechanism. However, if the triadic
relationship does not exist, it would be relevant to identify the concepts closest to the
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one sought. This mechanism can use the simplified diagram produce by the T-iPred as a
graphical representation for the results queried by the user.

1.1 Problem

This work aims to provide a mechanism to approximate concepts of a certain
pattern defined as a query to the Hasse diagram of triadic concepts, where the elements
sought can be specified as a triple. That said, the problem can be formulated with three
questions:

1. It is possible to find a set of triadic concepts closest to a query where only one
dimension is specified?

2. It is possible to find a set of triadic concepts closest to a query where two dimensions
are specified?

3. It is possible to find a set of triadic concepts closest to a query where all the triadic
dimensions are specified?

1.2 Objectives

The objective of this work is to propose a method to extract information from
triadic contexts using the T-iPred as a graphical base to display and retrieve information
from a user query. We propose a method to search for patterns represented by formal
concepts in order to either retrieve or approximate a triadic concept. Through queries
of up to three dimensions, it is possible to search for concepts that are closest to the
information specified. The searching strategy proposed uses the diagram generated by
T-iPred to display the result of a query through upper and lower covers. Figure 2 shows
our proposal. We proposed this architecture to aim the exploration of the triadic context
using three types of queries that can be made to the Hasse diagram (second module) of
triadic concepts (first module). In the third module, we proposed three approaches to
approximate concepts from one of the triadic dimensions, or any subset of them. Despite
the pipeline showed here, our main contributions rely on the Concept Approximation.

For this, it was necessary to achieve the following specific objectives:

• Propose an approach to approximate concepts using one dimension based on object,
attribute or condition;

• Propose an approach to approximate concepts using two dimensions based on com-
binations of objects/attributes, attributes/conditions and objects/conditions;
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• Propose an approach to approximate concepts using three dimensions based on
objects/attributes/conditions;

Figure 2 – The architecture modules of our proposed solution.

1.3 Justification

The organization and manipulation of information through FCA and TCA are
objectives of several studies in the literature. The classical approach has techniques for
organizing, hierarchizing, and searching for formal concepts. But, in the triadic approach,
the complexity of adding the third dimension makes the visualization and manipulation
of concepts a complex task with a few understandable knowledge, even in small data sets.
Although the TCA can be used to map data in various scenarios, such as collaborative
tagging, also called folksonomies (JASCHKE et al., 2006), the problem of searching for
information when it is ordered hierarchically, to help humans understand the structure of
the triconcepts, is not a trivial task and, for this reason, is the main focus of this work.

1.4 Organization

This master dissertation is organized as follows. Chapter 2 presents the theoretical
foundation on FCA and TCA as well as their formal structures. Chapter 3 describes the
revision of the literature with a focus on the exploration and approximation of data
through triadic concepts. Chapter 4 describes the contributions of this work defining
queries of up to three dimensions and the method of approximating triadic concepts.
Finally, Chapter 5 presents the conclusions and future works.
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2 THEORETICAL FOUNDATIONS

2.1 Formal Concept Analysis

Proposed by Rudolf Wille in the 1980, Formal Concept Analysis is a branch of
applied mathematics based on the mathematization of the concept and conceptual hie-
rarchy (GANTER; WILLE, 1999). The formalization of concepts must be transparent
and simple, but also comprehensive so that the main aspects of a concept can have explicit
references in the formal model (LEHMANN; WILLE, 1995).

2.1.1 Formal Context

In the traditional approach (dyadic), a formal context is a triple K = (G, M, I),
where G is the set of objects, M a set of attributes and I the binary incidence relation
between G and M defined by I ⊆ G ×M indicating that an object g ∈ G has a certain
attribute m ∈ M (gIm or (g, m) ∈ I ).

Formal contexts are often represented by a two-dimensional table where the lines
represent the objects of the context and the columns the attributes. When an object has
a certain attribute, ” × ” is placed in the respective row and column of the table. The
Table 1 represents a dyadic context with three objects {O1, O2, O3}, six attributes {a1,
a2, a3, a4, a5, a6} and ten incidences. That is, |G| = 3, |M | = 6 and |I | = 10. The
column 1, line 2 indicates that the object O1 has the attribute a1 or simply (O1, a1).

Table 1 – Dyadic context represented by a cross table.
G/M a1 a2 a3 a4 a5 a6

O1 × × × ×
O2 × × ×
O3 × × ×

2.1.2 Formal Concepts

Given a dyadic context K = (G, M, I) and a subset of objects A ⊆ G, there is a
subset of attributes shared by all objects in A. Similarly, given a subset of attributes B ⊆
M there is a set of objects where all elements share all attributes in B. This relationship
can be expressed through the derivation operators defined below (GANTER; WILLE,
1999):
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A’ = {m ∈ M | gIm ∀ g ∈ G} (2.1)

B’ = {g ∈ G | gIm ∀m ∈ M} (2.2)

For instance, take the dyadic context represented by Table 1. The derivation
operator can be applied to a set of objects or attributes as follows. Given the set of
objects {o1, o2} ⊆ G, applying the derivation operator (o1, o2)′ we get the attribute set
{a6}. That is, only the attribute a6 ∈ M is shared by both objects. The derivation can
also be applied to a set of attributes. The result of the (a6)′ operation is exactly the two
objects {o1, o2} previously derived.

When A = B’ and B = A’ we say that the pair of objects and attributes (A, B)
is a formal concept and its elements are called extent and intent respectively. The extent
contains all the objects g that have all the attributes m ∈ B. On the other hand, the intent
contains all the attributes m shared by all objects in g ∈ A. The pair ({o1, o2}, {a6}) from
the context represented by Table 1 is a formal concept, since the objects {o1, o2} have
exactly the attribute {a6} and the only objects shared by {a6} are {o1, o2}. The Table 2
presents all the dyadic concepts from the formal context in Table 1.

Table 2 – Formal concepts of the Table 1.
Extent Intent
{o1, o2, o3} {}
{o2} {a2, a4, a6}
{o1, o2} {a6}
{o1, o3} {a1, a3, a5}
{o1} {a1, a3, a5, a6}
{} {a1, a2, a3, a5, a6}

Notice that the Table 1 has two concepts with empty sets. The first and last
concept are called infimum and supremum.

2.1.3 Concept Lattice

The set of all formal concepts of a context (G, M, I) ordered by a partial order
≤, constitutes a complete lattice, also called conceptual lattice denoted by B(G, M, I)
(DAVEY; PRIESTLEY, 2002). Consider the context (G, M, I) presented in Table 1. The
set of all concepts can be ordered by the partial order ≤ such that, for any two concepts
(A, B), (C, D) ∈ (G, M, I), we have the following relation:
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(A, B) ≤ (C, D) ⇐⇒ C ⊆ A and B ⊆ D (2.3)

Figure 3 presents the Hasse diagram of the conceptual lattice B(G, M, I) obtained
from Table 1.

Figure 3 – Conceptual Lattice from context 1.

The basic theorem of conceptual lattices states that a conceptual lattice defined
by B(G, M, I) is a complete lattice in which any subset C ⊆ B(G, M, I) the supremum
and infimum are given by:

∧
C = (

⋂
X, (

⋃
Y )′′)∨

C = ((
⋃

X)′′,
⋂

Y )
(2.4)

where X = {A|(A, B) ∈ C} e Y = {B|(A, B) ∈ C} (GODIN; MISSAOUI; ALA-
OUI, 1991).

2.2 Triadic Concept Analysis

The Triadic Concept Analysis (TCA), introduced by Lehmann e Wille (1995),
extends the classic FCA with the insertion of a new dimension. The primitive notion of a
formal context is defined by a quadruple (K1, K2, K3, Y ) where K1, K2 and K3 are sets
and Y the ternary relationship between K1, K2 and K3. The elements of K1, K2 and
K3 are called objects, attributes and conditions respectively and (a1, a2, a3) ∈ Y defines
that the object a1 has the attribute a2 under the condition a3 (LEHMANN; WILLE, 1995;
WILLE, 1995).
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2.2.1 Triadic Formal Context

Just as dyadic contexts are often described by two-dimensional tables, triadic con-
texts can be presented by three-dimensional tables (LEHMANN; WILLE, 1995). Table 3
represents a triadic context where K1 = {o1, o2, o3, o4}, K2 = {a1, a2, a3} e K3 = {c1, c2}.

Table 3 – Triadic Context represented by a three-dimensional table.
c1 c2

a1 a2 a3 a1 a2 a3

o1 × × ×
o2 ×
o3 × × ×
o4 × × ×

Every triadic context (K1, K2, K3, Y ) gives rise to the following dyadic contexts:

K(1) := (K1, K2 ×K3, Y (1)) with a1Y
(1)(a2, a3)⇔ a1, a2, a3 ∈ Y

K(2) := (K2, K1 ×K3, Y (2)) with a2Y
(2)(a1, a3)⇔ a1, a2, a3 ∈ Y

K(3) := (K3, K1 ×K2, Y (3)) with a3Y
(3)(a1, a2)⇔ a1, a2, a3 ∈ Y

(2.5)

Intuitively the contexts K(i), i = {1,2,3}, represent the "flattened"versions of the
triadic context, obtained through the combinations of triadic dimensions (LEHMANN;
WILLE, 1995). These contexts are useful for deriving elements, as will be seen in future
sections.

Table 4 represents the generated dyadic context K(1) = (K1, K2×K3, Y (1)) from the
context K presented in Table 3. K(1) is a dyadic context whose set of objects is the same
as the original context but its attributes are combinations of the attributes and conditions
from K, i.e., K2×K3. This new generated context has six attributes represented by pairs.

Table 4 – Dyadic context K(1) = (K1, K2 ×K3, Y (1))
(a1, c1) (a2, c1) (a3, c1) (a1, c2) (a2, c2) (a3, c2)

o1 × × ×
o2 ×
o3 × × ×
o4 × × ×

Therefore, the contexts K(2) and K(3), are dyadic contexts where the sets of objects
are the attributes and conditions, respectively, of the original context. Thus, K(2) has only
three objects (a1, a2, a3) and eight attributes resulting from the combination of K1 ×K3

(Table 5).
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Table 5 – Dyadic context K(2) = (K2, K1 ×K3, Y (2))
(o1, c1) (o2, c1) (o3, c1) (o4, c1) (o1, c2) (o2, c2) (o3, c2) (o4, c2)

a1 × × ×
a2 × × ×
a3 × × × ×

Finally, the context K(3) has two objects (c1, c2) and twelve attributes since this is
the number of pairs resulting from the combination of K1 ×K2 of objects and attributes
of the original context. Table 6 represents the dyadic context K(3).

Table 6 – Dyadic context K(3) = (K3, K1 ×K2, Y (3))
(o1, a1) (o2, a1) (o3, a1) (o4, a1) (o1, a2) (o2, a2) (o3, a2) (o4, a2) (o1, a3) (o2, a3) (o3, a3) (o4, a3)

c1 × × × × ×
c2 × × × × ×

2.2.2 Triadic Concept

One of the basic operations in FCA is the derivation of elements of the context
through the derivation operators. The K(i) contexts generated from a triadic context
(Section 2.2.1), allow the definition of a (i)-derivation operator (LEHMANN; WILLE,
1995).

Let K: = (K1, K2, K3, Y ) be a triadic context and {i, j, k} = {1, 2, 3} such that
i < j. For Xi ⊆ Ki e (Xj, Xk) ⊆ Kj ×Kk the (i)-derivation operator is defined by :

X
(i)
i := {(aj, ak) ∈ Kj ×Kk |ai, aj, ak ∈ Y for all ai ∈ X}

(Xj, Xk)i := {ai ∈ Ki |ai, aj, ak ∈ Y for all (aj, ak) ∈ Kj ×Kk}
(2.6)

In words, when applied to a set Xi the (i)-derivation operator determines all the pairs
(aj, ak) of the dimension j and k which are shared by all elements in Xi. On the other
hand, when applied to a pair (Xj, Xk), the (i)-derivation operator determines all the
elements ai that share the elements of both dimensions j and k.

For example, take the context of Table 3 and i = 1, j = 2 and k = 3. By applying
the (i)-derivation operator in a set of objects, for instance {o1}, the result is a set of pairs
of attributes and conditions. In this case, {o1}(1) = {(a1, c1c2), (a3, c2)}. Furthermore,
the operator can be applied in a pair of, for example, attributes and conditions, resulting
in this case, in a set of objects, the inverse relation obtained before. Taking the exactly
same pairs of the previously example, and applying the operator in each of these pairs,
the result is the following: {(a1, c1c2)}(1) = {o1} and (a3, c2)}(1) = {o3, o4}.
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In addition, another type of derivation operator, based on the triadic structure can
be defined (LEHMANN; WILLE, 1995):

Xi → X
(i,j,Ak)
i := {aj ∈ Kj |ai, aj, ak are related by Y for all (ai, ak) ∈ Xi × Ak}

Xj → X
(i,j,Ak)
j := {ai ∈ Ki |ai, aj, ak are related by Y for all (aj, ak) ∈ Xj × Ak}

(2.7)

Consider X3 = {c1, c2} ⊆ K3, by the Equation 2.7 we get the dyadic context
K(12)

X3 = (K1, K2, Y 12
X3) and from this definition it is possible to formalize triadic concepts

as follows.

Concepts are understood as units of thought. This means that a concept tends to
be homogeneous and closed. If a concept is viewed through the triadic paradigm then,
for formalization, a concept should be seen as a combination of objects, attributes, and
conditions which is homogeneous and closed. Homogeneity is attained if each object
has each attribute under each condition within the concept. The closure is attained if
the concept is maximal concerning this property (LEHMANN; WILLE, 1995). A triadic
concept of a context K := (K1, K2, K3, Y ) is defined by a triple (A1, A2, A3), such that Ai

⊆ Ki for i = {1,2,3} and Ai = (Aj ×Ak)(i) for all {i,j,k} = {1,2,3} with j < k. The sets
A1, A2, A3 are called extent, intent and modus or conditions of the concept, respectively.

Unlike the dyadic approach where, given a context (G, M, B), concepts can be
derived from a single set X ⊆ G or Y ⊆ M forming the pairs (X ′′, X ′) or (Y ′′, Y ′), in
TCA, two sets are required and the concepts can be constructed as follows:

For Xi ⊆ Ki and Xk ⊆ Kk with {i, j, k} = {1, 2, 3}, let Aj = X
(i,j,Xk)
i , Ai = A

(i,j,Xk)
j

e Ak = (Ai × Aj)(k) (if i < j) or Ak = (Aj × Ai)(k) (if j < i). Then, (A1, A2, A3) is the
triadic concept bik(Xi, Xj) with the property that it has smallest k-th component among
all triadic concepts (B1, B2, B3), with the largest j-th component satisfying Xi ⊆ Bi e
Xk ⊆ Bk. In particular bik(Xi, Xj) = (A1, A2, A3) for each triadic concept (A1, A2, A3) of
K according to (WILLE, 1995).

For instance, take the triadic context of the Table 3. Consider X1 = {o1} ⊆ K1,
X3 = {c1, c2} ⊆ K3. According to Wille (1995), we have A2 = X

(1,2,X3)
1 , A1 = A

(1,2,X3)
2

e A3 = (A1 × A2)(3). Through Table 3, we obtain A2 = {o1}(1,2,X3) = {a1}, A1 =
{a1}(1,2,X3) = {o1}. Then, from Table 6, we have A3 = ({o1} × {a1})(3) = {c1, c2}. So
(o1, a1, c1c2) is a triadic concept (short: triconcept) of the Table 7, or bi,k(X1, X3) =
(o1, a1, c1c2).
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Table 7 – Dyadic context K12
X3

= (K1, K2, Y 12
X3

).
a1 a2 a3

o1 ×
o2

o3

o4 ×

The set of all triadic concepts of a given context K is frequently denoted as T(K).
The Table 8 shows the set of all triconcepts extracted from the context represented by
Table 3.

Table 8 – Triconcepts from Table 3.
Extent Intent Conditions

{} {a1, a2, a3} {c1, c2}
{o2, o4} {a2} {c2}
{o4} {a2, a3} {c2}
{o1} {a1} {c1, c2}
{o4} {a3} {c1, c2}
{o3, o4} {a3} {c2}

{o1, o2, o3, o4} {} {c1, c2}
{o3} {a1, a2} {c1}
{o1} {a1, a3} {c1}
{o1, o3} {a1} {c1}
{o1, o4} {a3} {c1}

{o1, o2, o3, o4} {a1, a2, a3} {}

The Table 9 shows the triconcepts (o3, a1a2, c1) in orange and (o3o4, a3, c2) in green.
Note that the colored rectangles cannot be augmented without violating the triadic rela-
tion.

Table 9 – Triconcepts (o3, a1a2, c1), (o3o4, a3, c2).
c1 c2

a1 a2 a3 a1 a2 a3

o1 × × ×
o2 ×
o3 × × ×
o4 × × ×

As shown by Lehmann e Wille (1995), every triadic context has at least three
concepts, called trivial concepts. These concepts can be seen in the Table 8 in lines 1, 7
and 12, of the context represented by the Table 3. Each of these concepts has an empty
dimension (extent, intent or condition). Let K := (K1, K2, K3, Y ) be a triadic context,
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the trivial concepts can be formally defined as follows (LEHMANN; WILLE, 1995):

o1 := ((K2 ×K3)(1), K2, K3)

o2 := (K1, (K1 ×K3)(2), K3)

o3 := (K1, K2, (K1 ×K2)(3))

(2.8)

2.2.3 Triadic Concept Lattice

The set of all triconcepts denoted by T(K), of the context K, can be partially
ordered forming a complete lattice, also called trilattice (LEHMANN; WILLE, 1995).
For i ∈ {1, 2, 3}, the relation (A1, A2, A3) .i (B1, B2, B3)⇔ Ai ⊆ Bi constitutes a partial
order whose equivalence class ∼i is given by (A1, A2, A3) ∼i (B1, B2, B3) ⇔ Ai = Bi.
These three quasi-orders satisfy the following antiordinal dependencies (WILLE, 1995):
for {i, j, k} = {1, 2, 3}, (A1, A2, A3) .i (B1, B2, B3) e (A1, A2, A3) .j (B1, B2, B3) implies
that (A1, A2, A3) &k (B1, B2, B3) for all triconcepts (A1, A2, A3) e (B1, B2, B3).

In addition [(A1, A2, A3)]i denotes the equivalence class ∼i containing the con-
cept (A1, A2, A3). The partial order .i induces an order relation ≤i in the factored set
T (K)\ ∼i of all classes of equivalences denoted by:

[(A1, A2, A3)]i ≤i [(B1, B2, B3)]i ⇔ Ai ⊆ Bi (2.9)

A structure analogous to the dyadic case is obtained by the triadic lattice or trilat-
tice T(K) := (T(K),.1,.2,.3) for the triadic relationship. All trilattices are complete,
as proved by Wille (1995).
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3 RELATED WORK

The classic FCA approach has several works in the literature related to data navi-
gation and exploration. In Yevtushenko (2000) the authors proposed a tool for exploring
concepts called ConExp.

ConExp is used to create and edit dyadic contexts. It is possible to analyze formal
context, draw the corresponding conceptual structure and explore different dependencies
between attributes. It provides tools for editing, building conceptual lattices from dyadic
contexts, and extracting implication and association rules. The tool has an exploration
technique such that some relations extracted from the implications are presented to the
user in an iterative way. It is widely used by the FCA community due to the line diagram
generated. The Figure 4 shows an example of a conceptual lattice of a dyadic context
where the objects of each node are represented by a white box and the attributes are
represented by a gray box. Exploration through ConExp is very simplistic, since only the
association rules are displayed to the user in an iterative way. It is not possible to do
any research in the structure or extract more information beyond the association rules
extracted from the hierarchy.

Figure 4 – Lattice diagram built by ConExp.

Valtchev et al. (2003) the authors introduced the tool for manipulating, building
and editing formal lattices and their contexts, called Galicia. The tool allows 2D and
3D visualization of dyadic lattices as well as the application of basic FCA algorithms
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to reduce and transform multi-valued contexts. Galicia provides different algorithms for
creating conceptual lattices (VALTCHEV; MISSAOUI, 2001; VALTCHEV et al., 2002).
In addition, the tool supports manipulation of lattices through operations such as assem-
bly, merging, splitting and decomposition according to (VALTCHEV; MISSAOUI, 2001).
Figure 5 shows the line diagram of a dyadic lattice compute by the Galicia tool.

Figure 5 – Lattice diagram visualization using Galicia tool.

In Lahcen e Kwuida (2010) the authors proposed a tool called Lattice Miner, used
for construction, visualization and manipulation of formal dyadic concepts. The tool
allows the generation of formal concepts, association rules, as well as the transformation
of formal contexts via apposition, sub-position, reduction, generalization of objects and
attributes and the manipulation of conceptual lattices via approximation, projection and
selection. With a focus on visualization, Lattice Miner implements techniques to improve
the user experience, such as reducing edge collision, symmetry between the lattice nodes,
as well as tools to make some basic operations easier. Through the tool it is possible to
apply zoom-in and zoom-out to specific objects of the lattice that may be of interest to
the user. It is possible to obtain details about the concepts related to the lattice as well
as the number of objects and attributes, etc. It can display the entire hierarchy of a given
concept (successors and predecessors) while the rest of the lattice is ignored. Figure 6
shows a dyadic lattice created using the tool with some concepts highlighted.

Lattice Miner has numerous techniques for manipulating contexts and dyadic con-
cepts and is widely used in the literature. However, for triadic approach, only operations
such as calculating concepts and implication rules are implemented. It is not possible to
visualize or explore, even through projections, a triadic context.
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Figure 6 – Lattice diagram visualization using Lattice Miner.

Kis, Sacarea e Troanca (2016) facing the problem of manipulating and extracting
information from triadic lattices, represented as 3-nets diagrams (LEHMANN; WILLE,
1995), proposed a tool for local exploration and navigation in triadic contexts through
projections and perspectives. The tool uses the TRIAS algorithm (JASCHKE et al., 2006)
to compute all the concepts of a given triadic context that are displayed graphically to
the user. The user can choose a triadic concept and define as a perspective one of his
three dimensions, i.e., objects, attributes or conditions.

Given the user-defined perspective, a dyadic concept is generated and its concep-
tual lattice is computed and presented through a Hasse diagram. Based on this diagram,
the classical dyadic visualization is used to explore similar triadic concepts and therefore
achievable from the chosen perspective. From the dyadic lattice, a new triadic concept
can be chosen by the user, which can be a starting point for the next visualization and
navigation using the tool.

Figure 7 – Conceptual lattice of a projected triadic concept.
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Given a triconcept T = (A1, A2, A3) and a perspective k, a triadic context K(ij)
Ak

is
generated and its lattice B(K(ij)

Ak
) is built. The authors prove that given a triadic concept

(A, B, C) ∈ T(K) then, (A, B) ∈ B(K(ij)
Ak

) and (A, B, C) ∈ T(K), (A1, A2) ∈ B(K(ij)
Ak

)
then (A1, A2, (A1 × A2)(3)) ∈ T(K). Based on these properties, the concept of directly
reachable concepts is presented and also used for navigation and clustering (CARPINETO;
ROMANO, 1993) of triadic concepts.

Based on the properties of reachable concepts, the authors identified that not all
concepts can be directly achieved through an initial concept, so the idea of a group of
mutually reachable concepts (clusters) is defined and explored. A set of directly reachable
concepts is computed and using an initial triconcept T it is possible to navigate between
these clusters. This is due to the fact that a partial order is induced over these groups
of concepts. The properties of these groups are then combined in a tool allowing the
exploration of information in a given triadic context.

In Rudolph, Săcărea e Troancă (2015) the authors combined the triadic explora-
tion technique proposed in (KIS; SACAREA; TROANCA, 2016) with other resources for
manipulating dyadic and triadic contexts. Among these functionalities is possible to ap-
ply basic scale operations (GANTER; WILLE, 1989) and context projections, as well as
calculation of dyadic and triadic concepts, creation, and manipulation of dyadic lattices.
The Figure 7 shows use of the tool.

Although there are works that allow the visualization and exploration of concepts,
few have explored the triadic approach. In Rudolph, Săcărea e Troancă (2015) the authors
proposed a tool for viewing and navigating triadic lattices using projections made from
concepts selected by the user. Information is obtained through the exploration of dyadic
lattices, which introduce the idea of directly reachable concepts, allowing the user to
navigate through all lattices generated from an initial triadic concept.

The proposed approach in this dissertation differs from the works previously analy-
zed, for the best of our knowledge, it’s the first approach that allows the user to explore
the triadic diagram through queries. The queries allow the user to find the corresponding
concepts being searched (identical match) or the concepts closest to the defined pattern.
Also, this work uses the ordering and the graphical representation of triadic lattices pro-
posed by Missaoui et al. (2020), which allows grouping the triadic concepts into a more
concise and simplified hierarchical structure. The queries of up to three dimensions find
two sets of concepts that can be viewed in the hierarchy as upper and lower bounds in
the static diagram provided by T-iPred.
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4 TRIADIC CONCEPT APPROXIMATION

Due to the complexity of the ternary relation, the conceptual lattice it is not easy
to read or manipulate, mainly when considering a large triadic context. The complexity
of using these diagrams as a meaningful tool for data exploration is even more proble-
matic because, to the best of our knowledge, there is no tool in the literature capable of
automatically generating Hasse diagrams for triadic contexts, once the diagram must be
built manually.

In recent work, Missaoui et al. (2020) shows how to produce the diagram of the
dyadic lattice for triadic concept analysis. This diagram is produced by an adaptation
of the dyadic algorithm called iPred (BAIXERIES et al., 2009). The diagram produced
by this new algorithm has the same elegance and expressiveness as the diagrams used
in classical FCA. Despite the abstraction and expressiveness of this representation for
the triadic lattice, the necessity to extract information in the triadic context is still a
challenge for the TCA community. Working with large databases can produce large lat-
tice diagrams, even in the dyadic case. In TCA, this problem is more complex due to the
number of concepts produced by triadic data (since we can have more than one dimension
associated with the same extent). There are efforts in the literature (RUDOLPH; SĂCĂ-
REA; TROANCĂ, 2015) to abstract the complexity of triadic data through projections
and mechanisms to explore the data as previously mentioned.

In this work, we propose a new approach to query and extract information from
triadic contexts, through concept approximation to visually explore triadic concepts.

The concept approximation aims to find the exact triadic concept given by a query,
if such exists, or to approximate a set of elements from that context. That is, given a
set (objects, attributes, conditions), the approximation allows us to find the concepts
that have exactly these elements or that are closer to them, considering the conceptual
hierarchy.

4.1 Query

In this section, we define the query structure used in this work. Essentially, the
triadic concept analysis is an extension of the classic FCA (LEHMANN; WILLE, 1995).
One of the main differences, that gives rise to the whole field of study called TCA, is the
third dimension frequently called conditions or modus. So, by definition, the Triadic FCA
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has three dimensions known as objects, attributes, and conditions.

In this work, we propose an approach to approximate triadic concepts from ele-
ments of one of these dimensions or any combination of them. By combination, we say
that the query can contain one dimension (objects, attributes, or conditions), two dimen-
sions (objects/attributes, attributes/conditions, objects/conditions), and finally, all the
three dimensions specified.

Given a triadic contextK = (K1, K2, K3, Y ), a query is defined as a triple (A1, A2, A3)
where A1 ⊆ K1, A2 ⊆ K2 and A3 ⊆ K3, and the result is a subset of triadic concepts of
T(K), known as the closest concepts of (A1, A2, A3). The triple representing a query may
contain at least one of the three dimensions defined in the triple. The symbol ? is used
to represent the absence of the information related to the dimension represented by the
component of the triple (A1, A2 or A3). The number of missing dimensions in a query
defines the type of the query. For example, a query with two missing dimensions is called
a one-dimension query because the information used to approximate concepts is related
to only one dimension.

To approximate concepts using one, two, and three dimensions we define three ty-
pes of queries respectively called one-dimensional, two-dimensional, and three-dimensional
queries. All the possible triples can be seen below:

• One-dimensional

– (A1, ?, ?)

– (?, A2, ?)

– (?, ?, A3)

• Two-dimensional

– (A1, A2, ?)

– (A1, ?, A3)

– (?, A2, A3)

• Three-dimensional

– (A1, A2, A3)

4.2 T-iPred

Faced with the difficulty of reading and navigating the original structure of the
triadic diagram as mentioned before and pointed out in (RUDOLPH; SĂCĂREA; TRO-
ANCĂ, 2015), in Missaoui et al. (2020) one of the main contributions is an adaptation of
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the iPred algorithm, originally proposed by Baixeries et al. (2009) to calculate precedence
links among triadic concepts. Due to the complexity of the original graphic diagram,
proposed in Lehmann e Wille (1995), exploring triadic data using visual tools is still an
object of investigation. Therefore, in order to visualize and navigate triadic concepts,
together with its quasi-order in relation to the extents, the authors proposed a Hasse
diagram in which each node represents a set of triadic concepts with the same extent.

Such an adaptation, called T-iPred, considers concepts according to an increasing
order in the size of the extent instead of the size of the intent and, therefore, creates the
diagram in a bottom up way. Since the poset∗ obtained is not closed under the intersection
of the extent, intent or modus, the authors modified the initial iPred algorithm to discard
extent intersections that do not represent actual extents of existing triadic concepts.

Consider the triadic context K := (K1, K2, K3, Y) presented in Missaoui e
Kwuida (2011) representing orders from customers in K1 = {1, 2, 3, 4, 5}, from suppli-
ers K2 = {Peter,Nelson,Rick,Kevin,Simon} of the products K3 ={accessories, books,
computers, digital cameras } and the incidence relationship Y is showed in Table 10. The
set of all triadic concepts T(K), ordered by the T-iPred algorithm (Missaoui et al. (2020))
produces the line diagram of Figure 8.

Table 10 – Triadic context of customers.

K(1) P N R K S
a b c d a b c d a b c d a b c d a b c d

1 × × × × × × × × × × × ×
2 × × × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × × × ×

∗partially ordered set
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Figure 8 – Trilattice from PNRKS context.

The diagram produced by T-iPred algorithm is constructed based on the extent
of each triadic concept, therefore, each node of the lattice represents a group of concepts
associated with the same extent. In Figure 8 the rounded nodes represent the extent of a
group of concepts and the boxes on the right side of each node, represent the intent and
conditions respectively, of each concept attached to the node. For example, the node with
extent {1, 4} has two concepts associated with it, they are: (14, KPN, b) and (14, NP, bd).

4.2.1 Upper and lower covers

The T-iPred algorithm uses the concepts of border and face defined in (BALCÁ-
ZAR; TÎRNĂUCĂ, 2011) and for that, the notion of upper covers and lower covers is
also used.

According to (BALCÁZAR; TÎRNĂUCĂ, 2011), let (P,≤) be a partial order ≤
under the set P . If x ≤ y (resp. x < y) x is said to be below (strictly below) y. If x < y

and there is no element between x and y, x is considered a lower cover of y, meaning x is
an immediate predecessor of y, and y, a upper cover of x, respectively, y is an immediate
successor to x, and this relationship is denoted by x ≺ y. The upper cover for x can be
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written as uc(x) = {y | x ≺ y}, and the lower cover lc(x) = {x | y ≺ x}.

Let L = (C,≤1) be a partial order where each node represents all the triadic
concepts associated with the same extent, and ≤1 the relation of order induced by quasi-
order .1. Such an order is not a complete lattice since the intersection under the nodes
(in this case the extents) does not necessarily result in an extent that belongs to a triadic
concept. For each node x, there is a border B(x) that consists of the maximum of elements
with respect to the order ≤1. That is, y ∈ B(x) ⇔ ext(x) > ext(y) (BALCÁZAR;
TÎRNĂUCĂ, 2011).

The concept hierarchy produced by T-iPred is used to approximate concepts, as
will be described in the following sections, and the term triadic lattice will be used from
now on to refer to the partial lattice obtained by T-iPred. The set of concepts found
by the query is divided into two sets of upper and lower covers in the triadic lattice.
The answer to an approximation is visualized in the line diagram obtained by T-iPred
to explore the concepts related to the elements found by the query and provide a visual
mechanism for exploring the triadic context.

4.3 Concept Approximation

The concept approximation is done by using a triple (A1, A2, A3) where each ele-
ment represents a subset of objects, attributes, and conditions respectively, from a triadic
context.

The result of a query can be divided into two sets called upper covers and lower
covers or upper and lower bounds. These two sets can be displayed in the triadic lattice
as the result of an approximation. The upper bound indicates the immediate successors
of the query, and the lower bound indicates the immediate predecessors. Together, the
two sets locate the query result at some level in the hierarchy. The upper coverage set
is obtained by applying the derivation operators (Section 2.2.2) to the elements of the
query, and then the concepts present in this set are used to obtain the lower bound.

The Table 10 represents the triadic context where customers are denoted by objects
(1, 2, 3, 4, 5), buying products denoted by conditions (acessories, books, computers,
digital cameras), from suppliers (Peter, Nelson, Rick, Kevin, Simon) (which in turn
denote the attributes of the context). An incidence in the triadic context, such as (1, P, a),
indicates that the consumer 1 bought the object a from the supplier P.

A user may be interested in finding out who are the suppliers and which products
customers 1 and 3 bought together. This query can be expressed by the triple (13, ?, ?)
which represents a one-dimensional query where only the object dimension is presented.
Note that the attributes and conditions are not specified in this example, as the search
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constraint is to find patterns related to objects 1 and 3 together. It is possible to further
restrict the query to specify the pattern sought. The triple (13, P, ?) indicates that it
must be found in which concepts the objects 1 and 3 are relate to the attribute P. The
concepts related to this triple can be found using a two-dimensional query, where the two
dimensions related to the desired behavior are fixed. Similarly, a three-dimensional query
can be defined by a triple where all three dimensions are present, such as (13, P, a). In
the three-dimensional case, if the pattern sought is exactly a triconcept, then this is the
answer to the query.

4.4 One-dimensional Query

The one-dimensional query performs the concept approximation of one of the th-
ree triadic dimensions. Given a triple in which only one dimension is known, the one-
dimensional query process consists of finding the triadic concepts closest to the elements
provided by the query. Let K := (K1, K2, K3, Y ) be a triadic context, the set of concepts
denoted by T(K) and an order defined by the trilattice L = (T(K),≤1) computed by
T-iPred algorithm, the query can be formally defined as a triple, where only a dimension
is specified. As the query for a dimension can be done by using the objects, attributes or
conditions, three different triples are defined, one for the extent (A1, ?, ?), intent (?, A2, ?)
and conditions (?, ?, A3).

Figure 9 shows the process of the one-dimensional query using objects. The first
step of the concept approximation is to apply the derivation operator to the given set
of elements, in this case, the set of objects A1, which then must be factored. Factoring
is the process of grouping the pairs resulting from the derivation process (previous step)
into maximum pairs so that the next derivation is made in a fewer number of pairs. The
factoring process is best described as follows: the concepts obtained from the second deri-
vation of the pairs are filtered, keeping only the immediate successors of the approximate
triple. The result of this filtering is the upper covers for the triple (A1, ?, ?), and then
they are used to calculate the lower covers through the links produced by the T-iPred al-
gorithm. The result set is produced and depicted in the line diagram - where it is possible
to identify the upper and lower limits for the query.
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Figure 9 – One-dimensional query process.
(A1, ?, ?) (A1)’ Factorization {(B2, B3)’}

Upper CoversLower Covers

Lattice Links

Result

To visualize and explore the set of concepts closest to a given triple, we can separate
this set into two sets, upper covers and lower covers, which can be hierarchically visualized
in the Hasse diagram of the triadic lattice. That is, given an arbitrary query, the concepts
closest to the defined triple can be viewed in the lattice to define an upper and lower
bound for the query. These limits can bring relevant information such as position in the
conceptual hierarchy, making the full view of the diagram unnecessary, since only the
query result can be displayed.

The set of concepts closest to (A1, ?, ?) are those that constitute the upper limit
of the triple in the lattice L. That is, the set of upper covers for a triple where only the
objects are defined, will be those that immediately follow A1 or the concepts that have
all the elements of the approximate extent. The immediate successors of this extent have
the approximated elements of A1, if there is any concept in T(K) whose extent is identical
to A1 this concept then sets the upper limit of the query. Otherwise, the approximation
process identifies the extent that succeeds A1, by the quasi-order ≤1 in the conceptual
hierarchy. Given a triple (A1, ?, ?) it is possible to identify the immediate successors
(upper-covers) by applying the derivation operators as follows:

(A1, ?, ?) ≤1 (A′′1, B2, B3) where
B2 = Intent(Fi)
B3 = Modus(Fi)

 for each Fi ∈ A′1

First A1 is extended to the set of all attribute/condition pairs shared by all of its
elements. Each pair Fi ∈ A′1 constitutes the intent B2 and the modus B3 of each concept of
the form (A′′1, B2, B3). Then, the extent is calculated by applying the derivation operator
to each pair (B2, B3) ∈ Fi. According to Wille (1995) the extent A1 := (B2 × B3)(1) for
each triple of the form of (A′′1, B2, B3) is a triadic concept and a successor to (A1, ?, ?).

The set of upper covers are exactly the concepts that immediately follow the ap-
proximate triple given the order defined by L, and are formally described by (A1, ?, ?) <

(A′′1, B2, B3), i.e., there is no triadic concept between them, or they are exactly those that
have all the elements of the approximate triple and are denoted (A1, ?, ?) ≤ (A′′1, B2, B3).
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However, the derivation A′′1 can produce extents of concepts of the form (X1, B2, B3)
and (Y1, B2, B3) where (B2, B3) ∈ A′1 and X1, Y1 ∈ A′′1 and X1 ⊂ Y1. The concept of
the form (Y1, B2, B3) is a successor of the triple (A1, ?, ?) but not an immediate one,
because its size is greater than that of an immediately successor concept. In other
words, given the order inferred by the trilattice L, the concepts can be put in the form
(A1, ?, ?) < (X1, B2, B3) < (Y1, B2, B3) and then (Y1, B2, B3) is not an immediate succes-
sor and therefore it is included in the set of upper covers and consequently in the query
result.

Similarly we can define a lower bound for (?, A2, ?) and (?, ?, A3) as follows:

(?, A2, ?) ≤2 (B1, A′′2, B3) where
B1 = Extent(Fi)
B3 = Modus(Fi)

 for each Fi ∈ A′2,

(?, ?, A3) ≤3 (B1, B2, A′′3) where
B1 = Extent(Fi)
B2 = Intent(Fi)

 for each Fi ∈ A′3

The same reasoning is applied to approximated triples through intent and modus
but the application of the derivation operators is done in the set of attributes and conditi-
ons respectively. For (?, A2, ?), each pair (B1, B3) of object and attributes in Fi obtained
by deriving the attributes provided in the query, constitute the extent and modus of the
concepts that will then be derived to obtain the new intent. The same applies to (?, ?, A3)
but the order of the sets is changed once the concepts are built from the conditions.

Once the set of upper covers of the query is obtained (for example, (A1, ?, ?)),
we can use it to define a lower bound. Let (X1, X2, X3) ≥1 (A1, ?, ?), then the lower
bound will contain concepts of the form (Y1, Y2, Y3) such that (Y1, Y2, Y3) ≤1 (X1, X2, X3)
(immediate predecessors of (X1, X2, X3)) and Y1 ∩ A1 6= ∅ - once the L triadic lattice is
constructed, the lower covers can be calculated by looking at each predecessor link of each
concept in the upper bound set previously calculated and check if its intersects with the
elements of the query. The same applies for queries using the attributes (?, A2, ?) and
conditions (?, ?, A3).

4.4.1 Algorithms

Our implementation of the triadic contexts and the derivation operators uses bitsets
as a data structure to store the incidences. For example, the first incidence (1, P, a) of
the customer context (Table 10) represents one bit in the context. Three triadic contexts
K(1), K(2) and K(3) are generated for the derivation process, as defined in Equation 2.5.
The derivation processes are made by using the AND logic operation in chunks of bitsets
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in the context.

The Algorithm 1 computes the upper covers for a one-dimensional query. It receives
as input only the set defined in the triple Ai such that i = {1, 2, 3}. Line 1 initializes
the result set C as an empty set. In lines 2 and 3, the set Ai is derived according to the
dimension i and the result is saved in the auxiliary variable P. The Algorithm 2 is used to
factor the pairs in P and produce a set of factored pairs F, extracting the formal concepts
from a dyadic context built from the pairs in P.

From lines 4 to 20, the external loop of the algorithm iterates over each pair (b, c)
in F and calculates the immediate successor concepts for the set Ai of the query. Lines
5 and 6 derive each pair, producing a new set a of elements. A triple t is created using
the set a and the pairs (b, c). As the result of the derivation changes according to the
dimension being approximated, the auxiliary proceduremakeTriple organizes the elements
of the triple so that the first set of the is an extent, the second intent, and conditions,
respectively. Line 7 checks if it is the first iteration of the algorithm and adds t if C is
empty.

From lines 8 to 17, the inner loop checks whether the i dimension of the triple t is
in fact an immediate successor to Ai. The set C maintains only the concepts immediately
successors to Ai in relation to i. This condition is verified from the tests on lines 9 and
10.

When a new t concept is calculated, the internal loop iterates over each previously
calculated t’ concept, checking whether the new concept can be maintained or not. That
is, maintaining the constraint that t[i] ( t′[i] or t′[i] ( t[i] and t[i] 6= t′[i] where t[i]
indicates the position i of the triple t. Line 9 checks the size of both sets and, if it is
the same, the triple t inserted in C, as the sets will be subsets of each other, only when
they are equal, they will soon be in the same level in the conceptual hierarchy, without
prejudice to the condition of not being an immediate successor to the consultation. If the
condition is not met, t and t’ will be at different levels of the network and one of them
is not an immediate successor. Line 10 calculates the size of the intersection between
the two sets. If the intersection between t′[i] and t[i] is less than the set t′[i], it implies
that t′[i] > t[i] and t[i] ⊆ t′[i], indicating that t’ is a successor to Ai, but not immediate,
according to the order ≤i. Lines 11 and 12 remove the non-successor concept and add
the new one.
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Algoritmo 1: QUERY1D - One-dimension query
Input : A set Ai of dimension i of the query elements.
Output: A Set C of closest concepts of Ai

1 C ← ∅
2 P ← Derive(Ai)
3 F ← factorization(P)
4 foreach (b, c) ∈ F do
5 a ← Derive(b, c)
6 t ← makeTriple(a, b, c)
7 if C 6= ∅ then
8 foreach t′ ∈ C do
9 if |t[i]| 6= |t′[i]| then

10 if |t[i] ∩ t′[i]| < |t′[i]| then
11 C ← C \ t′

12 C ← C ∪ t

13 end
14 else
15 C ← C ∪ t

16 end
17 end
18 else
19 C ← t
20 end
21 end
22 if Ai = Ki then
23 if Kj /∈ C then
24 C ← C ∪makeTriple(Ki, Kj, ∅)
25 end
26 if Kk /∈ C then
27 C ← C ∪makeTriple(Ki, Kk, ∅)
28 end
29 end
30 return C



51

Algoritmo 2: Factorization
Input : Set L of pairs
Output: Set B of factored pairs

1 G = createDyadicContext(L)
2 B = getConcepts(G)
3 return B

Finally, from lines 22 to 29, the algorithm checks whether Ai is the entire set of
objects, attributes, or conditions in the context. In this case, it checks if the approximation
has already found a related concept through Ai where the sets Kj and Kk are included,
if it does not exist, it is included. For instance, when A1 is equal to K1, it means that
the query is looking for a concept whose extent is the entire set of objects K1 and the
concepts (K1, ∅, K3) and (K1, K2, ∅) must be added to the result whenever C does not
contain these concepts.

Algoritmo 3: Lower-Bound: Computing Lower bound of the one-dimensional
query
Input : A set C of concepts where C ≥i of Ai.

A set Ai of dimension i of the query elements.
Output: A set C’ of concepts where C’ ≤i of Ai.

1 C’ ← ∅
2 foreach c ∈ C do
3 links ← predecessors(c)
4 foreach link ∈ links do
5 if linki ∩ Ai 6= ∅ then
6 C’ ← C’ ∪ link
7 end
8 end
9 end

10 return C’

The algorithm 3 computes the lower covers of the one-dimensional query. It receives
the set C of the immediate successors, previously calculated, and the one-dimensional
elements that were approximated. Line 1 creates an empty set C’ to save the lower
covers. From line 2 to 8, the algorithm iterates over all the approximated concepts. Line
3 uses the auxiliary functions that get the predecessors of a concept c i.e., link < c, in
the lattice produced by the T-iPred. Then, for every concept link in the set links of
predecessors, the algorithms checks if the i dimension intersects with the query elements.
If so, the link is added to C’. Line 10 returns a set of lower covers for the Ai elements.
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4.4.2 Example

The first step of the algorithm is to apply the derivation operator corresponding
to the dimension queried (Line 2), the result of this process is a set of pairs. These pairs
represent all elements that have an incidence relationship with the derived set. Consider
the following example of a one-dimensional query (13, ?, ?) to the context represented by
Table 10. The result of the derivation of the elements of the query (1, 3)′ is the pairs of
attributes and conditions listed below. In summary:

(1, 3)′ = {(P, a), (P, b), (P, d), (N, d), (R, a), (K, a), (K, b), (S, a)}

The second step is to factor the pairs (Algorithm 2), to group them into maximum
pairs. The factorization of the pairs resulting from the derivation of (1, 3) are the pairs
{(PN, d), (PK, ba), (PKRS, a), (P, abd)}.

Factoring is necessary since the next step, in the approximation process, is the
application of the derivation operator over the set of pairs previously calculated. The set
of pairs must be organized in such a way that the derivation takes place over the largest
possible groups of pairs. Pairs, such as (P, a), (P, b), (P, d), can be grouped into a single
pair (P, abd) that expresses the same relation in a more concise way without violating the
triadic relation. Otherwise, the derivation should be applied to each pair separately, and
then the results combined to guarantee that the objects found in the attribute/condition
derivation have the three incidences.

The factoring is done by generating a dyadic context G := (G, M, B) where the set
of incidences is given by the pairs obtained from the initial derivation. The maximum
grouping of these pairs is obtained by finding the formal concepts of this context, which
represent the maximum rectangles of the two-dimensional table, i.e., the largest possi-
ble groupings. The set of objects G are all the attributes of the pairs obtained by the
derivation and M the set of conditions of these pairs. The incidence relation defined by
the set B is given exactly by each non-factored pair. Therefore, G = {P, N, R, K, S},
M = {a, b, d} and B ={(P, a), (P, b), (P, d), (N, d), (R, a), (K, a), (K, b), (S, a)} where
each pair represents an incidence between g ∈ G and m ∈M .

The Table 11 represents the dyadic context G generated by pairs derived from the
set {1,3}. Note that the objects in the context are formed by the distinct elements on the
left side of the pairs and the attributes by the distinct elements on the right side.



53

Table 11 – Dyadic context obtained by the derivation of the set {1,3}.

a b d
P × × ×
N ×
R ×
K × ×
S ×

Then, the Next-Closure algorithm (GANTER, 2010) is used for compute all the
dyadic concepts of G. In total, five concepts are computed (Table 12). Note that, except
the supremum (first concept) all the rest are exactly the factored pairs needed. Therefore,
the result of the factoring process is the list of pairs: {(PN, d), (PK, ba), (PKRS, a), (P, abd)}.

Table 12 – Formal concepts from G.

Extent Intent
1 {P,N,K,R,S} {}
2 {P,N} {d}
3 {P,K} {b,a}
4 {P,K,R,S} {a}
5 {P} {b,d,a}

Besides reducing the number of pairs found, allowing better performance of the
algorithm, the factoring process uses the strategy of finding maximum rectangles (dyadic
concepts) in a dyadic context, preventing the pairs from being combined, decreasing the
complexity of the algorithm.

The concepts found in the previous process are exactly the factored pairs obtained
in the application of the prime operator. That is, they are the maximum attribute/con-
dition pairs related to objects 1 and 3 derived initially. Once grouped, the derivation
operator double prime can be applied to each pair (attribute / condition). Applying the
double prime operator to each of the factored pairs we obtain the following result.

With factored pairs, the next step is to apply the derivation operator (Equation
2.7) to each pair (attribute/condition) that will result in a new set of objects. The result
can be seen below:
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(P, abd)′ = (134)

(PN, d)′ = (12345)

(PK, ab)′ = (134)

(PRKS, a)′ = (135)

The result of this derivation will be a set of objects that are related to the attri-
butes and conditions found previously. Note that the objects found in this derivation are
exactly sets of objects that constitute the extent of certain triadic concepts of the context.
The result of each derivation is a set of objects that, together with the attribute/condi-
tion pairs, form triadic concepts. Thus, four triadic concepts are found (134, PK, ab),
(134, P, abd), (135, PRKS, a), (12345, PN, d).

It is possible to notice that all the extents obtained by the approximation process
intersect with the objects of the query (13, ?, ?). However, the concept (12345, PN, d) is
not an immediate successor to the query, as its extent is a super-set of all other extents
found, so this concept is removed from the result.

After removing the non-immediate successor concepts, the set of upper covers for
the triple (13, ?, ?) are the concepts (134, PK, ab), (134, P, abd), (135, PRKS, a), conside-
red the closest concepts to the objects (1, 3).

Once the set of immediate successors for (13, ?, ?) is calculated, the query can
be incremented by the set of lower covers of the query. To find these concepts, we
look for the lower links of each concept in the upper cover set and check if the link
intersects with the elements 13}. As shown in Figure 8, the concept (134, PK, ab) and
(134, PK, ab) have three predecessors: (34, KPR, ab), (14, KPN, b) and (14, NP, bd). Fi-
nally, the concept (135, PRKS, a) has two immediate predecessors, which are (15, PN, ad)
and (15, PRKNS, a). At this moment, we have four possible lower covers for the query,
so we check if the extent of these concepts intersects with any one of the elements in
{1,3}. In this case, all the candidate’s extents intersect with {13} and are then added to
the query result set.

The Figure 10 displays the result of the one-dimensional query (13, ?, ?) where the
upper and lower bounds are highlighted in red.

If the query contains exactly the dimension of some triadic concept (e.g., extent,
intent, or conditions), then the concept itself will be the upper cover for this query. For
instance, take the one-dimensional query defined by (?, PRKNS, ?) that searches for
the closest concepts of the attributes PRNKS. The upper bound of the query are the
concepts (2, PRNKS, d), (15, PRNKS, a), (∅, PRNKS, abcd) and (12345, PRNKS, ∅).
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Figure 10 – Result of one-dimensional query (13, ?, ?).

Figure 11 shows the upper and lower covers for the (?, PRKNS, ?) one-dimensional query.

4.4.3 One-dimensional query complexity analysis

As previously described, the query process approximate concepts using one dimen-
sion, and it consists of a series of steps. The factorization of pairs in line 3 of Algorithm
1 uses the algorithm next-closure (GANTER, 2010) which has computational cost in the
worst case O(C ∗ (|G| ∗ |M |)) where C is the number of concepts in the context, |G| the
number of objects and |M | the number of attributes. The main loop of the algorithm
(Lines 4-21) iterates over the pairs factored and for each pair, the derivation operator is
applied. The computational cost in the worst case of the loop isO(C∗(k∗(|X|∗|Y |)) where
C is the number of concepts (number of factored pairs - conceptsPairs), k is the number
of different elements in each pair, |X| and |Y | is the size of the projected dimensions in
the Ki context.

The algorithm 3 uses upper covers found by Algorithm 1 to find the set of im-
mediate predecessors for the one-dimensional query. The algorithm iterates over all the
concepts in the upper covers set and for each concept, it checks whether all of its immedi-
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Figure 11 – Result of one-dimensional query (?, P RKNS, ?).

ate predecessors intersect with the elements approximated by the query. The complexity
of the algorithm related to the number of intersections performed, in the worst case is
O(n ∗m) where n is the number of upper covers found and m the number of immediate
predecessors of each concept. In the worst case, m can contain |L| − 1 such that |L| is
the number of concepts present in the trilattice.

4.5 Two-dimensional Query

The two-dimensional query allows the approximation of concepts through two di-
mensions. The purpose of the query is to find information associated with concepts that
are closest to any two triadic dimensions. The two-dimensional query allows a more res-
tricted search than the one-dimensional query defined in Section 4.4. The results are
concepts closest to the elements of both approximated dimensions.

The triadic dimensions can be combined according to the interest and nature of
the query made by the user. Let K := (K1, K2, K3,Y) be a triadic context and L =
(T(K),≤1) the triadic lattice whose order is defined by ≤1, the two-dimensional query
can be formally defined by a triple where two dimensions will be approximated. According
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to the three triadic dimensions, three possible variations of this triplet can be observed
such as: (A1, A2, ?), (A1, ?, A3) and (?, A2, A3) where A1, A2, A3 are, respectively, subsets
of the objects (A1 ⊆ K1), attributes (A2 ⊆ K2) and conditions (A3 ⊆ K3).

The two-dimensional query can find the closest concepts according to: for Xi ⊆
Ki and Xk ⊆ Kk with {i, j, k} = {1, 2 ,3}, let Aj := X

(i,j,Xk)
i , Ai := A

(i,j,Xk)
j and

Ak := (Ai × Aj)(k) (if i < j) or Ak := (Aj × Ai)(k) (if j < i). So (A1, A2, A3) is the
triadic concept with the property of having the smallest k-th component among all triadic
concepts (B1, B2, B3) and the largest j-th component satisfying the constraint Xi ⊆ Bi

and Xk ⊆ Bk according to Wille (1995).

Similarly to the one-dimensional query, the two-dimensional query can be divided
into two sets that define an upper and lower bound according to the trilattice L.

The set of upper covers for a two-dimensional query for objects and context attri-
butes whose triple is given by (X1, X2, ?) can be defined as follows:

(X1, X2, ?) . (A1, A2, A3) where


A3 = (X1 ×X2)(3)

A1 = (X2 × A3)(1)

A2 = (A1 × A3)(2)

That is, given a triple (X1, X2, ?), the sets X1 and X2 are used to build a concept
from the elements of both dimensions. First, the set of objects and attributes is used to
find the set A3 of conditions that share these elements. This new set will constitute the
conditions of the approximate concept and is obtained through the operation (X1×X2)(3).
Once the set A3 is computed, it can be combined with the objects and attributes X1, X2

specified in the query to find the extent and intent of a concept that shares all elements
of the query.

Then, A3 is used to find the concept extent set through the operation (X2 × A3)
that gives us the set A1 of objects that have the attributes of the approximate triple
and the conditions extended initially. At this point, we have two sets A1, A3 generated
from the elements of the query. Intuitively the set of attributes is obtained by deriving
this pair generating the final set A2 of attributes that share both the objects in A1 and
the conditions in A3. Finally, (A1, A2, A3) forms a triadic concept generated from the
approximated pair. Note that the order of the second and third derivation can vary. The
set A2 could have been generated first instead of A1. In this case, the operators would
produce the elements of the concept in different orders but producing the same result.

Similarly, it is possible to use the same reasoning to approximate a triple (?, X2, X3)
from the attributes and conditions as follows:
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(?, X2, X3) . (A1, A2, A3) where


A1 = (X2 ×X3)(1)

A2 = (A1 ×X3)(2)

A3 = (A1 × A2)(3)

In this case, we can obtain the concepts starting from a set of attributes and
conditions to generate an extent A1. This set of objects is derived along with the conditions
in X3 to produce a new intent A2 which ultimately gives rise to the set of conditions A3

by deriving A1 and A2.

The last possible two-dimensional query is defined by the triple (X1, ?, X3) that
makes the approximation through objects and conditions. The triadic concept can be
obtained by applying the derivation operators, as shown below:

(X1, ?, X3) . (A1, A2, A3) where


A2 = (X1 ×X3)(2)

A1 = (A2 ×X3)(1)

A3 = (A1 × A2)(3)

This approach limits the set of immediate successors to an arbitrary triple to just
one concept. Once this concept has been calculated, it is possible to identify the immediate
predecessor’s concepts to constitute a lower cover for the two-dimensional using the L

triadic lattice.

Let (A1, A2, A3) ≥1 (X1, X2, ?), then the lower bound will contain the concepts
of the form (Y1, Y2, Y3) such that (Y1, Y2, Y3) ≤1 (A1, A2, A3) (immediate predecessors of
(A1, A2, A3)) where Y1 ∩ X1 6= ∅ or Y2 ∩ X2 6= ∅. The concepts of the form (Y1, Y2, Y3)
immediately precede the successors of the two-dimensional query (X1, X2, ?) and that
intersect with at least one of the dimensions of the query. Similarly, lower covers can be
obtained for triples (?, X2, X3) and (X1, ?, X3).

4.5.1 Algorithm

The Algorithm 4 receives two sets Ai, Aj where {i, j} = {1,2,3} (i < j) representing
the two sets of the triple being approximated. Line 1 initializes the output c as the empty
set. Lines 2 through 4 apply the derivation operator and use the result to calculate the
next set. Line 2 derives the pair (Ai, Aj) and stores the result in Ak. The elements in
Ak are related to the elements received as input and their size may vary according to the
values of i and j.

For example, if i = 1 and j = 2, then k = 3, in other words, A3 will be a set
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of conditions resulting from the derivation of the objects and attributes received as A1

and A2. Then, in line 3 the set A1 is replaced to the set of objects related to the initial
attributes and conditions found in Line 2. The operation Derive(A2, A3) produces a new
extent from the concept being generated. Line 4 uses the new extent and modus (A1, A3)
to find the new set of attributes by deriving them. As the result of each derivation can
vary based on the values of i, j, and k, line 5 uses the auxiliary function which takes three
sets as parameters and returns a triple, where the three elements are a subset of objects,
attributes, and conditions, respectively and return the concept c.

Algoritmo 4: Two-dimension query
Input : Two sets Ai, Aj of elements where Ai ⊆ Ki and Aj ⊆ Kj.
Output: A concept c immediate successor of Ai and Aj.

1 c← ∅ Ak ← ∅
2 Ak ← Derive(Ai, Aj)
3 Ai ← Derive(Aj, Ak)
4 Aj ← Derive(Ai, Ak)
5 c ← makeTriple(Ai, Aj, Ak)
6 return c

The Algorithm 5 calculates the lower covers for the two-dimensional query based
on the upper covers. The process of approximation through two dimensions proposed in
the section 4.5 allows to find only one successor concept to the approximate triple, i.e.,
the set of immediate successors to a triple where two dimensions are known has only one
concept, therefore, only a concept is received as a parameter for calculating the lower
covers. Also, two sets Ai and Aj corresponding to the elements approximated by the
query are received as parameters, where i,j are the respective dimensions.

Lines 1 and 2 start C’ as the empty set and call the auxiliary function predecessors
using the upper cover c as parameter. This function initializes the set links with the
concepts predecessors of c in the conceptual lattice. From line 3 to 5, the algorithm
iterates over all of the predecessor links of c and checks whether the dimensions i or j of
each link intersect with Ai or Aj, if so the concept is added to C’. Finally, line 8 returns
C’.
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Algoritmo 5: Lower-Bound: Computing Lower bound of the two-dimensional
query
Input : A concept c where c ≥i of Ai and c ≥j of Aj.

Two sets Ai, Aj of elements where Ai ⊆ Ki and Aj ⊆ Kj.
Output: A set C’ of concepts where C’ ≤i of Ai and C’ ≤j of Aj.

1 C’ ← ∅
2 links ← predecessors(c)
3 foreach link ∈ links do
4 if linki ∩ Ai 6= ∅ or linkj ∩ Aj 6= ∅ then
5 C’ ← C’ ∪ link
6 end
7 end
8 return C’

4.5.2 Example

Consider the triadic context of customers representing by Table 10. We can define
a two-dimensional query through the triple (35, PK, ?) that searches for concepts that
relate customers 3 and 5 to suppliers P and K. This query, can be translated by the
following question: Are their concepts related to transactions carried out by customers 3
and 5, involving suppliers P and K? If there is any concept with the extent {3,5} and the
intent {PK}, this concept answers that question through the set of conditions linked to
this possible concept, which will be found through the two-dimensional approximation.

The approximate dimensions are of the objects (i = 1) and attributes (j = 2), so the
sets received as parameters are A1 = {35} and A2 = { PK}. Line 2 applies the derivation
operator over the set of objects and attributes resulting in a set of conditions shared by
both A1 and A2. The result of the Derive({35}, {PK}) operation is {a}, so A3 = {a}.
The set of conditions found will constitute the set of conditions in the concept and these
will be used to approximate the other dimensions. Line 3 uses the query attributes and
the conditions found previously to find a new set of objects, through the derivation, which
is related to both, that is A1 = Derive ({PK}, {a}). The new extent found is formed by
the elements {12345}. Finally, in line 4 the extent and conditions are derived and the set
of attributes found to form the intent of the approximate concept. A2 receives {PRK}
result of the operation Derive ({12345}, {a}). The auxiliary function creates a triple with
the sets found and the resulting concept is (12345, PRK, a). Note that the concept obeys
the constraint defined in (WILLE, 1995), that is {35} ⊆ {12345} and {PK} ⊆ {PRK}.
That is, there is no concept whose extent and intent are the elements {35} and {PK}, but
the concept closest to these elements is (12345, PRK, a). The result can be interpreted
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according to the initial question. Consumers {35} did not buy from suppliers {PK} alone
but each time they both bought from these suppliers, consumers {124} also bought and
all transactions also include supplier R.

Once the immediate successors to the two-dimensional query have been calculated,
we can use this set to find the lower bound, i.e., the lower covers for the query. As the
two-dimensional query only approximates one concept, the calculation of lower covers can
be done by looking only at the links of this concept (Algorithm 5). The concept closest
to the triple (35, PK, ?) is (12345, PRK, a). It can be notice (Figure 8), that this concept
has three lower links. Therefore, the links set has the concepts (1345, K, ab), (2345, R, ab)
and (124, N, bd). For any of these concepts to be part of the lower set, it is necessary to
verify that {35} ∩ link1 6= ∅ or {PK}∩ link2 6= ∅ for each link in the link set. In this
example, the dimensions checked are {1,2} respectively. Of all three triadic concepts in
the links sets, only two intersect with the query and will be add to the lower covers set.
Therefore, C’ has two concepts, which are: (1345, K, ab), (2345, R, ab).

Finally, the query results are graphically displayed in the conceptual lattice, where
the upper and lower bounds are highlighted in red as showed in Figure 12.

Figure 12 – Result of the query (35, PK, ?)



62

4.5.3 Two-dimensional query complexity analysis

The two-dimensional query makes use of the triadic operators (Section 2) to build
a triadic concept through the two-dimensional triple. The Algorithm 4 takes both sets
and applies the derivation operator three times. The computational cost related to the
derivation operator is constant, which in turn has a cost of O(n ∗ (|M | ∗ |B|)) such that n

is the number of derived pairs, |M | and |B| the size of the dimensions projected according
to the derivation operator, so the cost of the algorithm for calculating the immediate
successors is the same as the operator’s cost.

As mentioned, a two-dimensional query uses a different approach than a one-
dimensional query for the approximation of concepts. The set of successors of a triple
with two defined dimensions approximates only one concept. Therefore, the Algorithm
5 has O(n) complexity in relation to the number of intersections performed between the
predecessors of the c concept and the query elements, where n is the total number of c

predecessors.

4.6 Three-dimensional Query

The last possible approximation of triadic concepts is made using all three dimen-
sions, through a query using a subset of objects, attributes, and conditions. Unlike other
previously defined queries, the approximate triple may constitute a formal triadic concept
since it has the three dimensions present. In this case, there is no need to use the appro-
ximation process because the concept closest to the triple is the query itself. Therefore,
every three-dimensional query checks whether the approximate triple belongs to the set
of concepts or not. If it is a concept, the set of immediate successors to the triple is the
triple itself, leaving only the calculation of predecessors, if necessary.

If the approximate triple is not a triadic concept, the approximation is made looking
for the concepts closest to the query. Using three dimensions, the approximation is made
using the two-dimensional query (Section 4.5). In other words, three queries are created
based on the pair combination of the triadic dimensions. Each one of the new queries
has an empty dimension and its result consists of the concepts closest to the combined
pair. The result of the original three-dimensional query will be the joining of the three
two-dimensional approximations.

Let K be a triadic context defined by (K1, K2, K3,Y) where K1, K2, K3 is a set of
objects, attributes and conditions respectively, Y a incidence relation and T (K) the set
of all triadic concepts in K. Let q be is a three-dimensional query formally defined by
the triple (A1, A2, A3) that searches for the concepts closest to the three dimensions, the
first step of the query is to check whether q ⊆ T (K). If q belongs to the set of concepts,
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then this is the concept sought by the query. If q is not a concept, then three new triples
are defined, (A1, A2, ?), (?, A2, A3) and (A1, ?, A3), one for each two-dimensional query.
Note that all triples generated by the original query have an empty dimension, indicated
by the ? symbol, as defined by the two-dimensional query. The first triple searches for
the concepts closest to the object-attribute pair (A1, A2), and the concept found resulting
from the approximation of this triple will be part of the result of the original query q.
The same is done with the subsequent triples (?, A2, A3) and (A1, ?, A3) that search for
the concepts closest to the attribute-condition pairs and object-condition respectively.
Finally, the set of concepts closest to the three-dimensional query will be those found by
the two-dimensional approximations.

Similarly, the set of immediate predecessors can be calculated for the three-dimensional
query. Once the successors can be calculated, as previously described, the lower bound
of the query can be computed by looking at the lower links of the successor concepts and
identifying which ones intersect with one of the three triadic dimensions.

4.6.1 Algorithms

The three-dimensional query makes use of the two-dimensional query if necessary.
The Algorithm 6 receives as input a triple (A1, A2, A3) and a set of triadic concepts T (K)
and outputs a set C’ of triadic concepts closer to the query. Line 1 initializes the response
set as empty. Line 2 checks whether the approximate triple is a triadic concept since
the three dimensions consulted can form a concept. If the triplet belongs to the set of
triadic concepts in the K context, then it is enough to return this concept, since the
concept closest to the triplet is the triplet itself. Otherwise, between lines 6 and 8, the
algorithm makes three consecutive calls to the procedure described in Algorithm 4. Line
6, makes a call to the function QUERY2D passing as parameter the objects and attributes
of the queried triple. As shown in Section 4.5, the approximation of concepts through two
dimensions produces a concept immediately successor to the approximate pair. Therefore,
the set C receives the concept closest to the elements (A1, A2). The subsequent lines
invoke the same procedure but changing the dimensions passed as parameters to produce
all possible combinations. The C set is increased with the result of each two-dimensional
approximation. Finally, line 10 returns the set of concepts closest to the triple (A1, A2, A3).
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Algoritmo 6: QUERY3D - Three-dimension query
Input : A triple (A1, A2, A3) where A1 ⊆ K1, A2 ⊆ K2 and A3 ⊆ K3.

A set T (K) of triadic concepts.
Output: A set C of the closest concepts of (A1, A2, A3).

1 C← ∅
2 if (A1, A2, A3) ⊆ T (K) then
3 C ← (A1, A2, A3)
4 end
5 else
6 C ← C ∪ QUERY2D(A1, A2)
7 C ← C ∪ QUERY2D(A2, A3)
8 C ← C ∪ QUERY2D(A1, A3)
9 end

10 return C

The computation of the set lower covers for the three-dimensional query is similar
to the computation performed for the queries of one and two dimensions except for the
number of comparisons made to check whether the concept intersects with one of the
three triadic dimensions. The Algorithm 7 receives the set C of successor concepts to
the three-dimensional query and the query defined by the triple (A1, A2, A3). Line 1
initializes the set C’ that will be used as an output, containing the predecessor concepts.
The external loop iterates over all the c concepts in C (from lines 2 to 9). For each
c concept, the algorithm searches for all the predecessor links of this concept through
the auxiliary function predecessors. The loop between lines 4 and 8 checks whether for
each link found, any of the three dimensions intersect with the query in the respective
dimension. If there is an intersection, link is inserted into the set C’. Finally, the algorithm
returns the predecessor concepts.
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Algoritmo 7: Lower-Bound: Computing Lower bound of the three-dimensional
query
Input : A set C of concepts where C ≥ of (A1, A2, A3).

The three-dimensional query (A1, A2, A3).
Output: A set C’ of concepts where C’ ≤ of (A1, A2, A3).

1 C’ ← ∅
2 foreach c ∈ C do
3 links ← predecessors(c)
4 foreach link ∈ links do
5 if link1 ∩ A1 6= ∅ or link2 ∩ A2 6= ∅ or link3 ∩ A3 6= ∅ then
6 C’ ← C’ ∪ link
7 end
8 end
9 end

10 return C’

4.6.2 Example

Using the context represented by the Table 10, consider the following three-dimensional
queries, formally defined by the triples (124, N, bd) and (5, N, b). The first query looks
for concepts that relate the objects {1,2,4}, attribute {N} and conditions {bd}. The
query search for patterns related to purchases made by customers {1,2,4} of the products
{bd} from the {N} supplier. The same logic can be extended for the second query that
searches through the purchase records of the consumer {5} to the same supplier {N} for
the product {b}.

As can be seen in the hierarchy (Figure 8), the triple (124, N, bd) is a formal
concept. So the concept closest to the query is the approximate triple itself. In this case,
we just use the (124, N, bd) concept to find the lower covers. The (124, N, bd) concept has
four predecessors. For each concept, we just check if any of the three dimensions intersect
with the elements of the query. Of the four predecessor concepts, two share the extent
{14} and the other two the extent {24} according to the triadic lattice. Therefore, both
extents {14} and {24} intersect with the query objects {124}, so the four triadic concepts
will be added to the lower covers. Figure 13 shows the concepts that make up the set of
upper covers and lower covers for the three-dimensional query (124, N, bd).
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Figure 13 – Result of the three-dimensional query (124, N, bd)

The second query approximated by the triple (5, N, b) is not a triadic concept as
can be seen in the conceptual hierarchy. There are no concepts whose extent is formed by
the set {5}. Then, the process of finding the concepts closest to the triple is done using
a two-dimensional query. All triadic dimensions are combined in two-dimensional queries
so that the result of the original query is all the concepts closest to the combinations of
the three dimensions, i.e., (extent, intent), (extent, modus) and (intent, modus).

Three two-dimensional triples are defined: (5, N, ?), (?, N, b) and (5, ?, B). Table
13 shows the result of each query. Therefore, the immediate successors of (5, N, b) are the
triadic concepts (15, PN, ad), (124, N, bd) and (345, RK, ab). Using the three concepts
found in the set of upper covers it is possible to identify the immediate predecessors,
checking all the concepts related to the successors and checking if each of the links inter-
sects with the query. Figure 14 shows the result of the three-dimensional query (5, N, b)
highlighted in red.
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Table 13 – Bi-dimensional queries produced by the three-dimensional query
(5, N, b).

(5, N, b)
Query Result

(5, N, ?) (15, PN, ad)
(?, N, b) (124, N, bd)
(5, ?, b) (345, RK, ab)

Figure 14 – Result of the three-dimensional query (5, N, b)

4.6.3 Three-dimensional query complexity analysis

The three-dimensional query uses the two-dimensional query to find the closest
concepts to three dimensions if the specified triple is not a concept itself. The Algorithm 6
receives the triple (A1, A2, A3) as well as the set T(K) of all triadic concepts in the context.
From lines 2 to 4 the algorithm checks (constant time) whether the triple (A1, A2, A3)
belongs to the set T(K). If the queried triple is a concept, then it is returned as a result. If
the test fails, from lines 6 to 8 the algorithm makes three calls to the two-dimensional query
(algorithm 4) combining the three triadic sets of the triple. Therefore, the complexity
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of finding the immediate successors of a three-dimensional query, in the worst case, is
equal to the calculation of the immediate successors of the two-dimensional query. Its
complexity is denoted by O(n ∗ (|M | ∗ |B|)) such that n is the number of derived pairs
and |M | and |B| the size of the dimensions designed according to the derivation operator.

The Algorithm 7 used to find the lower covers of the three-dimensional query is
similar to Algorithm 3 which finds the same concepts for a one-dimensional query. The
main difference is the number of intersections performed (one for each approximate dimen-
sion) and the number of interactions of the algorithm. As the set of immediate successors
of the three-dimensional query is restricted, that is, for any three-dimensional query, the
set of upper covers may contain a concept, when the triple is the approximate concept
itself, or three concepts constructed from the two-dimensional query. Therefore, the main
loop of the algorithm (lines 2-9) in the worst case will be executed three times. Then, the
three triadic dimensions are checked for one of the predecessors of these concepts. The
asymptotic notation of the algorithm in the worst case can be expressed by O(m) where
m is the number of immediate predecessors for each concept. In the worst case, m can
contain |L| − 1 such that |L| is the number of concepts present in the lattice.

4.7 Experimental Results

This section presents some experimental results obtained. The main objective is
to show the performance of the algorithms applied to a popular data set adapted to the
TCA framework by (MISSAOUI et al., 2020).

All tests were performed on an Intel Core i5-9400F 2.90GHz with 16GB of RAM
using Java 8 with JDK 1.8. We use the The Mushroom Data Set∗ to run our experiments.
We created two contexts to test the performance of the algorithms. The formal concepts
were calculated using the Data-Peeler algorithm (CERF et al., 2008). The first context is
a subset of the original data set containing 2104 objects, 16 attributes, and 8 conditions
with 292 concepts. The second context uses the entire data set and has 8416 objects, 32
attributes, and 4 conditions with 1935 concepts. The tests were divided by the type of
query. Each subset has a table with results for the same query, but with different numbers
of elements being queried according to the maximum dimensions of each context. All
elements of the query were randomly generated and all the results presented inmilliseconds
with a confidence level of 95%.

The Tables 14 and 15 show the results for one-dimensional query applied to
2104x16x8 and 8416x32x4 contexts respectively. Both tables were divided into three
parts, each column represents one of the possible one-dimensional queries, using objects,

∗Available at: https://archive.ics.uci.edu/ml/datasets/mushroom
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attributes, or conditions. The first column shows run time for queries using objects di-
mension followed by attributes and conditions.

Table 14 – One-dimensional queries time in the 2104x16x8 context.

Objects time Attributes time Conditions time
500 4.39 ± 0.50 2 1.81 ± 1.64 1 27.18 ± 3.90
1000 4.17 ± 0.21 4 0.02 ± 0.01 2 2.79 ± 1.31
1500 3.96 ± 0.20 8 0.01 ± 0.05 4 0.029 ± 0.07
2000 3.55 ± 0.06 16 0.45 ± 0.01 8 0.45 ± 0.01

Table 15 – One-dimensional queries time in the 8416x32x4 context.

Objects time Attributes time Conditions time
1000 7.30 ± 0.60 4 0.08 ± 0.07 1 827.10 ± 49.62
2000 6.98 ± 0.05 8 0.03 ± 0.0009 2 131.00 ± 25.03
4000 6.87 ± 0.05 16 0.02 ± 0.002 3 15.71 ± 4.03
8000 6.88 ± 0.11 32 3.32 ± 0.07 4 9.20 ± 0.20

It’s possible to notice that the worst empirical result for the one-dimensional query
is obtained using only one condition in both contexts. For the 2104x16x8 context, this
query took 27.18 ms with a confidence interval of 3.90 ms (Table 14). In the 8416x32x4
context, the same query using a single random condition took 827.10ms with a confidence
interval of 49.62ms (Table 15). This scenario can be obtained when the number of pairs
generated by the derivation of the query elements is very large, making the dyadic context
generated in the factorization process (as explained in section 4.4) to be large and sparse,
consequently taking more time to be factored. The derivation of just one element can
create a large number of pairs since the only triadic constraint is to be related to a single
element being derived.

The Tables 16, 17 show the result for all the possible two-dimensional queries for
both contexts. All the results can be seen looking by the specific column and row. For
example, the average worst time in the first context can be found in row 4, column 2
on Table 17 that represents the two-dimensional query with 1000 random objects and 4
random attributes (8.79 ms to run with ± 0.73 ms of confidence interval).
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Table 16 – Two-dimensional queries time in the 2104x16x8 context.

Attributes
Objects 2 4 8 16

500 1.70 ± 0.40 1.39 ± 0.09 1.19 ± 0.06 1.13 ± 0.03
1000 1.11 ± 0.02 1.16 ± 0.03 1.12 ± 0.03 1.09 ± 0.01
1500 1.11 ± 0.04 1.27 ± 0.11 1.25 ± 0.04 1.09 ± 0.02
2000 1.04 ± 0.005 1.06 ± 0.04 0.99 ± 0.007 0.99 ± 0.04

Conditions
Objects 1 2 4 8

500 1.16 ± 0.02 1.15 ± 0.01 1.06 ± 0.03 1.07 ± 0.004
1000 1.11 ± 0.04 1.07 ± 0.006 1.10 ± 0.06 1.23 ± 0.03
1500 1.14 ± 0.02 1.13 ± 0.05 1.06 ± 0.007 1.09 ± 0.04
2000 1.10 ± 0.03 1.07 ± 0.03 1.00 ± 0.004 1.03 ± 0.002

Conditions
Attributes 1 2 4 8

2 0.13 ± 0.02 0.14 ± 0.006 0.25 ± 0.03 0.24 ± 0.06
4 0.02 ± 0.0003 0.03 ± 0.0002 0.04 ± 0.0002 0.06 ± 0.00009
8 0.02 ± 0.0009 0.03 ± 0.001 0.04 ± 0.0008 0.06 ± 0.0007
16 0.02 ± 0.0003 0.03 ± 0.0002 0.04 ± 0.0002 0.06 ± 0.00009
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Table 17 – Two-dimensional queries time in the 8416x32x4 context.

Attributes
Objects 4 8 16 32

1000 8.73 ± 0.50 8.53 ± 0.18 8.47 ± 0.18 8.63 ± 0.21
2000 8.79 ± 0.73 8.51 ± 0.48 8.46 ± 0.52 8.24 ± 0.14
4000 8.08 ± 0.12 7.96 ± 0.08 8.35 ± 0.38 8.37 ± 0.17
8000 7.90 ± 0.21 7.64 ± 0.12 7.6 ± 0.07 7.39 ± 0.07

Conditions
Objects 1 2 3 4

1000 7.48 ± 0.21 7.19 ± 0.11 7.20 ± 0.06 7.28 ± 0.05
2000 7.91 ± 0.13 7.45 ± 0.04 7.61 ± 0.05 7.62 ± 0.07
4000 8.07 ± 0.10 8.04 ± 0.09 8.12 ± 0.07 8.09 ± 0.09
8000 8.17 ± 0.63 7.93 ± 0.11 7.88 ± 0.12 7.77 ± 0.06

Conditions
Attributes 1 2 3 4

4 0.46 ± 0.03 0.25 ± 0.11 0.15 ± 0.0015 0.17 ± 0.0011
8 0.09 ± 0.001 0.12 ± 0.002 0.15 ± 0.001 0.17 ± 0.003
16 0.10 ± 0.003 0.12 ± 0.002 0.15 ± 0.0005 0.17 ± 0.0006
32 0.10 ± 0.002 0.12 ± 0.002 0.15 ± 0.001 0.17 ± 0.0004

Finally, the Tables 18 and 19 show the result of the three-dimensional queries.
Each table was split vertically to vary all the three dimensions. Table 18 shows the
results for the queries performed on the first context. The number of random objects
varies from 500 to 2000, the number of attributes varies from 2 to 8 and conditions from 1
to 8. In Table 19, the number of random objects varies from 1000 to 8000, the number of
attributes varies from 8 to 32, and conditions from 1 to 4. The results obtained are quite
satisfactory considering that the base used is a real base with a significant number of
elements. The worst result obtained in this scenario takes less than a second to complete
the concept approximation.
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Table 18 – Three-dimensional queries time in the 2104x16x8 context.

Attributes
2

Conditions
Objects 1 2 4 8

500 3.48 ± 0.88 2.35 ± 0.05 2.38 ± 0.06 2.58 ± 0.11
1000 2.31 ± 0.01 2.28 ± 0.04 2.27 ± 0.03 2.34 ± 0.02
1500 2.31 ± 0.04 2.26 ± 0.03 2.43 ± 0.01 2.52 ± 0.03
2000 2.23 ± 0.06 2.14 ± 0.05 2.24 ± 0.01 2.35 ± 0.05

Attributes
4

Conditions
Objects 1 2 4 8

500 2.30 ± 0.07 2.33 ± 0.06 2.36 ± 0.05 2.48 ± 0.07
1000 2.35 ± 0.040 2.26 ± 0.028 2.25 ± 0.016 2.34 ± 0.035
1500 2.53 ± 0.04 2.39 ± 0.05 2.30 ± 0.02 2.31 ± 0.01
2000 2.21 ± 0.03 2.25 ± 0.03 2.25 ± 0.04 2.25 ± 0.02

Attributes
8

Conditions
Objects 1 2 4 8

500 2.34 ± 0.03 2.47 ± 0.08 2.39 ± 0.06 2.41 ± 0.07
1000 2.30 ± 0.02 2.30 ± 0.03 2.27 ± 0.02 2.32 ± 0.01
1500 2.26 ± 0.03 2.31 ± 0.04 2.42 ± 0.07 2.32 ± 0.03
2000 2.16 ± 0.02 2.18 ± 0.02 2.183 ± 0.02 2.28 ± 0.04
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Table 19 – Three-dimensional queries time in the 8416x32x4 context.

Attributes
8

Conditions
Objects 1 2 3 4

1000 14.92 ± 0.10 15.00 ± 0.22 15.06 ± 0.25 14.80 ± 0.09
2000 15.55 ± 0.07 15.09 ± 0.12 14.97 ± 0.08 14.96 ± 0.06
4000 15.26 ± 0.06 15.36 ± 0.21 15.48 ± 0.13 15.47 ± 0.09
8000 14.49 ± 0.05 14.58 ± 0.10 14.58 ± 0.05 14.64 ± 0.08

Attributes
16

Conditions
Objects 1 2 3 4

1000 14.57 ± 0.09 14.52 ± 0.07 14.68 ± 0.08 14.69 ± 0.06
2000 15.10 ± 0.09 14.88 ± 0.08 14.95 ± 0.09 15.73 ± 0.53
4000 15.41 ± 0.08 15.34 ± 0.12 15.48 ± 0.07 15.40 ± 0.06
8000 4.42 ± 0.08 14.5 ± 0.09 4.49 ± 0.11 4.49 ± 0.08

Attributes
32

Conditions
Objects 1 2 3 4

1000 14.53 ± 0.09 14.64 ± 0.14 15.03 ± 0.25 14.90 ± 0.17
2000 15.43 ± 0.18 15.21 ± 0.10 15.20 ± 0.08 15.2 ± 0.07
4000 15.48 ± 0.10 15.32 ± 0.05 15.31 ± 0.06 15.38 ± 0.08
8000 14.58 ± 0.16 14.51 ± 0.11 14.51 ± 0.09 14.80 ± 0.19

Although the results showed to be satisfactory using the Mushroom Data set, a
more deeply study can be made to stress the algorithms using different triadic contexts
varying the densities and the number of concepts, to understand how scalable the te-
chnique is. Here, the main goal is to show that, for a triadic context with a similar
configuration, i.e., the same number of objects, attributes, conditions, and density, the
algorithm can perform very well.
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5 CONCLUSIONS

In this dissertation, we propose an approach for the extraction and visualization of
information from triadic contexts using queries and triadic lattice representation proposed
in (MISSAOUI et al., 2020). These queries, defined as triple (A1, A2, A3), aim to find the
closest concepts to a set of objects, attributes or conditions, or any subset of them. The
queries are useful to find patterns in triadic contexts especially in cases where the lattice
diagram is difficult to use due to the number of concepts generated by the triadic relation.
By using the queries, the user can retrieve concepts in the context and explore patterns
through concept approximation. The concepts can be visualized in the formal hierarchy
and the user can use the approximation to browse the structure.

The query to the triadic diagram can be made using a set of objects, attributes,
conditions, or any subset of these and can produce as output two sets of concepts called
upper covers and lower covers. The upper covers have the concepts immediately successors
of the query given the conceptual hierarchy. The lower covers are the concepts that
immediately precedes the query. Both sets are used to define a lower and upper bound
for the query in the diagram and can be displayed graphically. Through these limits, it
is possible to identify the concepts closer to the pattern sought and, also, in which part
of the triadic diagram the query is located.

We show experimental results using a popular data set called Mushroom, through
queries of one, two, and three dimensions applied to a real database with up to 8416
objects, 32 attributes, 8 conditions, and 1935 formal triadic concepts. The results showed
to be satisfactory for this scenario since the queries take only a few milliseconds to be
performed. The worst-case found remained below one second and is an expected situation
since the algorithm used for factorization can be improved. Future work can make a deep
analysis of the algorithms in different scenarios, using data sets with a rich number of
densities in order to understand more how the technique performs in real scenarios. To
improve the complexity of the algorithms, different structures such as BDD’s (AKERS,
1978) can be used to represent the incidences of the context instead of the bitsets are used
in this work.

As future work, we plan to create a tool that allows the construction, manipulation,
and exploration of triadic contexts. The approximation algorithms proposed here can be
used to browse and navigate through the lattice. The graphical visualization of the queries
can be improved especially in contexts with a large number of concepts, allowing the user
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to have a dynamic browse experience.
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