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RESUMO

Atualmente, no campo científico, a produção de textos é necessária para que cientistas
compartilhem suas pesquisas e contribuições para a ciência. A escrita de textos científicos
é uma tarefa que demanda tempo e habilidades de escrita formal e pode ser lenta e desa-
fiadora, especialmente para pesquisadores inexperientes. Além disso, os textos científicos
devem ser escritos em inglês, seguir um estilo específico e utilizar termos específicos, o
que pode ser uma tarefa difícil especialmente para pesquisadores que não são falantes
nativos do inglês ou que não conhecem os procedimentos específicos de redação exigidos
por alguma editora. No entanto, um simples assistente de escrita pode induzir à escrita
de textos muito semelhantes ou até mesmo induzir ao plágio, o que motivou o uso de
Criatividade Computacional. Neste estudo, é proposta uma ferramenta para abordar a
assistência à escrita criativa de textos científicos. Ele permite que os usuários utilizem
texto científico relacionado como entrada para treinar um modelo de linguagem base, trei-
nado em texto científico, em um modelo especializado e personalizado pelo usuário. Em
seguida, sugestões de texto criativas em tempo real são exibidas ao usuário à medida que
ele escreve seu próprio texto, relacionadas ao contexto do texto e criativas. Neste estudo,
propomos o NeWriter, um framework para sugestões textuais criativas e personalizadas
pelo usuário. Os resultados deste estudo mostram que modelos de linguagem personaliza-
dos pelo usuário podem ser usados para melhorar sua eficácia na assistência à escrita de
textos científicos em comparação com modelos pré-treinados do estado da arte, e detalha
sugestões textuais criativas utilizando modelos de linguagem do estado da arte.

Palavras-chave: Assistência à Escrita. Modelos de Linguagem. Processamento de Lin-
guagem Natural. Criatividade Computacional.



ABSTRACT

Nowadays, in the scientific field, text production is required from scientists as means of
sharing their research and contribute to science. Scientific text writing is a task that
demands time and formal writing skills and can be specifically slow and challenging for
inexperienced researchers. Moreover, scientific texts must be written in English, follow a
specific style, and use specific terms, which can be a difficult task specially for researchers
that aren’t native English speakers or that don’t know the specific writing procedures
required by some publisher. However, a naive writing assistant can also result in similar
texts or even plagiarism, which motivated the use of Computational Creativity. In this
study, a tool is proposed for addressing creative scientific text writing assistance. It
enables users to feed related scientific text as an input to train a scientific-text trained base
Language Model into a user-customized, specialized one. Then, the user is presented with
creative real-time text suggestions as they write their own text, which are related to the
text’s context while also being creative. In this study we propose NeWriter, a framework
for user-customized, creative textual suggestions. This study’s results show that user-
customized language models can be used to improve their effectiveness for scientific text
writing assistance compared to state-of-the-art pre-trained models, and details creative
textual suggestions using state-of-the-art Language Models.

Keywords: Writing Assistance. Language Models. Natural Language Processing. Com-
putational Creativity.
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1 INTRODUCTION

Text production is required from scientists a mean of sharing their research and con-
tribute to science. Scientific text writing is a task that demands time and formal writing
skills. The writing process can be specifically slow and challenging for inexperienced re-
searchers, delaying the release of their research results (ITO et al., 2019). Additionally,
most scientific texts must be written in English, following a specific style, and using spe-
cific terminology to be accepted for publishing in respectable journals and conferences.
This can be a difficult task specially for non native speakers or those that don’t know the
specific writing procedures required by some publishers, demanding extra effort and time.
Therefore, for a scientist in formation it is specially hard to begin producing scientific
text until they earn more experience and skills.

Considering the importance of text production, the Natural Language Processing
(NLP) area is widely studied by the scientific community in many applications to solve
some of natural language problems. Recent advances in NLP come as result of the pro-
posal of Sequence-to-Sequence (seq2seq) language models and the Transformer architec-
ture (VASWANI et al., 2017). These model and neural network architecture address the
text processing as a sequence of words, keeping the context of other words in the text when
processing each singular word. The sequences of words are transformed into embeddings
that are processed by the Language Model (LM) by using Deep Learning (DL) algorithms.
Therefore, many approaches have been proposed for problems such as machine transla-
tion (LI; JIANG; LIU, 2019), text summarization (KIEUVONGNGAM; TAN; NIU, 2020),
speech recognition (LIU et al., 2020), ancient text restoration (ASSAEL; SOMMERSCHI-
ELD; PRAG, 2019), and question-answering (ESTEVA et al., 2020). These approaches
have been successful in these tasks, even being used in a production environment by huge
companies, such as Google (CHEN et al., 2019). More recently, more advanced Lan-
guage Models such as the GPT-3 (BROWN et al., 2020) have been developed and are
showing great improvements over the most used Language Models, which shows interest
and development in the area.

A lot of effort is being done into developing tools for writing assistance. Previous
studies show positive results for this application, such as text auto-completion based on
the user’s writing patterns and style (CHEN et al., 2019) and scientific text writing as-
sistance for non-native English researchers (ITO et al., 2019). Furthermore, with the
proposal of LMs compliant to parallel computing, NLP solutions are becoming faster and
more reliable. Along with the faster processing times comes the possibility of develop-
ment of real-time solutions for natural language problems, such as text writing assistance
(DONAHUE; LEE; LIANG, 2020).

Another topic that has been the focus of many recent studies is Computational Cre-
ativity. The main goal of Computational Creativity is to generate artefacts that would
be considered creative if they were created by a human, which has great impact over hu-
man perception in computer-generated content. Computational Creativity is used for the
generation of artistic artefacts, such as painting and music generation (BODEN, 2009);
generation of culinary recipes (SANTOS et al., 2020); storytelling in electronic games
(AMMANABROLU et al., 2020); and in the generation of poems (CRUYS, 2020).

Section 1.1 details this work’s motivation, Section 1.2 details the objective, Section
1.3 contains the justificative, Section 1.4 contains this work’s contributions, and Section
1.5 details this document’s organization.
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1.1 Motivation

Although a lot of work has been done in the context of writing assistance (CHEN et
al., 2019; DONAHUE; LEE; LIANG, 2020), not many of them are focused on scientific
writing assistance, such as (ITO et al., 2019). Additionally, other studies in this area don’t
specifically focus on real-time text suggestions. Moreover, these studies don’t account
for user customization when it comes to sub-area specific terms and writing style. In
the subject of scientific writing assistance, the user should be assisted for faster, higher
quality text writing, while also having compliance with the sub-area’s specific terms and
writing style.

The usage of a writing assistance tool such as NeWriter helps users write a text that
follows the writing style of the input text. However, as the perplexity of NeWriter’s
language model gets lower, the texts generated by users tend to get too similar to the
input text. This can lead NeWriter to encourage plagiarism and to create more repetitive
scientific texts. In order to avoid repetitive texts, we propose the use of Computational
Creativity. With the use of Computational Creativity, NeWriter can display to the user
not only text with the best score, but also recommendations that, while still having a good
score, encourage more diversity in the user’s text. To do this, NeWriter can generate an
initial textual recommendation using a Language Model trained with scientific texts, and
then swap the recommendation’s words using other Language Models, trained with texts
from other domains, to increase its vocabulary range and diversity. However, not all word
swaps will be proper for the scientific text context, so we can use the original Language
Model as a proxy to measure the quality of the creative suggestions made by the creative
Language Model.

1.2 Objective

The objective of this work is to assist in the creative writing of research papers for
specific niches. This is two-fold: i) current ML-based assistants focus on accuracy rather
than diversity, which might leads to plagiarism or non-creative text writing, impacting
text writing evolution of a certain field; ii) and they also do not take into account that
each conference, journal or field have some peculiarities (jargons, syntactic structure,
terminologies etc.) that makes a paper more suitable (familiar) for that venue.

To achieve this goal, we proposed a tool that, given a number of input scientific
texts related to a certain area of interest, it generates recommendations to assist the user
in the process of writing scientific text. The text suggestions must be compliant with
specific terms used in the sub-area the user is writing for, enabled by user customization.
Furthermore, the resulting text should be diversified to avoid direct copies of parts of
other texts. One additional positive outcome for these creative suggestions is that they
can help with writer’s block, as they show different words the user can pick from without
losing their creative flow.

1.2.1 Specific objectives

Therefore, for this study we propose a tool based on Huggingface’s Transformers lan-
guage model for real-time scientific text writing assistance. In order to reach this objective
and evaluate the proposed approach, the following specific objectives are posed:

• Propose a learning approach that the user can fine-tune the language model training
by using other scientific texts as input for customized writing assistance;
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• Propose a real-time writing assistant, where the approach shows text suggestions as
the user writes their text.

• Assert the quality and diversity of the suggestions made by the Language Model.

1.3 Justificative

In the NLP area, writing assistance is a topic focused by many studies. The state-of-
the-art techniques such as seq2seq (Sequence-to-Sequence) models and the Transformer
architecture are widely used since their proposal, and can help solve many challenges in
the area (ITO et al., 2019) (WANG; CHO, 2019).

The Transformer architecture fits with the problem addressed in this research because
it allows for the understanding of language patterns. And the addressed problem’s domain
lies on scientific texts, which follow a structured pattern, built with normalized writing
patterns and formal terms as a standard. Therefore, the use of NLP, specially with tools
such as Transformer language models, shows great potential in addressing the challenges
this study proposes to investigate.

In addition, the proposed approach differs from previous works by the fact that it
allows for user customization through input scientific texts, which results in more accurate
assistance in terms of the user’s area of study or in the specific writing style used in a
publication medium. The proposed approach also aims to explore the negative effects of
text writing assistance, making use of computational creativity to avoid textual plagiarism
and assist in more diversified text writing.

1.4 Contributions

In this work, we developed a user-customizable tool that generates creative suggesti-
ons to help scientific text writing. The user is able to feed the system with reference work
(i.e. related papers, papers from the same conference) to customize NeWriter’s Language
Model. The customized Language Model is used in conjunction to a creative Language
Model, trained using literary texts, to add diversity to NeWriter’s textual recommenda-
tions.

A paper with partial results of this work was published in the 23rd International Con-
ference on Enterprise Information Systems (ICEIS 2021) as a paper entitled NEWRITER:
A Text Editor for Boosting Scientific Paper Writing.

1.5 Document organization

This document is organized as follows. Chapter 2 presents the theoretical foundation.
Chapter 3 presents the related work. Chapter 4 presents the proposed tool, NeWriter.
Chapter 5 presents the methodology, with the used tools, methods and metrics. Chapter
6 contains the experimental results. Chapter 7 contains the conclusion.
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2 BACKGROUND

The development of NLP techniques is essential for the current advances in its applica-
tions, such as Language Understanding, Language Modelling, Machine Translation, etc.
It provides researchers with tools capable of better representations of language models
that can learn language better, process input faster, and reach more accurate results.

This chapter is organized as follows: Computational Creativity is discussed in Section
2.1, Word embeddings are described in Section 2.2, Sequence-to-sequence models are
presented in Section 2.3, the Transformer architecture is shown in Section 2.4, the BERT
Language Model is described in Section 2.5.

2.1 Computational Creativity

Computational Creativity is the area of study in Artificial Intelligence that aims to use
computational systems to generate artifacts that would be considered creative if they were
human-created. There are two approaches to achieve Computational Creativity: one is
focused on recreate the human process of creation in order to achieve creativity; the other
approach focuses on the generated artefact, in which one tries to generate results that
would be perceived as creative by humans. This work focuses on the generated artefact
(BODEN, 2009) (SANTOS et al., 2020).

Computational Creativity can be used both for artistic artefacts, such as painting,
music generation; and scientific theories, mathematical concepts, and scientific projects
(BODEN, 2009). Computational Creativity also has been used for the generation of culi-
nary recipes (SANTOS et al., 2020), storytelling in electronic games (AMMANABROLU
et al., 2020), and in the generation of poems (CRUYS, 2020).

A creative artefact is a new and valuable artefact. The area explores concepts such
as novelty, surprise and value for measuring generated artefacts. An artefact’s novelty
is related to the difference between its characteristics and the existing characteristics in
a group of known artefacts. However, the known artefacts are context-dependant, as
different individuals may know only a subgroup of the existing artefacts. This fact leads
into two definitions of creativity: P-creativity (Psychological, when novelty is determined
by a group of individuals’ known artefacts), and H-creativity (Historical, when novelty is
determined by all the individuals’ known artefacts). Therefore, H-creativity is a special
case of P-creativity (BODEN, 2009).

A common metric used to calculate surprise is using the Bayesian surprise metric,
based on the difference in the level of information before and after the observation of
an event. In generated artefacts, this means the difference between the previously known
universe of possible artefacts in comparison to the knowledge after the generation (BALDI;
ITTI, 2010).

Another way of measuring the creativity of artefacts is using the domain-independent
metric RDC (Regent-Dependent Creativity) metric. Proposed by (FRANçA et al., 2016),
it is calculated as shown in Equation 2.1, where for an artefact a, its creativity is the
sum of the normalized novelty na and value va (sa) plus an extra penalty term. The
penalization is needed to avoid considering creative the artefacts with high novelty and
low value (different but useless artefacts) or the artefacts with high value and low novelty
(most are already known artefacts). Equation 2.2 is used for the penalty term, which
penalized an artefact depending on the difference among its novelty and value (da). The
penalty is proportional to the difference between novelty and value. The creativity is in
the range [0,2] (FRANçA et al., 2016).
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rdc(a) = na + va − p(na, va) (2.1)

p(na, va) = sa(1− e−kda) (2.2)

In its design, the RDC metric can be adapted to be used to measure creativity in any
given context that can be adapted to fit the equation’s format.

2.2 Word embedding

NLP is related to other fields such as Artificial Intelligence, and broadly Machine
Learning. Recently, state-of-the-art NLP techniques rely heavily on Neural Networks,
and that requires numerical vector input. Thus, language models use word embeddings,
representations of words in a vector space. These representations project the relations
between words in the form of their vector offsets. Figure 1 shows gender relationship
between words on the left panel, and singular/plural relationship between words on the
right panel (MIKOLOV; YIH; ZWEIG, 2013).

Word embeddings are the base concept used in all Language Models, as they create a
framework to represent and relate words to each other, which is of extreme importance
when analysing context and meaning of textual artifacts (MIKOLOV; YIH; ZWEIG,
2013).

Figure 1 – Vector offsets in word embeddings

Source: Mikolov, Yih e Zweig, 2013

2.3 Sequence-to-sequence (seq2seq) models

Sequence-to-sequence (seq2seq) are language models that use recurrent neural network
(RNN) to convert an input sequence into an output sequence, and are widely used in
NLP since text can be represented as a sequence of words. A common example of this
use is machine translation, where a sequence of words in a language is transformed into a
sequence of words in another language.

Figure 2 shows that in seq2seq models’ architecture, multiple RNNs are created for
each word in the input text (both for encoders and decoders). In Figure 2, xi are the
elements of the word vector and Hi are the hidden states that work as a context vector.
Words are processed in order, and the sum of Hi is passed from each RNN to the next,
in a process known as the attention mechanism. So the context from previous words is
used in the processing of the current word in the vector.

In other words, the encoders are RNNs trained to translate the input text into data
that contains more dimensions, one example being the other words in the sentence and
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Figure 2 – Seq2seq architecture

Source: Vaswani et al., 2017

their weights related to that single word. The decoders are RNNs trained to transform
this data back to a word sentence, considering all the extra data beyond the input word
sequence. In this case, the attention mechanism consists of using the other words in a
sentence as context for processing each word, which is used to obtain better results than
a naive word by word translation. In some cases, for example, when a word in a language
can’t be directly translated into a word in other language, the Language Model should
be able to output a whole expression that conveys the intended meaning, which is only
possible with the use of the extra data computed in the process of encoding and decoding
the text sequence.

The development of seq2seq models was a breakthrough for textual translation tasks,
being used to transform sentences in one language (represented as sequences of words)
into sentences in another language.

Although very robust, the sequential processing nature of this architecture prevents
parallel processing, which limits its use for longer sequences of text. Another challenge
for the use of seq2seq models is the difficulty for the RNNs to learn from the dependencies
originated by long-ranged sequences of words on the input vector (VASWANI et al., 2017).

2.4 The Transformer architecture

The Transformer architecture was proposed to solve the challenges faced by seq2seq
architectures, such as dealing with long-range dependencies. This architecture can handle
dependencies between input and output using only recurrence and the attention mecha-
nism. Figure 3 presents the Transformer architecture, with the encoder on its left half
and the decoder on its right half.

From Figure 3 we observe that both the encoder and the decoder are composed of
N = 6, respectively identical layers. Each of the encoder’s layers has two sub-layers:
a multi-head self-attention mechanism, and a position-wise fully-connected feed-forward
network. Each of the decoder’s layers has, in addition to the two layers in each encoder
layer, a multi-head attention module over the output of the encoder stack. The multi-head
attention modules are formed by a stack of self-attention modules, an attention mecha-
nism that relates different positions of a sentence in order to compute a representation of
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Figure 3 – The Transformer architecture

Source: Vaswani et al., 2017

the sequence. Multi-head attention modules consist of multiple instances of self-attention
modules. The self-attention modules enable the architecture to consider other words of
the input sequence to better understand each individual word in the sequence. The self-
attention module estimates the importance of each word in the sequence to the current
word. These values are estimated multiple times in the Transformer architecture in pa-
rallel and independently, hence the name multi-head attention. Figure 4 shows the data
flow between encoders and decoders in the Transformer architecture.

From Figure 4 we observe that first, the word embeddings from the input sequence
are passed into the first encoder block. The embeddings are transformed and passed on
to the next encoder, and this process repeats until the last encoder is reached. The last
encoder outputs the result to all the decoders in the stack. However, attention modules
can only work with fixed-length strings, meaning the input text must be subdivided
before used as input. This causes context fragmentation, which limits the Transformer
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Figure 4 – Transformer’s encoder and decoder stacks

Source: Vaswani et al., 2017

architecture effectiveness. To overcome this challenge, the Transformer-XL architecture
was proposed (DAI et al., 2019). In the Transformer-XL architecture, the hidden states
obtained from the previous input fragment from the original text are used in the processing
of the next fragment, thereby causing no context fragmentation.

2.5 BERT - Bidirectional Encoder Representations from Transformers

The bidirectional encoder representations from Transformers (BERT) is a state-of-the-
art language model proposed by Google AI team that uses pre-training and fine-tuning
for several NLP tasks. It uses a multi-layer, bidirectional transfer encoder, in which the
self-attention layer works on the input sequence in both directions.

The BERT model is pre-trained using two different strategies: masked language mo-
deling and next sentence prediction. In masked language modeling, 15% of an original
text words are replaced by either a token ”[MASK]” or a random word and are feeded
for the language model as input. The objective is that these masked tokens should be
predicted by the language model. For the next sentence prediction, pairs of sentences are
feeded for the language model as input, where in 50% of pairs the second sentence is the
subsequent sequence in the original text, whereas in the other 50% the second sentence is
another random sentence in the text. The objective is to learn and predict if the second
sentence fits as subsequent to the first sentence in the original text.

In order to gather huge language understanding, BERT is trained on huge datasets,
a process that demands a lot of time and processing. However, once a language model
is pre-trained, it can be used for further training in the fine-tuning process. Fine-tuning
enables training a language model for specific tasks, while also being able to skip the
initial training with the use of knowledge transfer (DEVLIN et al., 2019).

BERT is usually used as a parameter initialiser for other traditional Language Models.
In (WANG; CHO, 2019) the authors show that BERT is a Markov random field language
model, which enables it to be used for next word prediction in a sentence. The authors
show that BERT can be used to generate high-quality text, with slightly worse quality
compared to traditional left-to-right models but also with more diversity.
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2.6 SciBERT Language Model

In order do address the lack of high-quality, large-scale labeled scientific language
models, SciBERT was proposed by (BELTAGY; LO; COHAN, 2019). SciBERT is a
BERT-based model trained on scientific text on a large multi-domain corpus of scientific
publications, aimed to improve the usage of NLP in the scientific text domain. SciBERT
is trained on 1.14M papers from Semantic Scholar∗ and contains its own vocabulary
(scivocab) with 3.1B tokens. Compared to BERT, SciBERT shows better results on
scientific domain NLP tasks.

∗ http://www.semanticscholar.org
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3 RELATED WORK

Several works were reported in literature for writing assistance using NLP. Most of
them are related to scientific text writing. The approach proposed by (ITO et al., 2019)
is the most similar to NeWriter proposal and domain, focusing on scientific writing
assistance. However, SmartCompose (CHEN et al., 2019), that aims to assist writing of
emails, proposes a learning mechanism very similar to NeWriter. Additionally, several
studies have been made on the topic of creative text generation, with (CRUYS, 2020)
making use of a language model trained with texts from other areas other than their
main focus, poetry, to generate poems with more diversity. This strategy is similar to
the one proposed with NeWriter’s computational creativity module, where text from
other domains is used to train a secondary language model to provide more diversity to
the textual recommendations.

In (ITO et al., 2019) the authors propose sentence-level revision (SentRev), a writing
assistant focused on surface-level issues such as typographical, spelling and grammatical
errors. Their system focused on helping inexperienced authors by producing fluent, com-
plete sentences given their incomplete, rough text drafts. The authors also released an
evaluation dataset containing incomplete sentences authored by non-native writers along
with their final versions in published academic papers that can be used for further research
in this area.

In (CHEN et al., 2019) the authors go over details on the implementation of Gmail’s
SmartCompose functionality, that generates interactive, real-time suggestions to assist
users in writing mails. For the language model selection, they compared state-of-the art
models such as the Transformer architecture and LSTM-based seq2seq models for effi-
ciency and latency. Upon testing, they chose a LSTM-based seq2seq model, since even
though the Transformer architecture had more accurate results, its extra computing time
wasn’t ideal for their application as the model had more latency as it became more com-
plex. SmartCompose showed high-quality suggestion prediction, enough to be adopted to
Google’s platform in production.

In a similar vein, (DONAHUE; LEE; LIANG, 2020) present an approach for text
infilling for prediction of missing spans of text at any position in a document. Although
the authors cite the potential of masked language infilling for writing assistance tools,
their research focuses on language modeling, in the form of infilling text at the end of a
document. In this work, the authors fine-tune language models capable of infilling entire
sequences on short stories, scientific abstracts and lyrics. A survey showed that humans
had difficulty identifying which sentences were machine-generated or original sentences in
the short stories domain.

In (AYE; KAISER, 2020), the authors propose a novel design for predicting tokens in
real time for source code auto-completion, combining static analysis for in-scope identifiers
with the use of a language model, in a system that produces valid code with type-checking.
The developed solution achieves state-of-art accuracy while also fitting the constraints of
real-world completion implementations in modern IDEs.

In (SHIH; CHANG; YANG, 2019), the authors propose XL-Editor, a training fra-
mework for state-of-the-art generalized auto-regressive pre-training methods to revise a
given sentence using variable-length insertion probability in order to reflect the nature of
how a human revisits a sentence to obtain a refined result. The XL-Editor is able to esti-
mate the probability of inserting a sequence into a specific position of a sentence, execute
post-editing operations and complement existing sequence-to-sequence models to refine
generated sequences. The authors demonstrated improved post-editing capabilities from
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XLNet to XL-Editor. Additionally, XL-Editor is extended to address post-editing style
transfer tasks and achieves significant improvement in accuracy, while also maintaining
coherent semantic.

In (GRANGIER; AULI, 2018), the authors propose a framework for computer-assisted
text editing, applied to translation post-editing and to paraphrasing. In the proposed fra-
mework, a human editor modifies a sentence, marking tokens they would like the system to
change. Their model then generates a new sentence that reformulates the original sentence
by avoiding the marked words. The model was developed using sequence-to-sequence mo-
deling along with a neural network which takes a sentence with change markers as input.
Their model is shown to be advantageous for translation post-editing through simulated
post-edits and also for paraphrasing through a user study.

The work (SANTOS et al., 2020) explores the generation of culinary recipes with the
use of language models, along with their preparation steps. A survey showed that recipes
generated by their system had their quality evaluated in a survey as an average of 63.6%,
and had one of the recipes cooked with an average taste evaluation of 93%. In this work,
the Regent-Dependent Creativity (RDC) metric is used to measure the overall creativity
of their model, and the quality of the generations is measured using the perplexity metric,
both of which are also used to evaluate NeWriter.

In (AMMANABROLU et al., 2020), in the context of text-adventure games, the
authors propose a system to generate semantically coherent quests for the player to tackle.
These quests are defined as a series of actions required to progress towards a goal. The
generated quests were created using a culinary context, and were evaluated via a survey in
comparison with human designed quests. The generated quests showed to be as coherent
and implied creativity in a similar fashion to the human designed ones, without loss in
perceived quality.

In the study of (CRUYS, 2020), the authors explore the use of language models to
generate creative poems. Their system is trained using standard, non-poetic text, while
using constraints in order to generate proper poems, such as having verse structures and
rhymes. Their system generates poems for both English and French with a quality similar
to state of the art models even through the use of a language model not specifically trained
to their problem’s domain.

In this section we observe that a lot of progress is being made in the field of NLP with
the use of state-of-the-art language models. These works show that modern language
models are fit for dealing with tasks related to text writing, writing style learning and
reproduction, and text correction. Related work show that language models are able
to work with scientific text (ITO et al., 2019) and can be used for real-time writing
assistance applications (CHEN et al., 2019). Therefore, the related work also show that
the current existing approaches can be used in order to address the problem on scientific
paper writing. However, none of the related works implement scientific text language
modeling to a real-time writing assistant application, such as NeWriter. Additionally,
one can also observe that text generation using language models is a subject of several
studies, and has been reaching positive results. The related work in the computational
creativity domain, most particularly the approach explored in (CRUYS, 2020), is used
as inspiration for NeWriter’s computational creativity module. However, current ML-
based assistants are not focused on diversity, which may lead to plagiarism or non-creative
text writing. Current studies also do not take the peculiarities of individual publication
medium into account when they generate textual recommendations.
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4 NEWRITER

Upon research in the literature, the assistance in scientific text writing is a widely
studied problem. However, the state-of-the-art NLP tools can be used to address this
problem. Moreover, the availability of free usage of computing power to accelerate Ma-
chine Learning applications leads to fast and accessible language model training for user-
customized solutions.

In this study, we propose NeWriter, a neural network based approach to address
creative scientific text writing assistance. Figure 5 presents the NeWriter architecture.

Figure 5 – NeWriter’s architecture

Source: Author

As shown in Figure 5, initially, the user gathers a number of scientific articles from their
area of study. These articles are then used in the process of fine-tuning a base language
model in order to customize it to the user’s needs. The language model used as a base was
SciBERT, as it is a BERT model fine-tuned using scientific text and accomplishes better
results in this domain than the base BERT model. Using SciBERT as a base language
model saves the time needed to fine-tune a specialized model for scientific text, which
would require gathering a number of scientific articles and many time for the fine-tuning
process. For the fine-tuning process, the Huggingface’s Transformers library is used, as
it implements the needed methods in an intuitive and easy to use API, and is widely
supported by the community.

In summary, the framework works following the process:

1. The user inputs scientific texts which are related to their area of study

2. The input is used to fine-tune the SciBERT language model

3. The new, user-customized language model is utilized to assist the user in the writing
process

In order to make the fine-tuning process faster and accessible for the end-user, this
process is made using Google Colab. A notebook was created for the user to be able to
input scientific texts in their area of interest. By running the available scripts, the language
model is fine-tuned using the provided texts and the user can download the resultant
customized language model for use in the writing process. For the writing assistance, an
additional module was developed. In order to develop a quick, multi-platform interface,
the module was developed using Python 3 and the prompt_toolkit python library. The
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prompt_toolkit library is used for interfacing with the user via terminal, displaying an
input text area, while processing the text recommendations in a separate thread to not
interrupt the user in the writing process.

As the user writes their text, the module gathers all text currently in the text area and
adds the special token ”[MASK]” after the last word. The resulting string is processed
using the user-customized language model in a fill-mask task, where the language model
returns the top most-appropriate tokens to be placed over the ”[MASK]” token. For
each one of the five recommendations, a thread is created. Each thread repeats the same
procedure for the language model input, but only gets the best rated token repeatedly
until the generated string reaches a specific length or is a punctuation mark. Finally, it
picks the five best rated next tokens as a 5-way recommendation route and extends each
route to generate a better context for the user to pick from. This process is done in order
to provide the user with multiple possible routes to continue writing the current sentence.

4.1 Computational Creativity Module

After its initial implementation, a Computational Creativity module is added to Ne-
Writer. The implementation of this module in Newriter works as follows: (1) A secon-
dary Language Model trained with other texts, such as non-scientific texts (eg. literature,
news), is used for creative suggestions; (2) Newriter displays variations of the primary
Language Model’s suggestions alongside the original suggestions.

This new architecture is displayed in Figure 6.

Figure 6 – Newriter’s architecture with added
Computational Creativity Module

Source: Author
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In this new architecture, shown in Figure 6, the Secondary (creative) Language Model
is used in the generation of textual recommendations. As one can see, a BERT Language
model is fine-tuned using non-scientific domain text. When the writing tool fetches new
recommendations, NeWriter returns recommendations generated by the user-customized
Language Model. These recommendations are made creative by using the Secondary
LM to create variations on the original recommendations. In order to do this, NeWriter
generates creative suggestions to change each word in the original recommendation to a
new, creative one; and re-evaluates the new recommendations using the original User-
customized LM to assure their quality (value). Therefore, the user is presented with
creative textual recommendations containing a multitude of creative options to choose
from.

In summary, a secondary language model, trained with non-scientific texts, is used
along with the main language model to generate creative suggestions as follows:

1. Suggestions are generated by the main Language Model

2. For each suggestion, NeWriter tries to swap each word for other word suggested by
the secondary Language Model

3. The text editor software displays the original suggestions along with the best ranked
secondary language model’s suggestions

Figure 7 shows an example of the writing approach’s usage in three sequential mo-
ments. As the user writes their text, NeWriter displays possible writing routes, highly
related to the current context. Additionally, the recommended string is highly related to
the domain addressed in the scientific texts used for the language model fine-tuning.

Figure 7 – Writing software example 1

Source: Author

Figure 8 presents two cases where the language model was capable of memorizing
and displaying acronyms for terms used in the natural language area, along with correct
parenthesis and punctuation usage.
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Figure 8 – Writing software example 2

Source: Author
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5 METHODOLOGY

In this section, we present experimental setup and tools used to develop and evaluate
a scientific text writing assistant. Therefore, Section 5.1 presents the tools that were used
for the development of the scientific text writing assistant and Section 5.2 presents the
methods and metrics used in this study.

5.1 Tools

This study’s objective is to generate recommendations to assist a user in the process of
writing scientific text. For this objective’s accomplishment, a base pre-trained language
model was selected, a module was developed for the model to be further fine-tuned, and
another module was developed for the user to be able to write with the assistance provided
by the language model.

For the development of NeWriter we used the HuggingFace’s Transformers library
(WOLF et al., 2019). It was created to gather several state-of-the-art language models
and architectures into an unified API along with examples, tutorials and scripts, for use
by the community. The library contains implementations of state-of-the-art architectures
such as BERT, GPT-2, RoBERTa, XLM, DistilBert, among others. There are thousands
of pre-trained models available in more than 100 languages with community-contributed
models available online. It also has interoperability between PyTorch and TensorFlow 2.0,
tools widely used for NLP tasks. The library is highly adopted among both the researcher
and practitioner communities.

Other important tool used in the development of this work was Google Colaboratory,
also referred simply as Colab. It is a cloud service provided by Google based on Jupyter
Notebooks, used for education and research on machine learning. It provides free access
to a GPU suitable for deep learning. The research from (PESSOA et al., 2018) shows the
service can be used to successfully accelerate not only deep learning applications but also
other classes of GPU-centric applications. Experimental results show faster training of a
convolutional neural network on Colaboratory’s runtime than using 20 physical cores on
a Linux server.

5.2 Methods and Metrics

5.2.1 Perplexity

The perplexity metric is commonly used to evaluate the quality of a trained language
model. It measures the effectiveness of a probability model, such as a language model,
in predicting a given sample. It allows the comparison of language models, with a low
perplexity value indicating that a language model is better suited at predicting the given
sample. Equation 5.1 shows how perplexity p is estimated given a probability model q,
for N test samples and b is a constant, usually set to 2 (BROWN et al., 1992).

p = b−
1
N

∑N
i=1 logbq(xi) (5.1)

5.2.2 User customized language model evaluation

A comparison between SciBERT and a customized language model was made to eva-
luate the quality of the user-customized language model’s recommendations. A synthetic
use-case was used for comparison of the language models, using a 10-fold cross-validation
based on their perplexity metric to an input sample. In a k-fold cross-validation, the
input sample is equally partitioned into k sub-samples. For k iterations, ki is used as a
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test sample while the other k− 1 parts are used as training samples. Then, the results of
the k tests are averaged for a single estimation result. The most used value for k is 10,
also referred as a 10-fold cross-validation. The selected area of interest for the test was
NLP, particularly scientific text writing assistance.

5.3 Computational Creativity Module evaluation

In order to evaluate the Computational Creativity model, a second test was made.
First, a secondary language model was trained using the base BERT model and trained
using 8 classical English literature books, such as Dracula, Frankenstein, and Dr Jekyll and
Mr Hyde. For the tests, we used NeWriter with the creativity module, the model trained
using classical books, and SciBERT. Then, we used the NLP scientific papers’ abstracts
as input to collect data. For every test, we started with the first sentence in the paper’s
abstract to provide a initial context for the language models. For each following word of
the abstract, we generated 100 textual suggestions using the three language models, and
measured their perplexity using NeWriter. Then, the original following word was added
to the text and an additional cycle was executed, as if the text was being wrote as the
test was ran.

5.4 Value

In order to measure the value of the suggestions made by the Computational Creativity
Module, the perplexity metric between base NeWriter and the generated suggestions was
used. In doing so, the suggestions had their value validated by the primary Language
Model.

5.5 Diversity

For the measurement of the diversity of the generated textual recommendations, we
collected the suggested words for each language model at every point of the input papers’
abstracts. The diversity can be obtained by measuring how many new words NeWriter
provides compared to other models. With X as the unique recommended words by other
Language Models and Y as the unique words recommended by NeWriter, the diversity D
can be calculated as shown in Equation 5.2.

D = {w ∈ Y |w /∈ X} (5.2)

5.6 Creativity (RDC)

The final measurement of the textual recommendation’s creativity is calculated using
the RDC metric, described in Section 2.1. In the scientific text writing domain, we use
na as the quotient between new words and the total generated recommendations; va as
the quotient between the perplexity and the total vocabulary size; and k as the quotient
between the maximum position embeddings used when accessing the LM and the total
vocabulary size.
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6 EXPERIMENTAL RESULTS

While writing using NeWriter, the displayed recommendations show multiple options
for the next word in real-time, and progressively extend upon the recommended writing
routes in the following few seconds, without interrupting the user interaction with the
text area.

In cases where the recommendations might not be accurate, which can happen specially
for recommendation paths starting from a lower score, it does not affect the final user
experience, as the final text is curated by the user. Even if the recommendation itself
makes sense only to a certain point, it still helps users with idiomatic expressions or
connectives to link words together in the text and make the writing process flow better.
Those cases happen mostly when there is not much text written to give the LM textual
context.

6.1 User-customized Language Model evaluation

In Table 1, the 10-fold cross-validation test results are shown. Even with the small
provided input, the user-customized Language Model shows to be more than 3% better
suited for the task. The training process took, in average, 25 seconds, which is compliant
for a one-time pre-processing for using the writing software. The results show that training
a customized language model can affect NeWriter’s recommendations to obtain results
more accurate to the user’s needs.

Table 1 – Perplexity comparison between the User-customized LM and Sci-
BERT for specific domain scientific text

Fold User LM SciBERT Improvement
Fold 1 5.10 5.19 0.02
Fold 2 5.73 5.80 0.01
Fold 3 4.33 4.42 0.02
Fold 4 5.81 5.89 0.01
Fold 5 4.54 4.60 0.01
Fold 6 9.11 9.55 0.05
Fold 7 13.37 13.80 0.03
Fold 8 8.85 9.11 0.03
Fold 9 12.68 13.32 0.05
Fold 10 12.82 13.26 0.03
Average 8.23 8.49 0.03

Source: Author

6.2 Computational Creativity

As presented in the previous Chapter, we ran tests using input texts’ abstracts si-
mulating their writing process while collecting data from NeWriter, a language model
trained using classical literature books, and SciBERT. In this Section, we present value
and novelty measures for one of such executions.

With the Computational Creativity module, as one can see in Figure 9, NeWriter
displays its original textual recommendations (first item of each column, marked ending
with the string "[OG]") along with creative variations (with the creative words marked
by underscores before and after them). The recommendations are ordered by their per-
plexity value, which is shown to the user in parenthesis. The image contains 2 pages of
recommendations for the same spot at the beginning of a text writing process.
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Figure 9 – Example of creative textual recommendations

Source: Author

More examples can be seen in Figure 10 and Figure 11. This time, this work’s abstract
was used to input more context to the Language Model, which resulted in more accurate
results. One can observe that in Figure 10 the recommendations are showing a preference
to discuss the same aspect that we discussed in the same spot on the text. However,
11 shows other options that could lead to other discussions, as it goes over the use of
computational tools such as NeWriter in the scientific text writing context.

From our tests, we observed that the accuracy of the recommendations improves gre-
atly after the first few sentences. This is expected, as they depend on the context.

Figure 10 – Example of creative textual recommendations in an abstract

Source: Author

In order to measure the quality of the Creative Module’s textual recommendations,
we use base NeWriter as a proxy. For each step of the test, we fetched 100 textual
suggestions for each one of the three models: base NeWriter, the language model trained
using classical English literature books, and SciBERT. Then, we measured the perplexity
of the text with the recommended words using NeWriter to select the 10 best textual
recommendations. In doing so, we could compare the average perplexity of each models’
recommendations, as shown in Figure 12.

As one can observe, using NeWriter as means to filter the textual recommendations
made by the language model trained using classical English literature books, it was pos-
sible to maintain the general quality of its recommendations. In average, the quality of
the creativity module’s suggestions were 0.03% and 0.02% worse than the suggestions by
NeWriter and SciBERT, respectively.

In order to assert the novelty obtained by using the Creativity Model, we measured
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Figure 11 – Example of creative textual recommendations in an abstract

Source: Author

Figure 12 – Average perplexity of the textual recommendations for NeWriter,
a language model trained using classical English literature books
(Books), and SciBERT for each word in a scientific text’s abstract

Source: Author

the number of unique words obtained by using the module. For each step of the test, we
compared the 10 best rated suggestions between the language model trained using classical
English literature books, base NeWriter and SciBERT. The number of words suggested
exclusively by the language model trained using classical English literature books was
measured and is displayed in Figure 13.

Using the obtained novelty and value results, we calculate this example’s RDC using
na = 0.72, va = 0.98, and k = 0.016, which results in RDC = 1.65.

The words suggested by NeWriter’s creativity module resulted, in average, in 72%
more novelty if compared to base NeWriter and SciBERT. These results show that with
the creativity module it was possible to generate more diverse textual recommendations
compared to the original suggestions, while still maintaining high value.
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Figure 13 – Number of new words the language model trained with classical
English literature books suggested comparing its 10 best rated
suggestions to base NeWriter and SciBERT, for each word in a

scientific text’s abstract

Source: Author
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7 CONCLUSION

The scientific text domain can be more welcoming for beginner researchers and for
non-native English speakers, and the accomplishments in this research show that the
existing NLP tools can be used to reach this objective.

This study’s results show that user-customized language models can be used to improve
their effectiveness for scientific text writing assistance compared to state-of-the-art pre-
trained models, as shown in the first test suite. We conclude that NeWriter presents a
proof of concept for real-time creative writing assistance using customized, user-trained
language models.

As the results show, the quality of the recommendations is maintained, as the perple-
xity is similar to previous models; while the novelty is obtained as the recommendations
contain a higher proportion of new words compared to SciBERT and the original NeWri-
ter. These results mean that NeWriter is successful in using Computational Creativity to
expand on the number of terms in its textual recommendations without much impact on
the overall quality of the recommendations.

However, there are still more parameters to explore for the language model fine-tuning
and other ways the user could be assisted in the writing process.

For future work, this study creates a discussion that can be extended exploring multiple
different topics.

In the application aspect, the tool’s interface can be improved for easier usage. The
writing software can also be further developed for more tools using the language model’s
output. One example is to have recommendations as a selection of words and expressions
with higher score in the middle of a sentence, which would also better explore the bidi-
recionality of the BERT model, as context would be available in both directions. This
could greatly improve the Perplexity value for these recommendations.

For the language modelling aspect and for reaching for better results, the language
model fine-tuning process can be further tested and asserted: using other example texts,
in different writing contexts, using a different topic for the secondary Language Model.
The fine-tuning can be made using different numbers of input texts and different values for
its parameters in order to compare the impact of those changes in the recommendations
generated by the system.

Furthermore, other topic of study that could be further developed is exploring textual
automatic correction. In such method, the Language Model could be used as means to
correct or improve a full text (draft) written by a beginner researcher in order to create
better written text based on the initial version.

Additionally, the tools should be also tested with real users in order to assert their
effectivity. A survey can be done with the testers to measure perceived effectivity. More-
over, computed metrics can be collected by the editor program and used to measure the
proportion in which the user picks recommended terms, and the proportion of those picks
came from the creative Language Model, to better understand the impact of the creative
suggestions.
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