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Co-advisor: Dr. Alexandre Xavier Falcão

Research areas: Image segmentation and Digital
Image Processing

Belo Horizonte
2022



 

 

 

   

 

 

 

 

 

 

 

 

 

 
   

   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FICHA CATALOGRÁFICA 

Elaborada pela Biblioteca da Pontifícia Universidade Católica de Minas Gerais 

 

                 Barcelos, Isabela Borlido  

  B242s            A survey on the state-of-the-art superpixel segmentation / Isabela Borlido 

Barcelos. Belo Horizonte, 2022.  

                        89 f. : il. 

                      

                        Orientador: Silvio Jamil Ferzoli Guimarães 

                        Coorientador: Alexandre Xavier Falcão 

                        Dissertação (Mestrado) - Pontifícia Universidade Católica de Minas Gerais. 

Programa de Pós-Graduação em Informática 

 

                        

       1. Processamento de imagens - Técnicas digitais. 2. Algoritmos 

computacionais. 3. Computação gráfica. 4. Teoria dos grafos. 5. Algoritmos. 6. 

Análise por agrupamento. I. Guimarães, Silvio Jamil Ferzoli. II. Falcão, 

Alexandre Xavier. III. Pontifícia Universidade Católica de Minas Gerais. 

Programa de Pós-Graduação em Informática. IV. Título. 

 

 

 

                                                                           CDU: 681.3.093 

Ficha catalográfica elaborada por Fabiana Marques de Souza e Silva - CRB 6/2086 



Isabela Borlido Barcelos

A SURVEY ON THE STATE-OF-THE-ART SUPERPIXEL
SEGMENTATION

Dissertation presented to the Graduate Program in
Informatics at the Pontif́ıcia Universidade Católica
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ABSTRACT

Superpixel segmentation aims to divide images into homogeneous regions such that the
union of one or more regions consists of the image object. It has several benefits, such
as reducing the workload, reducing hundreds of thousands of pixels to hundreds of super-
pixels, and providing higher-level information than pixels. Consequently, their methods
have been used in several applications. Superpixel segmentation has a vast literature
covering several techniques. Due to this, some benchmarks were proposed to evaluate
existing methods, verifying their state-of-the-art. Some of these works also proposed cat-
egorizations for superpixel methods. However, the existing categorizations do not cover
several superpixel strategies. Furthermore, in contrast to the rapid progress in propos-
ing new superpixel strategies, the proposed methods are often evaluated against classical
methods, with few comparisons between recent proposals. Therefore, reviewing the most
recent works and a new categorization for its methods becomes essential. Given the wide
variety of superpixel segmentation strategies, a taxonomy to provide a classification based
on different aspects of the superpixel approaches seems more appropriate. In this work,
we provide a new taxonomy for superpixel segmentation according to their processing
steps and the processing level of their features. To compose the categories of each pro-
cessing step, we analyze 45 recent superpixel segmentation methods and present a review
of these methods. Although these properties of superpixels are not a consensus in the
literature, the inner color similarity usually underlies their methods. Among several ex-
isting measures, Explained Variation (EV) and Intra-cluster Variation (IV) seem to be
the only ones focusing on color homogeneity. However, EV presents a high sensitivity,
penalizing perceptually homogenous variations, while IV reduces penalization by averag-
ing those differences. In this work, we argue that a small set of representative colors,
not very different from each other, should describe the superpixel’s colors. Such a set of
colors must be minimal and able to represent a perceptually homogeneous texture. There-
fore, we propose a new color homogeneity measure, named Similarity between Image and
Reconstruction from Superpixels (SIRS), that appropriately penalizes superpixels with
heterogeneous colors while maintaining high scores for perceptually homogeneous ones.
The proposed measure uses a novel color descriptor, RGB Bucket Descriptor (RBD),
representing the superpixel as a small set of its most relevant colors. Experiments on
three datasets show that SIRS can better distinguish segmentation algorithms according
to color homogeneity than EV (the most popular measure). The results also show that
SIRS is more robust to slight color variations due to luminosity than EV. Using SIRS
and the most used metrics in the literature, we evaluated 19 state-of-the-art superpixel
segmentation methods in terms of their average performance and stability. Our evaluation
intends to provide insights into the different approaches and support identifying the most
suitable superpixel methods for each application. The evaluation results demonstrate the
performance and limitations of state-of-the-art algorithms.

Keywords: Superpixel segmentation. Survey. Color homogeneity measure. Image seg-
mentation.



RESUMO

A segmentação de superpixel visa dividir imagens em regiões homogêneas de tal forma
que a união de uma ou mais regiões consiste no objeto da imagem. Ela possui vários
benef́ıcios, como redução da carga de trabalho, redução de centenas de milhares de pixels
para centenas de superpixels e extração de informações de alto ńıvel. Consequentemente,
seus métodos têm sido usados em diversas aplicações. A segmentação de superpixels
possui uma vasta literatura que abrange diversas técnicas. Devido a isso, alguns bench-
marks foram propostos para avaliar os métodos existentes, verificando seu estado da
arte. Alguns desses trabalhos também propuseram categorizações para métodos de su-
perpixels. No entanto, as categorizações existentes não se aplicam a várias estratégias
de superpixels. Além disso, em contraste com o rápido progresso de novas estratégias,
os métodos propostos são frequentemente avaliados em relação aos métodos clássicos,
com poucas comparações entre propostas recentes. Portanto, revisar os trabalhos mais
recentes e uma nova categorização para seus métodos torna-se essencial. Dada a grande
variedade de estratégias de superpixels, uma taxonomia que forneça uma classificação
baseada em diferentes aspectos parece mais apropriada. Neste trabalho, propomos uma
nova taxonomia para segmentação de superpixels de acordo com suas etapas de proces-
samento e o ńıvel de processamento de suas features. Para compor as categorias de cada
etapa de processamento, analisamos 45 métodos recentes de segmentação de superpix-
els e apresentamos uma revisão desses métodos. Embora as propriedades desejadas na
segmentação de superpixels não sejam um consenso na literatura, a homogeneidade de
cores geralmente fundamenta seus métodos. Dentre as várias medidas existentes, a Ex-
plained Variation (EV) e a Intra-cluster Variation (IV) parecem ser as únicas com foco
na homogeneidade de cores. No entanto, EV apresenta alta sensibilidade, penalizando
variações perceptualmente homogêneas, enquanto IV reduz a penalização ao calcular a
média dessas diferenças. Neste trabalho, defendemos que um pequeno conjunto de cores
representativas, não muito diferentes entre si, deve descrever as cores do superpixel. Tal
conjunto de cores deve ser mı́nimo e capaz de representar uma textura perceptualmente
homogênea. Portanto, propomos uma nova medida de homogeneidade de cores, denomi-
nada Similarity between Image and Reconstruction from Superpixels (SIRS), que penaliza
adequadamente os superpixels com cores heterogêneas, mantendo pontuações altas para
os perceptualmente homogêneos. A medida proposta usa um novo descritor de cores,
RGB Bucket Descriptor (RBD), representando o superpixel como um pequeno conjunto
de suas cores mais relevantes. Experimentos em três conjuntos de dados mostram que o
SIRS pode distinguir melhor os algoritmos de segmentação de acordo com a homogenei-
dade de cores do que o EV (a medida mais popular). Os resultados também mostram que
o SIRS é mais robusto a pequenas variações de cor devido à luminosidade do que o EV.
Usando SIRS e as métricas mais utilizadas na literatura, avaliamos 19 métodos de seg-
mentação superpixels em termos de desempenho e estabilidade médios. Nossa avaliação
pretende fornecer informações sobre as diferentes abordagens e apoiar a identificação dos
métodos de superpixel mais adequados para cada aplicação. Os resultados da avaliação
demonstram o desempenho e as limitações desses algoritmos.

Palavras-chave: Segmentação de superpixels. Revisão da literatura. Medida de homo-
geneidade de cor. Segmentação de imagem.



LIST OF FIGURES

FIGURE 1 – Superpixel segmentation examples . . . . . . . . . . . . . . . . . . . 13

FIGURE 2 – Difference between color homogeneity measures in a grid segmenta-

tion with 1000 superpixels . . . . . . . . . . . . . . . . . . . . . 14

FIGURE 3 – Centroid-oriented quarter-circular mask of TASP algorithm . . . . . 32

FIGURE 4 – Diagram of SCAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

FIGURE 5 – ODISF segmentation diagram . . . . . . . . . . . . . . . . . . . . . 39

FIGURE 6 – The DAL-HERS framework . . . . . . . . . . . . . . . . . . . . . . 41

FIGURE 7 – PGDPC segmentation procedure . . . . . . . . . . . . . . . . . . . 42

FIGURE 8 – SCSC diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

FIGURE 9 – The EAM diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

FIGURE 10 – The ECCPD diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 45

FIGURE 11 – E2E-SIS diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

FIGURE 12 – Edge-Aware RIM (EW-RIM) diagram . . . . . . . . . . . . . . . . 47

FIGURE 13 – Superpixel Embedding Network (SEN) diagram . . . . . . . . . . . 48

FIGURE 14 – LNSNet diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

FIGURE 15 – DMMSS-FCN diagram . . . . . . . . . . . . . . . . . . . . . . . . . 50

FIGURE 16 – UDAG diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

FIGURE 17 – SuperAE-DSC algorithm . . . . . . . . . . . . . . . . . . . . . . . . 51

FIGURE 18 – SENSS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

FIGURE 19 – DAFnet diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

FIGURE 20 – Superpixel Interpolation Network (SIN) architecture . . . . . . . . . 54

FIGURE 21 – BP-net diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

FIGURE 22 – RGB cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

FIGURE 23 – Toy example of RBD execution . . . . . . . . . . . . . . . . . . . . 58

FIGURE 24 – Impact of different λ, α, and σ2 for varying superpixel numbers on

the train images of Birds dataset . . . . . . . . . . . . . . . . . 61

FIGURE 25 – Impact of different λ and α for image reconstruction using RBD in

GRID segmentation with 200 superpixels . . . . . . . . . . . . . 61



FIGURE 26 – Results obtained for Birds, Sky and ECSSD for EV and SIRS. . . . 62

FIGURE 27 – Segmentation comparison with images from Sky and ECSSD with

100 and 500 superpixels with EV (second column) and SIRS

(fifth column) evaluations. . . . . . . . . . . . . . . . . . . . . 63

FIGURE 28 – Results for Birds, Sky, ECSSD and Insects for BR and UE. . . . . . 66

FIGURE 29 – Results for Birds, Sky and ECSSD for EV, SIRS, and CO. . . . . . 67

FIGURE 30 – Results for Birds, Sky and ECSSD for minimum, maximum and

standard deviation of BR and UE. . . . . . . . . . . . . . . . . . 68

FIGURE 31 – Results for Birds, Sky and ECSSD for minimum, maximum and

standard deviation of EV and SIRS. . . . . . . . . . . . . . . . . 70

FIGURE 32 – Segmentation comparison with images from Birds, Sky, ECSSD,

and Insects with 100 and 700 superpixels. . . . . . . . . . . . . . 73

FIGURE 33 – Segmentation comparison with images from Birds, Sky, ECSSD,

and Insects with 100 and 700 superpixels. . . . . . . . . . . . . . 74



LIST OF TABLES

TABLE 1 – Main processing categories excluding methods based on neural net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

TABLE 2 – Recent methods for superpixel segmentation . . . . . . . . . . . . . 30



LIST OF ACRONYMS

ANRW – Adaptive Nonlocal Random Walk
AWkS – Adaptative W-k-means-based Superpixels
BR – Boundary Recall
CFBS – Coarse-to-Fine Boundary Shift
CO – Compactness index
CONIC – Contour Optimized Non-Iterative Clustering
DAFnet – Dual-Attention Fusion Network for superpixel segmentation
DAL – Deep Affinity Learning network
DISF – Dynamic and Iterative Spanning Forest
DMMSS – Deep Merging Model for superpixel-based segmentation
DMMSS-FCN – Deep Merging Model for Superpixel Segmentation by Fully Convolu-
tional Networks
DSR – Dynamic Spectral Residual
DPS – Density Peaks Superpixel
DRW – Dynamic Random Walk
DSC – Deep Superpixel Cut
EAM – Extract and Merging
EV – Explained Variation
FCSS – Fine-to-Coarse Superpixel Segmentation
ECCPD – Edge-Constrained Centroidal Power Diagram
EW-RIM – Edge-Aware RIM
GLl1/2RSC – Graph laplacian l1/2 regularized subspace clustering
HMLI-SLIC – Hierarchical and Multi-Level LI-SLIC
IBIS – Iterative Boundaries implicit Identification for superpixels
ICV – Intra-cluster Variation
MEE – Mean Exponential Error
MFGS – Multi-feature Fusion Graph for superpixels
ODISF – Object-based DISF
OISF – Object-based ISF
PGDPC – Peak-Graph-based fast Density Peak Clustering
RBD – RGB Bucket Descriptor
RISF – Recursive Iterative Spanning Forest
RSS – Root Spanning Superpixels
SCAC – Superpixel segmentation with Context-Adaptive Criteria
SCBP – Superpixel Based on Color and Boundary Probability
SCSC – Spatially Constrained Subspace Clustering
SEN – Superpixel Embedding Network
SENSS – Squeeze-and-Excitation Network for superpixel segmentation
SIN – Superpixel Interpolation Network
SIRS – Similarity between Image and Reconstruction from Superpixels
SLIC – Simple Linear and Iterative Clustering
SSFCN – Superpixel Segmentation for Fully Convolutional Network
SuperAE – Superpixel-wise Autoencoder
TASP – Texture-Aware and Structure-Preserving
UOIFT – Unsupervised OIFT





SUMMARY

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Research questions and hypotheses . . . . . . . . . . . . . . . . . . . . . 14

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Suveys on superpixel segmentation . . . . . . . . . . . . . . . . . . . . . 18

2.3 Image modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Evaluation measures for superpixel segmentation . . . . . . . . . . . . 22

2.4.1 Delineation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Shape-based measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Color-based measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Superpixel descriptor to image reconstruction . . . . . . . . . . . . . . 25

3 TAXONOMY FOR SUPERPIXEL SEGMENTATION . . . . . . . . . . 27

3.1 Processing steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Processing level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Categories in recent superpixel literature . . . . . . . . . . . . . . . . . 28

4 STATE-OF-THE-ART ON SUPERPIXEL SEMENTATION . . . . . . . 31

4.1 Neighborhood-based clustering . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Boundary evolution clustering . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Dynamic-center-update clustering . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Path-based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Density-based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Sparse linear system clustering . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Regional attributes extraction . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Polygonal decomposition clustering . . . . . . . . . . . . . . . . . . . . . 45

4.10 Data distribution-based clustering . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Deep learning-based methods with a simple FCN architecture . . . . 46

4.12 Deep learning-based methods with an encoder-decoder architecture 49

4.13 Deep learning-based methods with other architectures . . . . . . . . . 53

5 A COLOR HOMOGENEITY MEASURE FOR SUPERPIXELS . . . . 57

5.1 RGB Bucket Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Similarity between Image and Reconstruction from Superpixels . . . 58



6 COLOR HOMOGENEITY MEASURE EVALUATION . . . . . . . . . . 60

6.1 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 AN EVALUATION OF THE STATE-OF-THE ART SUPERPIXEL

SEGMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 An overview of the evaluated methods . . . . . . . . . . . . . . . . . . . 64

7.2 Experiments settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Evaluating stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDIX A - SUPERPIXEL SEGMENTATION METHODS . . . . . . 89



13

1 INTRODUCTION

Digital image processing is an important area of research that encompasses several
tasks. In particular, image segmentation aims to divide images into perceptually distinct
regions according to some characteristic (e.g., color) to simulate visual human percep-
tion (WANG et al., 2020; CUEVAS-VELASQUEZ; GALLEGO; FISHER, 2020). A com-
mon image partition approach is generating several disjoint groups of connected pixels,
named superpixels, according to a predetermined criterion (e.g., color similarity). Such
procedure may have several benefits: (i) workload magnitude reduction (i.e., pixels to
superpixels); (ii) high-level semantic information by the superpixels; and (iii) accurate
object delineation by its compounding superpixels. Consequently, superpixel segmen-
tation methods have been used in several applications, such as segmentation (LIANG
et al., 2020; SHENG et al., 2018), semantic segmentation (ZHAO et al., 2018), object
detection (REN; ZHAO; WANG, 2019; SHU; DEHGHAN; SHAH, 2013), saliency detec-
tion (ZHANG et al., 2019; ZHOU et al., 2019), and image classification (FANG et al.,
2015; SELLARS; AVILES-RIVERO; SCHÖNLIEB, 2020).

Figure 1 presents three superpixel segmentation examples, in which the superpixels’
borders are shown in red. In the superpixel literature, several authors identify its desired
properties. Although there is no consensus in the literature, most authors agree that su-
perpixels must be composed of connected pixels, adhere to the objects’ borders, and have
a compact and regular shape (STUTZ; HERMANS; LEIBE, 2018; WANG et al., 2017).
Moreover, the methods must be computationally efficient and generate a controllable
number of superpixels. Although, several superpixel methods do not meet all criteria.
In general, this occurs when one property’s improvement leads to another’s worsening.
For example, while some approaches improve delineation, others maintain compactness at
the expense of its delineation (SCHICK; FISCHER; STIEFELHAGEN, 2012; SCHICK;
FISCHER; STIEFELHAGEN, 2014). Although the segmentation in Figure 1(a) have
maximum compacity, its delineation is worse. Similarly, Figure 1(c) focuses on delin-
eation but has low compacity. Some superpixel approaches try to manage this trade-off,
which may lead to low delineation (Figure 1(b)). Since superpixel methods can attend to
different properties, the evaluation measures used may vary depending on the property
optimized.

Figure 1 – Superpixel segmentation examples

(a) (b) (c)

Source: Author.

Due to the lack of ground truth for superpixel segmentation, the ground-truth-dependent
measures generally use the object’s ground truth to evaluate the segmentation’s quality
concerning the object’s borders. This evaluation usually ignores the internal partitioning
of the object and the background. However, the same image can have different objects
depending on the task performed. Therefore, the evaluation of the object delineation
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may be insufficient. On the other hand, most measures independent of ground-truth for
quantitative evaluation assess superpixel compactness and regularity.

Regarding the independent ground truth measures for superpixel evaluation, only
Intra-cluster Variation (ICV) (BENESOVA; KOTTMAN, 2014) and Explained Variation
(EV) (MOORE et al., 2008) assess color homogeneity. However, both ICV and EV mea-
sures have several limitations. ICV computes the standard deviation of the pixel colors
in each superpixel and averages them. It then reduces penalization for superpixels with
subtle color variations. However, by not being a normalized measure, IV is not compa-
rable between images nor with other measures (STUTZ; HERMANS; LEIBE, 2018). On
the other hand, EV ignores color differences inside superpixels. It computes the differ-
ences between each superpixel’s mean color and the mean color of the image. Despite
its popularity (GIRAUD; TA; PAPADAKIS, 2017; STUTZ; HERMANS; LEIBE, 2018),
EV cannot describe perceptually homogeneous regions in some situations. Figure 2(a)
shows an image with slight color variations due to luminosity. In Figure 2(b-c), whiter
values indicate higher scores (homogeneous regions). EV cannot capture the color homo-
geneity of a simple grid segmentation (Figure 2(b)). The color homogeneity measured
may have improved results (i.e., closer to the perceptual homogeneity) when representing
the superpixels by its most frequent colors and measuring its color homogeneity as the
image reconstruction error using the Similarity between Image and Reconstruction from
Superpixels (SIRS) (Figure 2(c)), the color homogeneity measure proposed in this work.

Figure 2 – Difference between color homogeneity measures in a grid segmen-
tation with 1000 superpixels

(a) Grid segmentation (b) EV (c) SIRS

Source: Author.

The literature on superpixel segmentation has significantly expanded in recent years,
from improvements in classical methods to entirely new approaches. However, the pa-
pers generally compare their proposals with classical methods. Furthermore, the exist-
ing benchmarks do not cover several recent works (STUTZ; HERMANS; LEIBE, 2018;
WANG et al., 2017), which makes it very difficult to identify the contribution of the recent
superpixels methods. Therefore, a new extensive evaluation is necessary to establish the
current state-of-the-art.

1.1 Research questions and hypotheses

To explore the mentioned superpixel segmentation problems, we reduced them to two
research questions.

Question 1: Is there a current categorization for superpixel methods?

In general, papers related to superpixels categorize their methods into clustering-based,
graph-based, and deep learning-based methods. Although it is the most predominant
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categorization, the definition of each category varies according to the focus of each work.
Stutz, Hermans and Leibe (2018) presented the most comprehensive categorization, but
their categories have ambiguous characteristics and are not based on well-defined crite-
ria. For example, the watershed-based and clustering-based categories refer to methods
based on the watershed and k-means algorithms, respectively. In contrast, the energy op-
timization and graph-based categories refer to the modeling of the methods. Therefore,
the reference for categorization is not established. In addition, there is some ambiguity
between categories, such as graph-based and path-based, as path-based methods are usu-
ally modeled on graphs, thus fitting into both categories. According to Stutz, Hermans
and Leibe (2018), their categorization does not cover several approaches. In particular,
methods based on deep learning do not fit into any of the categories. At the same time,
other works generally limit themselves to placing all methods based on deep learning in
a single category, despite the wide range of deep-based approaches.

Hypothesis 1.1: Every superpixel method has an algorithm related to its implemen-
tation, and each algorithm can be divided into processing steps.

Due to the varied approaches to superpixel segmentation, the definition of a single
and definitive set of categories for the methods is a temporary and ineffective solution.
Temporary because the development of new strategies can either put old approaches
into disuse or compose new approaches that do not fit into pre-existing categories. And
it is not very effective because the current categorization does not provide knowledge
to explore the categorized methods for developing new methodologies. To provide a
taxonomy that allows a comprehensive comparison between methods, not only by their
general process, we define the partitioning of the methods in up to three steps: pre-
processing, main processing, and post-processing. Despite restricting the taxonomy,
the definition of a finite and pre-established set of steps allows comparing and joining
methodologies more naturally. However, one may note that multi-step methods may
have a set of processes related to one of the established steps, while methods with fewer
steps may not contain pre- or post-processing.

Hypothesis 1.2: Suppose that each processing step can be divided into processes (or
sub-steps) and that the processes of each step are related only to the method algorithm
— i.e., its high-level implementation — for that process. In this case, one can observe
the similarity between methods with similar steps, even if they are not based on the
same method.

Despite starting in 2003 (REN; MALIK, 2003), the superpixel literature is vast and
contains very different strategies. However, superpixel methods that are not directly
related can perform similar processes, such as sampling seeds in the pre-processing
stage or merging regions in the post-processing stage. By reflecting on such similarities
in the taxonomy, one may establish connections between different methods, favoring
the analysis of strategies and providing both the improvement of their processes and
the study of the effect of such sub-steps on the final segmentation.

Question 2: Is the current quantitative assessment of superpixels adequate to assess their
quality?

Firstly, it is necessary to establish the ideal superpixel segmentation characteristics
as its desired properties, as mentioned in several works in the literature. Although the
properties may differ among the papers, Stutz, Hermans and Leibe (2018) establish those
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most cited by the authors: partitioning, connectivity, adherence to contours, compactness,
efficiency, and a controllable number of superpixels. In addition, color homogeneity is
deeply related to the superpixels’ definition. For ground-truth-based assessment, datasets
for object segmentation, object saliency, and semantic segmentation are generally used
due to the lack of ground-truth for superpixel segmentation.

Superpixels are ideally composed of connected pixels, homogeneous in color, and with
limits that adhere to the image boundaries. According to these properties, one can ide-
ally partition a homogeneous image region into various equally correct superpixels. In
this case, the segmentation application may define what partitioning best suits its re-
quirement. Therefore, establishing the ideal ground-truth for superpixel segmentation
is difficult for general-purpose segmentation — i.e., when the application is unknown.
Ground-truth-based superpixel evaluation measures assess their delineation against one
or more objects but not against all image boundaries. As delineation is only one of the
desired properties and there is no ground-truth for superpixels, further measures are nec-
essary for its evaluation. Most of the independent ground-truth measures for superpixel
evaluation assess compactness and regularity. In addition, only two assess color homo-
geneity. Among the measures that evaluate color homogeneity, only one is widely used in
the literature. However, its high sensitivity to color variations, among other limitations,
makes the measured variation little corresponding to visual color homogeneity.

Hypothesis 2.1: A superpixel’s color variation does not directly correspond to its
visual color homogeneity. Therefore, by including robustness to low color variations,
the measured variation becomes more similar to the visually perceived one.

Superpixels are non-overlapping image regions, ideally homogeneous in color. How-
ever, color and lighting variations in natural images are common, especially in textured
areas. In superpixel color homogeneity evaluation, the result must resemble the visual
homogeneity. Nevertheless, the color homogeneity measures assess the color variation
with their variance, leading to high penalties in barely perceptible color variations.

Hypothesis 2.2: The mean color of a superpixel is insufficient to represent its infor-
mation.

Although superpixels are ideally homogeneous, obtaining regions with visible color
variations in natural images is common. Simpler textures may be present in areas
whose variation is limited to a set of similar colors. Visually, such textures do not rep-
resent significant heterogeneity; therefore, the homogeneity assessment measure must
reflect this information. The widely used Explained Variation measure assesses color
homogeneity and represents the superpixel’s content by its mean color. However, the
mean color can be unrepresentative, missing important color information. One can
argue that homogeneous superpixels can have some color variation, visually low repre-
sentative. Therefore, instead of representing superpixels by their mean color, one can
describe their content with a small set of colors (e.g., its most frequent colors).

Hypothesis 2.3: Assessing the homogeneity of superpixels as independent regions
provide a result closer to their visual quality than assessing their homogeneity in relation
to the image.

One may have different assessments for visually similar superpixels in different im-
ages by conditioning the superpixel color homogeneity to global image characteristics.
Since a homogeneous region does not depend on its context, such an assessment may
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cause a discrepancy between visual and measured homogeneity.

1.2 Contributions

The contributions in this work are:

• Provide a comprehensive overview of the recent superpixel approaches;

• Provide a taxonomy of the superpixel methods to better represent them with a less
restrictive representation;

• Propose a new color homogeneity measure for quantitative superpixel evaluation;

• Performs an extensive qualitative and quantitative assessment on various datasets,
providing a guideline to future methodologies.

1.3 Overview

Chapter 2 presents the concepts of image segmentation, the previous reviews on su-
perpixel literature, the mathematical image modeling used in this work, the concepts and
limitations of color-based measures for superpixel segmentation, and a brief relation be-
tween superpixel descriptor and image reconstruction. Then, Chapters 3 and 4 present the
preliminary results of the proposed taxonomy and review recent methods for superpixel
segmentation. Chapter 5 presents the proposed measure, named SIRS, for color homo-
geneity in superpixel segmentation. Chapters 6 and 7 present the evaluation of proposed
SIRS and an extensive evaluation of the state-of-the-art superpixel methods, respectively.
Finally, Chapter 8 presents the conclusions and future works.
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2 BACKGROUND

This Chapter presents an overview of image segmentation and its various categories
of approaches according to the supervision of methods, types of regions produced, and
problem modeling (Section 2.1). Then, the literature papers that perform an overview of
superpixel segmentation methods and evaluation benchmarks are presented in Section 2.2.
Next, we present the definitions for image and segmentation modeling used in the color
homogeneity measure proposed (Section 2.3) and the other measures for superpixel seg-
mentation assessment (Section 2.4). Finally, Section 2.5 presents a modeling of image
reconstruction based on superpixel descriptor.

2.1 Image segmentation

Image segmentation aims to divide images into perceptually distinct regions accord-
ing to some characteristic. Due to the poor definition of human perception, image seg-
mentation remains an open problem. However, several works have proposed solutions
approaching the problem from different perspectives (for example, as a problem of su-
per segmentation or object delineation), which may contain different solutions depending
on the purpose of the application used (PARIHAR; BOVEIRI, 2018; ZHU et al., 2016;
RAMADAN; LACHQAR; TAIRI, 2020)..

According to Zhu et al. (2016), the segmentation strategies can be broadly classified
as unsupervised (or automatic), semi-supervised (or weakly supervised), and fully super-
vised. While unsupervised methods use only image features to form significant regions
without user intervention, semi-supervised methods receive user information, which can
be scribbles on the image (in interactive segmentation) or sets of images containing similar
objects. (in co-segmentation) (ZHU et al., 2016; RAMADAN; LACHQAR; TAIRI, 2020).
Finally, fully supervised methods use annotated images to train the segmentation model.
After training, these methods perform segmentation from unannotated images (ZHU et
al., 2016).

In segmentation, regions usually represent objects and backgrounds, multiple objects,
or superpixels. Object segmentation aims to partition images into two (or more) non-
overlapping regions, labeled as object or background. On the other hand, superpixel
segmentation aims to obtain homogeneous regions with high adherence to the image
borders, such that the union of one or more regions consists of the image object (REN;
MALIK, 2003). The desired properties in the superpixel segmentation are to create a
controllable number of homogeneous, compact, disjoint regions with high adherence to
the image borders (STUTZ; HERMANS; LEIBE, 2018).

Segmentation approaches can model the problem in discrete or continuous spaces.
According to Zhu et al. (2016), both clustering methods and graph-based methods model
the problem in discrete spaces, in which the former model the problem in the space of
local characteristics, and the latter have the advantage of not committing discretization
errors due to its operators acting in a space provided by graph theory (PENG; ZHANG;
ZHANG, 2013). On the other hand, methods that model in continuous spaces treat
the image as a continuous surface, whose segmentation aims to minimize or maximize a
functional of this surface.

2.2 Suveys on superpixel segmentation

The first benchmark for superpixel evaluation, proposed by Neubert and Protzel
(2012), is composed of eight algorithms and evaluates the design and robustness of the
methods to affine transformations. In their work, the authors argue that the under-
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segmentation measure causes a biased penalty for the superpixel size. Due to this, to eval-
uate the proposed benchmark, the authors proposed a modified under-segmentation error
measure to consider the smallest part of the superpixel leakage. The evaluation showed
that the segmentation approaches present similar results in all assessments, demonstrating
that the most appropriate methods for each task depend on the crucial characteristics. In
addition, according to the evaluation performed, algorithms less focused on compactness
showed greater robustness to image transformations, being more appropriate for super-
pixel segmentation.

Achanta et al. (2012) also perform an assessment, comparing five superpixel methods
to determine their benefits and limitations regarding their boundary adherence and effi-
ciency. Unlike Neubert and Protzel (2012), Achanta et al. (2012) characterized the super-
pixel methods as graph-based and gradient-ascent-based. The former contains methods
that model the segmentation problem based on graph theory generating superpixels by
minimizing a cost function defined on the graph. The second iteratively refines its initial
clusters until reaching a convergence criterion. Achanta et al. (2012) also extensively
evaluated the Simple Linear and Iterative Clustering (SLIC), a method for segmenting
superpixels based on k-means for efficient segmentation and improved delineation.

SLIC is more efficient than k-means because it reduces the segmentation complexity
to linear concerning the number of pixels by limiting the search space to a region propor-
tional to the superpixel size. And its best delineation comes from a distance measurement
that gives it better control over the size and compactness of the superpixels. SLIC starts
with a grid sampling of the superpixel centers. Then, it assigns the most similar pixels
to each superpixel based on a distance measure limited to the region around the super-
pixel center. At the end of each iteration, the centers are updated to the pixel with the
most similar color to the mean superpixel color. The iterations stop when the residual
error is less than a threshold or the number of iterations reaches a maximum value. As
post-processing, SLIC ensures connectivity by assigning unconnected superpixels to their
nearest neighbors. Compared with five other state-of-the-art algorithms, SLIC showed
better performance in 2D images, and Achanta et al. (2012) also demonstrated its appli-
cation in 3D biomedical images.

Although Achanta et al. (2012) and Neubert and Protzel (2012) settled that methods
that control superpixel compactness are more appropriate, their quantitative evaluation
does not cover the segmentation compactness. Schick, Fischer and Stiefelhagen (2012)
identified this drawback and proposed a compactness measure based on the isoperimetric
coefficient (POLYA, 2020). The authors demonstrated that there is a trade-off between
compactness and boundary recall. They also present a new algorithm that controls this
trade-off, overcoming the state-of-the-art superpixel methods. The proposed method im-
proves SLIC to control the superpixels’ compactness with a new distance measure. It also
enforces the superpixels’ connectivity by updating only the pixels on superpixels’ borders.
Schick, Fischer and Stiefelhagen (2012) evaluated the association between compactness
and delineation metrics. The results showed an inverse and non-linear association between
compactness and boundary recall. Due to this, the authors argue that non-compactness
is similar to overfitting the image boundaries, capturing many low-importance borders.
Therefore, a more accurate segmentation would not imply better overall performance.
Thus, the authors claim that compact superpixels better capture spatially coherent in-
formation allowing an easier information extraction from their boundaries. In addition,
the proposed method showed better object boundary adherence than the other evaluated
methods. In (SCHICK; FISCHER; STIEFELHAGEN, 2014), the authors extend their
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work to present a new algorithm modification to reinforce the superpixels’ regularity while
maintaining the lattice structure. By adding restrictions to preserve lattice, the proposed
segmentation produces superpixels slightly more compact and less adherent to the ob-
ject boundaries. However, the trade-off between compactness and delineation surpasses
the other evaluated methods. In addition, the proposal also presents greater stability
regarding its superpixels positioning.

Stutz (2015) perform a more exhaustive evaluation and present a new benchmark
evaluation in two image datasets and fifteen superpixel segmentation methods, including
algorithms and datasets that use depth information. To obtain the best performance of
each approach, the authors optimized their parameters for the delineation measures with
a grid search. According to the evaluation, several methods present excellent performance
with low execution time. However, the inclusion of depth in the segmentation may not
represent an improvement in the results. Regarding visual quality, the authors settled
that the high quantitative results in the delineation assessment do not necessarily reflect
the segmentations’ visual quality.

Mathieu, Crouzil and Puel (2017) argue that the two datasets used by Stutz (2015)
may be insufficient for an exhaustive evaluation. They overcome this with a new dataset,
called the Heterogeneous Size Image Dataset (HSID). The HSID mainly contains large
images (with millions of pixels) and allows evaluating the superpixel methods according
to the image size. Using the HSID, the authors carefully analyzed the five best superpixel
methods in (STUTZ, 2015) and the Waterpixels (MACHAIRAS et al., 2015) method.
However, to evaluate superpixel segmentation using Boundary Recall (BR) (LEVIN-
SHTEIN et al., 2009), the tolerance error in HSID images using the image diagonal can be
very high due to the large proportions of some images. To solve this problem, the authors
used the theory of fuzzy sets to define a new boundary adherence measure, the Fuzzy
Boundary Recall (FBR). According to Mathieu, Crouzil and Puel (2017), the evaluated
methods do not achieve a satisfactory trade-off between adherence to contours, concise-
ness (smallest possible number of superpixels), and efficiency. Therefore, the authors
argue that the superpixel method must be chosen according to the necessary superpixels’
characteristics for the desired task.

Despite regularity being indicated as a desired property in superpixel segmentation, its
evaluation was restricted to qualitative analysis. Wang et al. (2017) proposed a regularity
measure for superpixels, allowing the quantitative regularity analysis. The authors also
provided an overview of the superpixel methods and a benchmark with fifteen state-of-
the-art methods and thirteen evaluation metrics, including the proposed one. Wang et al.
(2017) categorize superpixel methods as clustering-based (or gradient-based) and graph-
based, following the characterization of Achanta et al. (2012). According to Wang et
al. (2017) , methods based on clustering showed greater efficiency, while those based on
graphs presented an improved delineation. However, the running time was not considered
satisfactory, and the authors settled that the evaluated algorithms are hardly applicable
in scenarios requiring real-time responses.

Stutz, Hermans and Leibe (2018) present a more comprehensive evaluation in a bench-
mark with 28 state-of-the-art superpixel algorithms in 5 datasets that include indoor,
outdoor, and people images. In addition to the benchmark, the authors also propose
evaluation measures independent of the number of superpixels and based on existing de-
lineation metrics: Average Miss Rate (AMR), Average Under-segmentation Error (AUE),
and Average Unexplained Variation (AUV). The authors evaluated the stability of the
methods, considering the minimum, maximum, and standard deviation of each metric;
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and its robustness to noise, blur, and affine transformations. Based on the categorization
by Achanta et al. (2012), they categorize superpixel methods by their high-level approach,
allowing them to relate their categories to experimental results. The categories defined
by the authors were: Watershed-based, Density-based, Graph-based, Contour evolution,
Path-based, Clustering-based, Energy optimization, and Wavelet-based. Among these,
Watershed-based and Clustering-based contain methods with algorithms based on wa-
tershed and k-means, respectively; Graph-based and Path-based are related to image
modeling for creating superpixels, where both contain methods that model the image as a
graph, but the former corresponds to undirected graphs that are partitioned according to
some criterion, and the latter aims to compute paths in graphs according to some crite-
rion; Energy optimization contains methods whose pixel clustering is performed according
to the iterative optimization of an energy function; Contour evolution contains methods
whose superpixels evolve from their contours; Finally, Wavelet-based corresponds to the
Edge-Avoiding Wavelets (STRASSBURG et al., 2015), which does not fit into the other
categories. Despite the broad categorization performed by Stutz, Hermans and Leibe
(2018), the authors settled that some methods in the literature are not included in their
categorization.

Stutz, Hermans and Leibe (2018) evaluated the correlation between the evaluation
metrics. They settled that the Undersegmentation Error (UE) of Neubert and Protzel
(2012) has a high correlation with Achievable Segmentation Accuracy (ASA) (LIU et al.,
2011) and that the same does not occur with the UE of Levinshtein et al. (2009). They
hypothesize that this might be related to Levinshtein’s UE unfairly penalizing some su-
perpixels, as suggested by Achanta et al. (2012). Furthermore, they point out that the
measuresMean Distance to Edge (MDE) (BENESOVA; KOTTMAN, 2014) and Boundary
Recall (BR) (MARTIN; FOWLKES; MALIK, 2004) are strongly correlated. Therefore,
their assessment does not use ASA and MDE. In relation to the Intra-cluster variation
(ICV), although it is not correlated with the Explained variation (EV), the ICV was not
used in this work because it is not normalized. In both qualitative and quantitative eval-
uation, the path-based and density-based methods performed worse, while some iterative
energy optimization, clustering-based, and graph-based methods performed better. The
authors also settled that good contour adherence generally requires less compactness,
regularity, and/or smoothness, and these characteristics are not necessarily linked and
can be evaluated separately. The authors conclude that the proposed metrics accurately
reflect the performance of the methods and that the affine transformations did not influ-
ence the performance of the algorithms. Based on the proposed evaluation, they create a
ranking of the evaluated methods, and they recommend six of them: ETPS (YAO et al.,
2015), SEEDS (BERGH et al., 2012), ERS (LIU et al., 2011), CRS (CONRAD; MERTZ;
MESTER, 2013), ERGC (BUYSSENS; GARDIN; RUAN, 2014), and SLIC (ACHANTA
et al., 2012).

2.3 Image modeling

Let an image I be defined as a pair (I, I) in which I ⊂ Z2 is the set of picture elements
(i.e., pixels) whose colors is a vector mapped by I(p) ∈ Rm, given m ∈ N∗. Note that,
when m = 1, I is grayscale and it is colored otherwise. We may compute the ℓ-norm

of I(p) = ⟨I1(p), . . . , Im(p)⟩ of the colors of the pixel p by ∥I(p)∥ℓ =
(∑m

j=1 |Ij(p)|
ℓ
)1/ℓ

,

given ℓ ∈ N∗. By setting ℓ = 1 and ℓ = 2, the ℓ-norm is equivalent to the Manhattan and
Euclidean distances, respectively.

If a set X ⊆ I of pixels is provided, one may calculate its mean color µ(X) ∈ Rm
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by µ(X) =
∑

x∈X I(x)

|X| , where |X| denotes its size. Furthermore, we may segment X into

k ∈ N∗ subsets by a function S(X, k) ∈ P\∅, being P the power set, resulting in a partition
(or grouping) {X1, . . . , XK} such that

⋃k
i=1Xi = X,

⋂k
i=1Xi = ∅, and k ≤ |X|. We may

extend such concepts for describing the segmentation S ∈ S(I, k) of an image I, in which
every Si is a region or superpixel.

2.4 Evaluation measures for superpixel segmentation

Ideally, superpixels should be homogeneous in color, composed of connected pixels,
adhere to the object’s borders, and have a compact, regular shape. Furthermore, its
methods must be computationally efficient and generate a controllable number of super-
pixels. Several evaluation measures were proposed to assess the quality of the literature
methods, each evaluating a specific segmentation’s characteristic. In general, the mea-
sures for superpixel evaluation can be divided into measures that evaluate: (i) superpixel
delineation; (ii) its shape; or (iii) its color homogeneity.

2.4.1 Delineation measures

In superpixel segmentation, delineation metrics evaluate the overlap of the superpixel
boundaries with the image object. The delineation-based evaluation is widespread in
superpixel segmentation since the oversegmentation of the object and background regions
is not penalized. On the other hand, the quality of the superpixels inside these regions is
also not evaluated (STUTZ; HERMANS; LEIBE, 2018).

Boundary Recall (BR) (MARTIN; FOWLKES; MALIK, 2004) is a widely used mea-
sure for superpixel evaluation. It measures the fraction of ground-truth boundary pixels
correctly detected, as presented in Equation 2.1, where TP is the number boundary pixels
that match in a segmentation S and a ground-truth G, and FN is the number of boundary
pixels in G that does not match with S. The boundary pixels are matched within a local
neighborhood of size (2r + 1)2, in which r is 0.0025 times the image diagonal.

BR(S,G) =
TP(G,S)

TP(G,S) + FN(G,S)
(2.1)

In the superpixel literature, BR is commonly evaluated regarding the number of
superpixels, but its relation to other metrics has also been explored (SCHICK; FIS-
CHER; STIEFELHAGEN, 2012; MARTIN; FOWLKES; MALIK, 2004; GIRAUD; TA;
PAPADAKIS, 2018).

Similar to BR, Boundary Precision (BP) estimates the percentage of superpixel con-
tours that overlap the ground-truth contours at a minimum distance r, according to
Equation 2.2, where FP is the number of boundary pixels in S that does not match with
G.

BP(S,G) =
TP(G,S)

TP(G,S) + FP(G,S)
(2.2)

Benesova and Kottman (2014) argue that one of the disadvantages of BR is to consider
the same recall for all boundary pixels in S at a minimum distance of G. To overcome
this limitation, the authors proposed the Mean Distance to Edge (MDE) (Equation 2.3),
where B(A) is the set of boundary pixels in a segmentation A. The MDE evaluates the
average distance of all boundary pixels in G to the closest boundary pixels in S. However,
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Stutz, Hermans and Leibe (2018) evaluated a high correlation between BR and MDE.

MDE(S,G) =
1

|G|
∑

p∈B(G)

min
q∈B(S)

{
∥p− q∥2

}
(2.3)

Another metric widely used to assess the quality of superpixel segmentation delineation
is the Undersegmentation Error (UE). Introduced by Levinshtein et al. (2009), the UE
measures the adherence of the boundary pixels in S to the G contours based on the area
between S and G regions. UE has different versions (STUTZ; HERMANS; LEIBE, 2018).
The most recommended was proposed by Neubert and Protzel (2012) that evaluated
the adherence to contours based on the minimum area of overlap between S and G, as
presented in Equation 2.4, where N is the number of pixels G and k is the number of
regions in G.

UE(S,G) =
1

N

k∑
i

∑
Sj∩Gi ̸=∅

min{|Sj ∩Gi|, |Sj −Gi|} (2.4)

The delineation quality in superpixel segmentation can also be evaluated from its
accuracy using the Achievable Segmentation Accuracy (ASA) (LIU et al., 2011). The ASA
measures the segmentation accuracy from the maximum overlap between each superpixel
and the regions of G, as shown in Equation 2.5. Despite being a widely used metric,
ASA strongly correlates with UE (STUTZ; HERMANS; LEIBE, 2018; GIRAUD; TA;
PAPADAKIS, 2017).

ASA(S,G) =
1

N

∑
Sj

max
Gi

{|Si ∩Gj|} (2.5)

In this work, we used the BR, BP, and UE measures to evaluate design due to their
high correlation with MDE and ASA and because they are more used in the superpixel
literature.

2.4.2 Shape-based measures

Shape-based evaluation metrics assess the superpixels’ compactness and regularity.
These metrics evaluate whether the superpixels have compact shapes with smooth con-
tours and are arranged regularly — i.e., in a grid. Although these properties have an
inverse relationship to the delineation, an improved boundary recall does not necessarily
imply better segmentation (SCHICK; FISCHER; STIEFELHAGEN, 2012; SCHICK; FIS-
CHER; STIEFELHAGEN, 2014). Due to this, the superpixels’ methods quality has been
evaluated in previous benchmarks according to the trade-off between its shape quality
and delineation (STUTZ, 2015; WANG et al., 2017).

The Compactness index (CO) (SCHICK; FISCHER; STIEFELHAGEN, 2012) mea-
sure uses the isoperimetric quotient to measure the similarity between the shape of a
superpixel and a circle, which constitutes the most compact geometric shape. The CO
measure is presented in Equation 2.6, in which A(Sj) and P (Sj) are the superpixel area
and perimeter, respectively.

CO(S) =
1

N

∑
Sj

|Sj|
4πA(Sj)

P (Sj)
(2.6)

In the superpixel literature, regularity and compactness are often used to name the
same properties of convexity and smooth contours in superpixels. Machairas et al. (2015)
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and others proposed to evaluate only the contours of the superpixels rather than their
shape. For this, the authors proposed the Contour Density (CD), which measures the
relative number of contours in the segmentation. However, CD showed a high correlation
with CO (STUTZ; HERMANS; LEIBE, 2018).

CD(S) =
B(S)
N

(2.7)

Giraud, Ta and Papadakis (2017) argue that the superpixel compactness should be
independent of the regular convex geometry. The authors proposed the Global Regularity
(GR), which assesses the regularity and smoothness of superpixel contours without a pre-
established geometry. In GR, the Convexity Criterion (CC) (Equation 2.8) is measured
according to the relationship between each region’s perimeter and area. The Regularity
Criterion (RC) (Equation 2.9) is then defined as the relationship between the convexity
of the convex hull of Sj (H(Sj)) and the convexity of the region Sj.

CC(Sj) =
|P (Sj)|
|Sj|

(2.8)

RC(Sj) =
CC(H(Sj))

CC(Sj)
(2.9)

To evaluate the balance of the distribution of superpixels in the image, the variance
term Vxy was defined according to Equation 2.10, where σSjx

and σSjy
are the standard

deviations of the x and y positions of the pixels in Sj. The Shape Regularity Criteria
(SRC) (Equation 2.11) is defined by the pixel’s regularity, smoothness, and balance.

Vxy(Sj) =

√
min(σSjx

, σSjy
)

max(σSjx
, σSjy

)
(2.10)

SRC(S) =
∑
Sj

|Sj|
N

RC(Sj)Vxy(Sj) (2.11)

Despite measuring the compactness independent of geometry, the SRC does not con-
sider the superpixel size variation. For this, the authors defined the Smooth Matching
Factor (SMF), which evaluates the spatial distribution of the average size of superpixels.
The SMF is defined in Equation 2.12, where S∗

j is the centered version of Sj and S
∗ is the

average of the centered shapes of the superpixels in S.

SMF(S) = 1−
∑
Sj

|Sj|
N

∥∥∥∥ S|S| − S∗
j

|S∗
j |

∥∥∥∥
1

(2.12)

GR(S) = SRC(S)SMF(S) (2.13)

Due to the high correlation between CO and CD, we use the CO and GR metrics to
evaluate the quality of the superpixel shapes in this work.

2.4.3 Color-based measures

Although the desired properties of superpixels are not a consensus in the literature, the
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inner color similarity usually underlies their methods. Among the existent measures for
superpixel assessment, only the Intra-cluster Variation (ICV) (BENESOVA; KOTTMAN,
2014) and the Explained Variation (EV) (MOORE et al., 2008) assess color homogeneity.
However, both measures have some drawbacks. Followed by the intuition that uniformity
exhibits low color variability towards the mean, the Intra-Cluster Variation (ICV) (BE-
NESOVA; KOTTMAN, 2014) measures homogeneity of a superpixel Si by its standard
color deviation. Consequently, as shown in Equation 2.14. the homogeneity of an image
I is defined as the mean color homogeneity of the segmentation S:

ICV (S) =
1

|S|
∑
Si∈S

√∑
p∈Si

∥I(p)− µ(Si)∥21
|Si|

(2.14)

One major drawback of ICV is not presenting normalized values, being not comparable
across images and datasets (STUTZ; HERMANS; LEIBE, 2018). Moreover, it penalizes
all superpixels equally within the computation (GIRAUD; TA; PAPADAKIS, 2017). That
is, the importance of each region, and thus its deviation is equivalent irrespective of its
size. Finally, the mean color amortizes the color variations within the superpixel, possibly
resulting in an inaccurate color when the composing ones are significantly discrepant.

In contrast to ICV, the Explained Variation (MOORE et al., 2008) defines homo-
geneity by comparing the variance of the superpixels’ mean color µ(Si) and the variance
of the pixels’ color I(p) towards the image’s mean color µ(I), resulting in a normalized
measure (Equation 2.15). This measure is maximum when |S| = |I| or when I(p) = µ(Si)
for all p ∈ Si and for every Si ∈ S. However, similarly to ICV, EV considers the su-
perpixels’ mean color, which is insufficient for describing perceptually homogeneous tex-
tures (MOORE et al., 2008).

EV (S) =

∑
Si∈S |Si| ∥µ(Si)− µ(I)∥21∑

p∈I ∥I(p)− µ(I)∥21
(2.15)

2.5 Superpixel descriptor to image reconstruction

In superpixel segmentation, one may interpret the superpixels’ description as an image
reconstruction. By representing (or describing) each superpixel by its mean color, the
reconstructed image may have regions whose color does not express its actual content.
On the other hand, when using a set of colors for this representation, the recovered image
is more similar to the original image. From this, we argue that the image’s representation
by the mean color of its superpixels can lead to a significant loss of information. On the
other hand, the purpose of the description here is not an ideal image reconstruction but
a description of its superpixels. Thus, limiting this description to a small set of relevant
colors for each superpixel should result in minimal information loss for those with low
variation. Ideally, suppose the relevant colors are not very distinct from each other, and
their loss of information in the reconstructed image is minimal. In this case, the superpixel
is composed of visually homogeneous colors.

Considering that the average color used in the ICV and EV is insufficient to describe
the colors of a superpixel, a new description is necessary. Supposing that a small set of
colors can represent a visually homogeneous superpixel, we can assume that a heteroge-
neous superpixel cannot be well represented in the same way. Therefore, the heterogeneity
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of a superpixel may be related to the quality of its description from a few colors. Thus,
this descriptor’s error in recovering the superpixel content in the original image may be
related to its color homogeneity. Based on this idea, in this work, we assess the quality
of the superpixel segmentation by its ability to reconstruct the original image. More for-
mally, let R = (I, R) be a reconstructed image of I in which every pixel p ∈ I has its
reconstructed (or predicted) color R(p) ∈ Rm. Such reconstruction is ideal when R ≡ I.
If a segmentation S is provided, the popular approach is to assign R(p) = µ(Si) for all
p ∈ Si and every Si ∈ S.
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3 TAXONOMY FOR SUPERPIXEL SEGMENTATION

In recent years, several works have contributed to the development of new strategies
for superpixel segmentation (PENG; AVILES-RIVERO; SCHÖNLIEB, 2022; ZHU et al.,
2021; WU; LIU; LI, 2021; BELÉM et al., 2021). Due to this, benchmarks were proposed
to evaluate existing methods, verifying the state-of-the-art and presenting improvements
in the evaluation (NEUBERT; PROTZEL, 2012; ACHANTA et al., 2012; SCHICK; FIS-
CHER; STIEFELHAGEN, 2014; WANG et al., 2017; STUTZ, 2015; STUTZ; HERMANS;
LEIBE, 2018). Some of these works also categorized superpixel methods, making it possi-
ble to relate their categories with the experimental results (STUTZ; HERMANS; LEIBE,
2018; ACHANTA et al., 2012), as presented in Chapter 2.

The first categorization of superpixel methods, proposed by Achanta et al. (2012),
divides the superpixel methods into graph-based and gradient ascending-based methods.
While the former minimizes a cost function defined over the image graph, the latter
optimizes clusters by iteratively updating them until reaching a convergence criterion.
Later, Stutz, Hermans and Leibe (2018) provides a more comprehensive categorization
based on high-level approaches to each method. Using the categorization proposed in
their work, Stutz, Hermans and Leibe (2018) identifies common characteristics in the
results of methods of the same category. However, they settled that their categorization
does not cover several existing strategies.

With the advancement in superpixel segmentation, many strategies were proposed,
diverging from the categories established by Stutz, Hermans and Leibe (2018). Among
these, several approaches based on deep learning have emerged with different strategies to
overcome the limitations of convolutional networks (YANG et al., 2020; PENG; AVILES-
RIVERO; SCHÖNLIEB, 2022). Therefore, the existing classifications are insufficient to
cover the wide variety of approaches to superpixels, and the rapid advance in the super-
pixel literature makes it difficult to establish a better categorization for their methods.

In this work, we establish that a good classification of methods can satisfy the following
statements: (i) the characteristics (or definitions) of the categories of methods need to be
abstract enough to encompass (i.e., be valid for) all the methods in them included; and (ii)
the definitions of the categories need to be distinct from each other so that their boundaries
are clear. Given the wide variety in the strategies used for superpixel segmentation, a
taxonomy that provides a classification based on different aspects of the methods seems
more appropriate, as it allows the establishment of better-defined categories, requiring a
lower level of abstraction in its definition. In addition, classification based on different
aspects can make it possible to identify trends caused by specific aspects common to a
set of methods.

3.1 Processing steps

To provide a comprehensive taxonomy with a more natural representation of the su-
perpixel approaches, we identified that superpixel segmentation methods generally have
three steps: (i) initial processing, (ii) main processing, and (iii) final processing. In the
initial processing step, methods usually perform seed sampling, initial segmentation, or
feature extraction. The main processing usually contains the clustering process, with
several strategies for generating superpixels. Finally, in the final processing step, cluster
refinement operations are generally performed to ensure their connectivity or to fine-tune
the segmentation. Among the established steps, the main step is the most challenging
because it contains the superpixel generation process and has a greater variety of strate-
gies.
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3.2 Processing level features

In addition to the processing steps, the characteristics used are important to consider
in the segmentation methods. In the superpixel literature, several features are used, such
as edge maps, semantic features, affinity maps, and object saliency maps. To categorize
a superpixel method based on the processing level of the image features, we assign the
highest level used considering the following categories:

• Pixel-level features: Raw data resources in images — e.g., pixel color, position,
and depth;

• Mid-level features: features that can be computed based on a set of pixels, smaller
than the entire image — e.g., patch-based feature, path-based feature, gradient, or
boundary;

• High-level features: features that combine pixel properties and high-level infor-
mation. The high-level information cannot be extracted from a small set of pixels.
They are given directly by the user or predicted by other models — e.g., saliency
map, semantic features, texture, or a desired object geometry;

3.3 Categories in recent superpixel literature

To compose the categories of each of the aforementioned processing steps, we an-
alyzed 45 recent superpixel segmentation methods. This analysis identified that some
neural architectures used do not consist of pre-existing models in the literature, while
others contain simple architectures of convolutional networks. To find broad categories
that identify the process performed by the methods that use convolutional networks, we
categorized the network architecture and objective learning — e.g., for a network with
encoder-decoder architecture to learn affinity maps, its architecture may be identified as
encoder-decoder, and its objective learning as affinity maps. While the method may have
specific loss functions, making it impossible to create more comprehensive categories, the
network learning objective is related to the optimization task.

The categories shown in Table 1 identify the main processing of the evaluated methods
that do not use convolutional networks in this step. These categories were defined based
on the main processing performed to obtain superpixels. Although we indicate at most one
category for each processing step in this work, it is possible to have more than one category
in the same processing step for more complex methods that mix different approaches. It
is important to emphasize that the categories defined in this work do not intend to cover
all the superpixel literature. On the other hand, the taxonomy structure developed, in
which the methods are represented by up to three processing steps and the level of the
processed features, can be used in other superpixel methods.

Table 2 presents the proposed taxonomy applied to the analyzed methods, the color
space, and the inspiration method. In the processing steps whose solutions contain con-
volutional networks in Table 2, the architecture (arch) of the network and its training
objective (train) are informed. In Table 2, processing steps that use another superpixel
method are indicated with the category Clustering method. Similarly, the other categories
of the initial and final processing stages were established according to their high-level ob-
jective.

According to our analysis, most superpixel methods do not have convolutional net-
works in any of their processing steps and perform seed sampling in their initial processing.
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Table 1 – Main processing categories excluding methods based on neural net-
works

Categories Explanation

Neighborhood-based clustering
Performs clustering based on the similarity between pixels
restricted to a maximum spatial distance from some reference
point in the image.

Boundary evolution clustering
These algorithms iteratively update the superpixels’ bound-
aries to improve their superpixels, usually using a coarse-to-
fine image block strategy.

Dynamic-center-update clustering
The dynamic-center-update algorithms perform clustering
with a distance function based on the features of the clus-
ters, dynamically updating their centers.

Path-based clustering

Path-based approaches generate superpixels by creating
paths in the image graph based on some criteria. Usually,
its clustering criterion is a path-based function to optimize
during clustering.

Hierarchical clustering
These algorithms create regions in the image that form a hier-
archical structure, obeying the criteria of locality and causal-
ity (GUIGUES; COCQUEREZ; MEN, 2006).

Density-based clustering
The superpixel methods rely on an optimization function to
find the cluster centers, modeling the problem of finding su-
perpixels in a problem of finding density peaks.

Sparse linear system clustering
Model the segmentation problem with a sparse matrix and
use its properties to find superpixels.

Data distribution-based clustering
The approach assumes that the image pixels follow a specific
distribution and perform the clustering based on this conjec-
ture.

Regional feature extraction
Iteratively extracts regional features to perform clustering
based on these features.

Polygonal decomposition clustering
Segmentation in these methods consists of decomposing the
image into non-overlapping polygons.

Graph-based clustering Perform superpixel segmentation based on graph topology

Source: Author.

Furthermore, most of the analyzed methods perform region-based clustering on their main
processing step, and the most frequent final processing consists of merging neighboring
regions (Merging step), usually to enforce connectivity.

∗ Partially † With post-processing
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Table 2 – Recent methods for superpixel segmentation

Features

Method Year

It
er
at
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e

#
It
er
.

#
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er
p
.
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ec
.

C
om

p
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t.

S
u
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er
v
.

Color Initial processing Main processing Final processing

P
ix
.

M
id
.

H
ig
h
.

Inspired

K-SLIC 2021 ✓ ✓ ✓ ✓ CIELAB Compute optimum K Clustering with SLIC ✓ SLIC (2012)

TASP 2021 ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
✓ SLIC (2012)

MFGS 2020 ✓∗ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓ SLICO (2012)

DSR 2021 ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓ dSLIC (2018)

Semasuperpixel 2021 ✓ ✓ ✓ ✓† ✓ CIELAB
arch: Encoder-decoder
train: Semantic map

Neighborhood-based
clustering

Merging step ✓ SLIC( 2012)

AWkS 2021 ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓ W-k-means (2005)

IBIS, IBIScuda 2021 ✓ ✓ ✓† ✓ CIELAB Grid segmentation
Boundary evolution

clustering
Merging step ✓ SLIC (2012)

CFBS 2020 ✓ ✓ ✓ ✓ CIELAB Grid segmentation
Boundary evolution

clustering
✓ SLIC (2012)

SCAC 2021b ✓∗ ✓ ✓ CIELAB Grid segmentation
Boundary evolution

clustering
Boundary evolution

clustering
✓ WSBM (2020)

LSC-Manhattan 2022 ✓ ✓ ✓ ✓ Classification
Boundary evolution

clustering
✓ LSC (2017)

CONIC 2021 ✓ ✓ ✓ CIELAB Seed sampling
Dynamic-center-update

clustering
✓

SNIC (2017),
SCALP (2018)

DRW 2020 ✓ ✓ Seed sampling
Dynamic-center-update

clustering
Label propagation ✓ RW (2006)

FCSS 2021 ✓ ✓∗ ✓ ✓† ✓ CIELAB
Dynamic-center-update

clustering
✓ SNIC (2017)

F-DBSCAN 2021 ✓ ✓ CIELAB
Dynamic-center-update

clustering
✓ RT-DBSCAN (2018)

SCBP 2021 ✓ ✓ ✓ RGB
Dynamic-center-update

clustering
Merging step ✓ DBSCAN (2016)

A-DBSCAN 2021 ✓ ✓ ✓ RGB Compute features
Dynamic-center-update

clustering
Merging step ✓ DBSCAN (2016)

RSS 2020 ✓ ✓ ✓ Seed sampling Path-based clustering ✓ IFT (2004)
DISF 2020 ✓ ✓ ✓ CIELAB Seed oversampling Path-based clustering ✓ ISF 2019

ODISF 2021 ✓ ✓ ✓ CIELAB Seed oversampling Path-based clustering ✓
DISF (2020),
OISF (2018)

UOIFT 2020 ✓ ✓ CIELAB Clustering method Hierarchical clustering ✓
IFT (2004),
OIFT (2013)

HMLI-SLIC 2021 ✓ ✓ ✓∗ ✓ ✓ CIELAB Clustering method Hierarchical clustering Merging step ✓ SLIC (2012)

RISF 2018 ✓ ✓ ✓ ✓ ✓ CIELAB Hierarchical clustering
Hierarchical

region merging
✓ ISF (2019)

DAL-HERS 2022 ✓ ✓ ✓ RGB
arch: Multi-scale
Residual CNN

train: Affinity map
Hierarchical clustering ✓

SEAL (2018),
ERS (2011)

PGDPC,
SLIC-PGDPC

2021 ✓ ✓ CIELAB Seed sampling Density-based clustering ✓ DPC (2018)

DPS 2021 ✓∗ CIELAB Compute features Density-based clustering Clustering method ✓ DP (2014)

ANRW 2020 ✓ ✓ CIELAB Seed sampling
Sparse linear

system clustering
✓ NRW (2015)

GLl1/2RSC 2022 ✓ ✓ Clustering method
Sparse linear

system clustering
Encoding procedure ✓ CAWR (2017)

SCSC 2020 ✓ ✓ ✓ RGB Clustering method
Sparse linear

system clustering
Clustering method ✓

EAM 2020 ✓∗ ✓ RGB Noise remotion
Regional attributes

extraction
Merging step ✓

ECCPD 2020 ✓ ✓ ✓ ✓ RGB Seed sampling
Polygonal decomposition

clustering
Boundary evolution

clustering
✓

gGMMSP 2020 ✓ ✓ ✓∗ ✓† ✓ CIELAB
Data distribution-based

clustering
Merging step ✓ GMMSP (2018)

E2E-SIS 2020 ✓ ✓† ✓ CIELAB
arch: FCN

train: Superpixels
Superpixel pooling layer

and merging step
✓

DEL (2018),
SSN (2018)

ss-RIM 2020 ✓∗ RGB
arch: FCN

train: Image reconstruction
and Superpixels

✓
DIP (2018),
RIM (2010)

EW-RIM 2021 ✓ ✓ ✓ RBG
arch: FCN

out: Image reconstruction
and Superpixels

✓
ss-RIM (2020),
DIP (2018)

SEN 2020 ✓ RGB
arch: Encoder-Decoder
train: Deep embeddings

Clustering method ✓ RPEIG (2018)

DMMSS-FCN 2020 ✓ ✓ RGB
arch: Encoder-Decoder
train: Edge map decision

✓

UDAG 2021 ✓ CIELAB Clustering method
arch: Encoder-Decoder

train: Inpainting
Clustering method ✓ GL Graph (2015)

SuperAE-DSC 2021 ✓ ✓ ✓ ✓ RGB
arch: Autoencoder CNN

train: Image reconstruction
and pixel labeling

Clustering method Differentiable clustering ✓

SSFCN 2020 ✓∗ ✓ CIELAB
arch: Encoder-Decoder

train: Superpixels
Merging step ✓ SSN (2018)

SENSS 2022 ✓∗ ✓ ✓ ✓ CIELAB
arch: Encoder-Decoder

train: Superpixels
✓ SSFCN (2020)

DAFnet 2021 ✓ ✓ ✓ CIELAB
arch: Weight-shared CNN

train: Superpixels
✓ SSFCN (2020)

LNSNet 2021 ✓ ✓ LAB/RGB
arch: FCN

train: Image reconstruction
and Superpixels

Merging step

DMMSS 2021 ✓ ✓ Clustering method
arch: FCN

train: Binary classification
arch: FCN

train: Binary classification
✓

SIN 2021a ✓∗ ✓ ✓
arch: Interpolation Network

train: Superpixels
✓

BP-net 2021 ✓ ✓ RGB-D Seed sampling

arch: Multi-scale CNN
and FCN

train: Boundary map
and superpixels

Merging step ✓

Source: Author.
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4 STATE-OF-THE-ART ON SUPERPIXEL SEMENTATION

Superpixel segmentation has a vast literature covering several techniques. Stutz, Her-
mans and Leibe (2018) provides a benchmark for superpixels with an extensive evaluation.
Nevertheless, due to the rapid progress in developing new strategies for superpixel seg-
mentation, an analysis of the most recent proposals becomes essential. Therefore, this
section reviews the recent literature on superpixel segmentation.

4.1 Neighborhood-based clustering

Neighborhood-based methods for superpixel segmentation perform clustering of image
pixels based on the similarity between pixels restricted to a maximum spatial distance
from some reference point in the image. For example, in Simple Linear and Iterative
Cluster (SLIC) (ACHANTA et al., 2012), the maximum distance is a fixed-size image
patch, and the reference point is the cluster center. In general, neighborhood-based
methods perform multiple iterations until reaching a point of convergence or a maximum
number of iterations and do not guarantee the spatial connectivity of their superpixels.

K-SLIC. The SLIC segmentation method allows controlling the number of desired super-
pixels, but it can be a challenging parameter to set. The authors in (ULLAH; BHATTI;
ZIA, 2021) propose a granulometric approach and a quality metric method to surpass this
drawback. In the granulometric approach, the number of superpixels Kg is given by the
weighted average of the image pattern spectrum PSw computed for each color channel
in an arithmetic summation, presented in Equation (4.1), in which Ir, Ig, and Ib are the
RGB planes of an image I, and the PSw value represents the relative importance of the
image components.

Kg =
∑

PSw(Ir) +
∑

PSw(Ig) +
∑

PSw(Ib) (4.1)

The second approach proposed uses several metrics based on entropy, texture, and
ground-truth independent quality metrics to choose by the majority vote. The SLIC
segmentation of both proposals visually presents good choices to Kg. In bad-lighted
conditions, the quality metric method is less affected and provides a large number of
superpixels as compared to the granulometric method. The quality measure performs
better with different spatial resolutions, unaffected by spatial resolution changes. Despite
the improved results with the quality metric method, it is computationally expensive,
while the granulometric method is faster to compute but has worse performance.

TASP. To solve the problem of handling weak gradient structures and strong gradi-
ent textures, a Texture-Aware and Structure-Preserving (TASP) superpixel segmenta-
tion algorithm is proposed in (WU; LIU; LI, 2021). The proposal’s pipeline is based on
SLIC (ACHANTA et al., 2012) with an integrated structure-avoiding clustering distance.
based on a centroid-oriented quarter-circular mask and a hybrid gradient. The TASP’s
proposed distance is based on a centroid-oriented quarter-circular mask and a hybrid
gradient.

Figure 3 shows the difference between simple circular masks (Figure 3(a)) and the
proposed mask (Figure 3(b)). In Figure 3, the masks are centered at p and q pixels, the
region with a green border is a superpixel with centroid XSi

, the blue part represents the
truth area of the mask, and the dashed lines in (b) represent the direction of the masks.
The hybrid gradient is based on the product of the Sobel and interval (LEE et al., 2017)
gradients, and the proposed mask (Figure 3(b)) prevents inconsistent texture pixels from
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Figure 3 – Centroid-oriented quarter-circular mask of TASP algorithm

(a) Circular mask (b) Centroid-oriented quarter-circular mask

Source: Wu, Liu and Li, 2021.

being sampled from the local image patch.

Based on the centroid-oriented quarter-circular mask and the hybrid gradient, the pro-
posed distance function catches thin structure edges and prevents the superpixels from
crossing the object boundaries, due to its tradeoff between texture suppression and struc-
ture edge detection. The Equation 4.2 presents the proposed distance function D(p, Si),
where dG allows catching thin structure edges using the maximum hybrid gradient mag-
nitude on the linear path, dF measures the tradeoff between weak gradient structures
and strong gradient textures, dS is the spatial distance, and NC and NS are the size and
compactness factors, respectively.

D(p, Si) = dG

((
dF
NC

)2

+

(
dS
NS

)2)
(4.2)

TASP has an effective structure-preserving and texture-suppression procedure, out-
performing state-of-the-art methods, especially in images with strong texture and weak
boundaries structure. However, TASP is highly time-consuming, and it does not produce
more superpixels in regions with finer details, missing some structure boundaries.

MFGS. In (LIU; DUAN, 2020), the authors proposed a two-stage method for superpix-
els segmentation for RGB-D images, named Multi-feature Fusion Graph for superpixels
(MFGS). In the first stage, the MFGS uses color, and 2D and 3D spatial positions (with
depth) to perform an iterative clustering based on SLICO (ACHANTA et al., 2012).
In the second stage, it performs a merging multi-feature step, where the proposal uses
the euclidean distance, covariance matrix distance, and boundary distance to estimate
the similarity between superpixels and uses the label cost proposed in (DELONG et al.,
2012) to remove redundant labels. The MFGS method is faster, produces compact and
regular superpixels, and has a higher segmentation accuracy. However, the proposal’s
merging stage does not allow control of the number of final superpixels.

DSR. Inspired by the dynamic region range of dSLIC (MAIERHOFER et al., 2018),
a SLIC-based method called Dynamic Spectral Residual (DSR) superpixels is proposed
in (ZHANG et al., 2021) to improve seed initialization and clustering range, by incor-
porating saliency information. The proposed method computes the saliency map based
on Fourier analysis, proposed by Hou et al. (HOU; ZHANG, 2007). The DSR uses a
structure measure G (Equation 4.3) based on the saliency map SR and it’s mean SR to
define the search range for clustering and the seed initialization.
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G(x) = exp(SR− ¯SR) (4.3)

The DSR initializes selecting the superpixel centers on the structure measure minima.
After, the structures of its neighbor’s pixels are set as maximum and increase the structure
measure of pixels in the initialization range. Next, DSR performs clustering similar to
SLIC (ACHANTA et al., 2012), but instead of using a fixed grid-based patch, it uses
a search range based on the structure measure. The search range can connect uniform
regions, avoiding unnecessary small superpixels in large regions.

DSR creates more seeds in heterogeneous areas but avoids creating redundant seeds.
Also, it produces larger (and few) superpixels on homogenous regions, by connecting pixels
in a range search based on saliency. Compared to SLIC, the proposed method provides a
consistent performance improvement by increasing a low computational load, producing
superpixels that capture more details, and reducing the redundancy of the represented
information. However, it creates less regular and compact superpixels.

Semasuperpixel. The authors in (WANG et al., 2021) propose a superpixel segmen-
tation algorithm that improves SLIC clustering with a new distance measure function
considering SLIC-based distance and semantic information with a dynamic confidence
value. The authors used a DeepLab v3+ (CHEN et al., 2018) network without any re-
training to obtain semantic knowledge, and the rest of the algorithm follows the SLIC
pipeline. The proposal clusters pixels based on semantic information and uses color and
spatial information as refinement factors, achieving excellent boundary adherence and
substantially reducing leakage. Therefore, the proposal improves SLIC performance and
achieves competitive results with state-of-the-art superpixel methods.

AWkS. The proposed method in (GUPTA et al., 2021) adopts dynamic weighted dis-
tances based on weighted k-means clustering (W-k-means) (HUANG et al., 2005) and
proposes an adaptative term for each variable in its distance formulation. The proposed
Adaptative W-k-means-based Superpixels (AWks) extend SLIC (ACHANTA et al., 2012)
to explore the degree of feature relevances during objective function minimization.

In general, AWks adopts a pipeline similar to SLIC, but its distance function considers
the weighted distances for each feature or for each feature and cluster. The function is
presented in Equation 4.4, where β is a user-defined parameter, F is the feature set, and
w is an adaptative normalization weight vector. The adaptative weights wA initialize with
0, updating at the end of each iteration.

D(p, q) =
∑
A∈F

wβAd(pA, qA) (4.4)

The authors also evaluated the proposal with color and spatial position features in
a two-channel or five-channel way. AWks outperforms SLIC in boundary adherence and
produces visually better segmentations, with more compact superpixels and fewer small
ones close to the image boundaries. However, the proposal has a high running time
compared to SLIC.

4.2 Boundary evolution clustering

In boundary evolution clustering, the algorithm iteratively updates the superpixels’
boundaries to improve delineation, usually using a coarse-to-fine image block strategy.
SEEDS (BERGH et al., 2012) and ETPS (YAO et al., 2015) are examples of superpixel
methods using the boundary evolution strategy for clustering.
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IBIS, IBIScuda. The Iterative Boundaries implicit Identification for Superpixels (IBIS) (BOB-
BIA et al., 2021) produces fast superpixel segmentation by implicitly identifying the
boundaries between superpixels and using only a fraction of the input image pixels to
perform segmentation. The paper also presents a GPU variant aimed at real-time use
cases, the IBIScuda. The proposed method starts the segmentation with a grid segmenta-
tion and, according to the SLIC’s distance measure (ACHANTA et al., 2012), compares
the pixels located on the edge of the blocks, subdividing in 4 those blocks assigned to
another superpixel. At each iteration, pixels in non-homogeneous blocks are assigned to
the nearest superpixel according to the SLIC’s distance measure. After the clustering
step, IBIS performs the same merging stage as SLIC. The IBIS is much faster than other
methods and achieves similar results as SLIC. Also, its Cuda version can even improve its
efficiency, reducing computational time. However, similar to SLIC, the IBIS’s boundary
adherence, and accuracy are not competitive with other methods in the literature.

CFBS. The Coarse-to-Fine Boundary Shift (CFBS) (WU et al., 2020) algorithm aims
to overcome the two major limitations of many methods based on k-means: redundancy
and the need for post-processing. The post-processing procedure increases the execution
time of the algorithm and reduces its accuracy since its major goal in most cases is
to ensure connectivity. And redundancy is related to the iterative assignment of all
pixels to superpixels. Since most superpixels undergo few changes over iterations close to
their center, the iterative reassignment of all pixels consists of redundancy, reducing the
algorithm’s efficiency.

The CFBS proposal has the same pipeline as many iterative k-means-based methods.
Similar to SEEDS (BERGH et al., 2012) and ETPS (SHEN et al., 2016), CFBS performs
pixel block optimization in a coarse-to-fine manner using an optimization function similar
to SLIC (ACHANTA et al., 2012).

The CFBS updates all pixel blocks in the superpixels’ boundary, while the centers are
updated dynamically. The number of iterations is defined by the maximum split opera-
tions of the initial block pixels. Through many experiments, the authors demonstrated the
proposal’s ability to increase the performance of k-means-based methods while reducing
its running time, not only for superpixel segmentation but also for different applications.
However, the CFBS segmentation does not capture finer details in more complex image
regions, leading to a worse adherence to the image borders in these regions.

LSC-Manhattan. To improve LSC performance in segmentation accuracy and efficiency,
the work in (QIAO; DI, 2022) proposes an adaptive subsampling method that improves
the LSC (CHEN; LI; HUANG, 2017) performance with a distance measurement based
on non-convex image features and Manhattan distance. The proposed LSC-Manhattan
performs a subsampling strategy to label pixels according to texture complexity, such that
different subsampling ratios are applied based on the image texture complexity levels.

Firstly, the proposal classifies the input image according to its texture complexity
to determine the subsampling. For non-convex image structures, LSC has low accuracy.
Therefore, the proposed method employs Manhattan distance instead of Euclidean to
improve the accuracy and speed of computation. The authors perform a semantic seg-
mentation using DeepLabV3+ (CHEN et al., 2018) to classify whether a pixel is part of
some convex region. The LSC-Manhattan achieves competitive segmentation according
to other superpixel methods, and it also produces better segmentation than LSC, with
a reduced running time. However, the proposed distance measure is based on a specific
dataset, which can lead to generalization issues.
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Figure 4 – Diagram of SCAC

Source: Yuan et al., 2021b.

SCAC. In (YUAN et al., 2021b), the authors proposed a Superpixel segmentation with
Context-Adaptive Criteria (SCAC) to differentiate regions with meaningful and meaning-
less content and, at the same time, avoid the tradeoff between compactness and accuracy.
The SCAC identifies meaningless-content regions, produces more compact superpixels,
and prioritizes accuracy in meaningful regions.

Figure 4 presents the SCAC diagram. From an initial grid pattern segmentation,
SCAC performs an accuracy step followed by a compactness step. The accuracy step
relabels the superpixel boundaries to maximize the adherence to the object contours ac-
cording to balanced color weighted and spatial distances. Then, the compactness step per-
forms a second relabelling based on color, gradient, and texture filters to detect content-
meaningless regions. The gradient, color, and texture filters identify homogenous, noised,
and similar texture pattern regions. For gradient and texture computation, the authors
used the Sobel operator and WLD (CHEN et al., 2010) descriptors, respectively.

The SCAC is very competitive in delineation, with low degrading in compactness. Due
to its high boundary adherence in meaningful regions, SCAC’s compactness is median.
Additionally, the proposal can run in real-time, but its runtime increases for a high number
of superpixels. Also, SCAC provides limited control over the number of superpixels,
producing a number similar to the desired.

4.3 Dynamic-center-update clustering

The dynamic-center-update algorithms perform clustering with a distance function
based on the features of the clusters, dynamically updating its centers. Unlike neighborhood-
based clustering, this approach does not perform a limited regional search to calculate
distances.

FCSS. The cluster-based Fine-to-Coarse Superpixel Segmentation (FCSS) (LI et al.,
2021) algorithm improves the segmentation by adding depth information to a SNIC-based
algorithm (ACHANTA; SUSSTRUNK, 2017). Also, the FCSS uses a seed relocation pro-
cess to solve the miss segmentation problem caused by the initial seed position and uses
a priority queue to speed up the clustering process.
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Considering a pixel as a six-dimensional vector of color, position, and depth, the FCSS
starts including K cluster centers with distance zero in a priority queue. Then, iteratively
remove from the queue pixel vectors based on their minimum distance, including them in
a superpixel, updating its cluster center, and including in the queue the unlabeled neigh-
boring pixels based on depth and color distances thresholds. When the queue is empty,
it can perform a relocation to avoid unlabeled pixels by including uniformly distributed
unlabeled pixels in the queue. At each relocation, new cluster centers are pushed to the
queue, and the color threshold is updated. Finally, after the clustering step, the pro-
posal merges the unconnected pixels to ensure connectivity. The FCSS is relatively fast,
even with the addition of time complexity due to the seed relocation processing. Also, it
achieves competitive results with a visually balanced segmentation between compactness
and boundary adherence. However, the FCSS segmentation does not capture finer details
in structure-rich regions, even reducing the compactness factor.

CONIC. A novel Contour Optimized Non-Iterative Clustering (CONIC) based on SNIC
(ACHANTA; SUSSTRUNK, 2017) and SCALP (GIRAUD; TA; PAPADAKIS, 2018) is
proposed in (GONG et al., 2021). The CONIC incorporates contour prior in a new
distance measure, named joint color-spatial-contour measurement, which prevents the
boundary pixels from being assigned prematurely.

The proposed distance function D′(p, bk) is presented in Equation 4.5, where p is a
pixel, bk is the barycenter of superpixel k, pc and ps are the color and spatial values of
p, C(bk) and P (bk) are the color and spatial values of bk, Nc and Ns are constants that
represent the maximum color and spatial difference within the cluster k, and the contour
weight Nb (Equation 4.6) adjust the feature distance from p to bk using a constant ϵ that
balances the influence of the contour prior on the feature distance.

D′(p, bk) = Nb

(
∥pc − C(bk)∥22 + ∥ps − P (bk)∥22 ·

(
Nc

Ns

)2)
(4.5)

Nb = exp(ϵ× c(p)) (4.6)

The proposal achieves competitive performance against SNIC and SCALP, with mod-
erate compactness and an improved F-measure and boundary precision. The CONIC also
produces superpixels less sensitive to the gradient variation in textured regions with less
boundary degradation. Compared to SNIC, CONIC avoids redundant feature distance
computations having a faster execution than SNIC and SCALP. However, the contour
prior fails to identify some weak image boundaries.

SCBP. A Superpixel Based on Color and Boundary Probability (SCBP) is proposed
in (ZHANG; GUO; ZHANG, 2021). The SCBP is a two-stage non-iterative method based
on DBSCAN (SHEN et al., 2016), which maintains DBSCAN’s efficiency with more ac-
curate superpixels. In the first stage, the proposal clusters the pixels in the conventional
image order with an adaptative distance measure, processing each pixel only once and
dynamically updating the cluster centers.

The adaptative distance measure (Equation 4.7) weights the spatial and color distances
(ds and dc, respectively), balanced by a boundary probability term α computed with the
Sobel operator. In Equation 4.7, α + β = 1. The second stage merges superpixels based
on a second distance measure 4.8 combining their size, s(k1, k2) measures the relative size
of the combined superpixel according to the expected size, and λ is a constant.
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Dc(i, j, Ck) = β × dc(i, j) + α× dc(i, Ck) (4.7)

D(k1, k2) = s(k1, k2)× dc(k1, k2) + λ× ds(k1, k2) (4.8)

The proposed method produces compact and regular superpixels in homogenous image
regions and superpixels closer to the boundaries in complex regions. Therefore, SCBP
has visually better segmentations than the compared methods and competitive results in
boundary adherence evaluation but underperforms LSC (CHEN; LI; HUANG, 2017). In
addition, the proposal has O(n) time complexity, with a running time close to DBSCAN
and faster than the others.

A-DBSCAN. ADBSCAN-based algorithm for low contour density superpixels and faster
computation is proposed in (WANG; ZHANG, 2021). The proposed Adaptative DBSCAN
(A-DBSCAN) adopts an adaptative threshold and uses a new distance measurement that
constrains superpixel shapes based on the linear path from a pixel to a seed. The proposal
also uses a local binary pattern operator (KE-CHEN et al., 2013) to compute texture and
balance regularity and boundary adherence. After the clustering step, the A-DBSCAN
performs a merging stage to produce final superpixels with regular size.

During the clustering stage, the distance D(i, j, Ck) (Equation 4.9 measures the pixel-
superpixel distance based on spatial distance ds(i, ck) to the kth cluster center ck, α
and β parameters to balance the function terms, and an intensity term C(i, j, Ck) 4.10 to
constraint the homogeneity within the superpixels. The intensity term C(i, j, Ck) is based
on the color distance Dc, the cumulative color distance along the linear path DLC(i, ck),
and use λ and ψ as balancing parameters, where λ+ ψ = 1.

D(i, j, Ck) = α× C(i, j, Ck) + β × ds(i, ck) (4.9)

C(i, j, Ck) = λ× Dc(i, j) +DLC(i, ck)

2
+ ψ ×Dci, ck (4.10)

The proposed method is faster than DBSCAN (SHEN et al., 2016) and produces fewer
regular superpixels in textured regions, even with weak edges, achieving a more accurate
delineation. It also has a competitive performance compared with the other superpixel
methods.

F-DBSCAN. To improve the time complexity of the DBSCAN algorithm, the authors
in (LOKE et al., 2021) proposed the Fast DBSCAN (F-DBSCAN). The proposal sur-
passes many drawbacks of the previous Real-Time DBSCAN (RT-DBSCAN) (GONG;
SINNOTT; RIMBA, 2018) and parallelization issues. Instead of limiting the search range,
the F-DBSCAN defines a limited number of points to assign for each superpixel. This
minimizes the overlap and enables parallelization. The performance is also improved by
maximizing the memory hints with large memory buffers, which eliminates fragmenta-
tion. After the clustering step, the F-DBSCAN merges small clusters using a watershed
transformation (BEUCHER, 1992).

The proposal’s segmentation presents similar qualitative results to RT-DBSCAN with
much faster computation. The processing time for F-DBSCAN dropped as the degree
of parallelism was increased without increasing leakage. However, F-DBSCAN presents
a poor performance in images with blue-white boundaries and low contrast due to the
CIELAB colorspace used. For GPU processing, the F-DBSCAN presents much slower
results, owing to its regional parallelization instead of parallelizing a whole image.
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DRW. In (KANG; ZHU; MING, 2020), the authors proposed a random walk-based su-
perpixel method with improved adherence to image borders and low time complexity.
The proposal, named Dynamic Random Walk (DRW), can be efficiently computed by
a greedy strategy, and the proposed Weighted Random Walk Entropy (WRWE). The
DRW model uses dynamic nodes, which reduces the redundant calculation by limiting
the walking range. The superpixel segmentation algorithm proposed performs a new seed
initialization strategy that creates a seed set with regular distribution in both 2D and 3D
and can combine boundary prior information, such as gradient information or boundary
probability (MARTIN; FOWLKES; MALIK, 2004).

The proposed model can be efficiently computed in linear time and allows control
of the distribution of superpixels in the complex and homogenous image regions, such
that adjusting for fewer superpixels in the complex regions, capture more fine details in
these regions while producing bigger superpixels in the homogenous ones. The proposed
segmentation method has a competitive performance with the state-of-the-art superpixel
segmentation algorithms and it is faster than existing RW models. However, DRW seg-
mentation does not produce compact superpixels.

4.4 Path-based clustering

Path-based approaches generate superpixels by creating paths in the image graph
based on some criteria. Usually, its clustering criteria are a path-based function to op-
timize during clustering. The ISF (VARGAS-MUÑOZ et al., 2019) is an example of a
path-based method that calculates a forest of optimal paths based on a path cost function.

RSS. In (CHAI, 2020), the authors propose a rooted spanning forest algorithm named
Root Spanning Superpixels (RSS) that can be extended to supervoxels. To measure color
similarity and spatial closeness, they also proposed two path-based cost functions, that
have proven to be more robust than the geodesic distance. The Equations 4.11 and 4.12
present the proposed maximal difference and maximal range functions, respectively, over
a path π = ⟨v1, v2, ..., vp⟩.

fd∞(π) = max
1≤i≤p

{∥I(v1)− I(vi)∥∞} (4.11)

f r∞(π) = ∥ max
1≤i≤p

{I(v1)} − min
1≤i≤p

{I(vi)}∥∞ (4.12)

The RSS method follows the IFT (FALCÃO; STOLFI; LOTUFO, 2004) algorithm and
can form a forest with optimal costs. Inspired by counting sort and bucket sort, the RSS
computes optimal forest with buckets of queues and groups of seeds in an IFT (FALCÃO;
STOLFI; LOTUFO, 2004)-based algorithm. Due to the sorting strategy, the proposal has
O(N) complexity.

The RSS algorithm is fast and its performance is competitive to the compared su-
perpixel methods. The main strengths of this proposal are the low computational com-
plexity, great boundary adherence with stable performance, and adjustable compactness.
However, besides the proposal extends to supervoxel segmentation, it performs poorly
compared with the evaluated methods. Also, due to the initial seed sampling in a reg-
ular grid (ACHANTA et al., 2012), the RSS generates more superpixels in homogenous
regions, which leads to a degrading in boundary adherence in complex regions.

DISF. Most superpixel methods have their performance rapidly degraded for reduced
numbers of superpixels. Based on (VARGAS-MUÑOZ et al., 2019), the Dynamic and
Iterative Spanning Forest (DISF) (BELÉM; GUIMARÃES; FALCÃO, 2020) is a three-
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Figure 5 – ODISF segmentation diagram

Source: Belém et al., 2021.

step framework for superpixel segmentation that improves its delineation even for fewer
superpixels. DISF initializes with a seed over-segmentation that performs grid sam-
pling (ACHANTA et al., 2012) for a high number of seeds. Then, iteratively compute a
forest rooted at the seeds with an IFT (FALCÃO; STOLFI; LOTUFO, 2004) execution
with a further reduction of the seed set by choosing the most relevant ones. The IFT
computation and seed set reduction are repeated until achieves the desired number of
superpixels.

DISF outperforms all evaluated methods, especially for a few numbers of superpixels.
Therefore, the proposal’s segmentation is able to correctly selects relevant seeds, reducing
its boundary adherence degradation when decreasing the number of final superpixels.
Despite its iterative process increasing the running time, the DISF performs a reduced
and limited number of iterations. However, ISF segmentation can reduce its running time
by employing a differential (CONDORI et al., 2020) computation, which is impracticable
for DISF due to its dynamic path-based cost function.

ODISF. Motivated by the Object-based ISF (OISF) (BELÉM; GUIMARÃES; FALCÃO,
2018) performance, the proposal in (BELÉM et al., 2021) extends the DISF (BELÉM;
GUIMARÃES; FALCÃO, 2020) for an object-based proposal to improve the superpixel
performance using object saliency maps. The proposal, named Object-based DISF (OD-
ISF), performs a three-step pipeline (Figure 5), similar to DISF. First, the ODISF per-
forms a seed oversampling step with some strategy (e.g., GRID or random). Then, it per-
forms a path-based superpixel generation followed by an object-based seed removal. In the
superpixel generation step, the ODISF executes an IFT (FALCÃO; STOLFI; LOTUFO,
2004) algorithm with a dynamic path-based cost function (BRAGANTINI et al., 2018).
In the remotion step, the algorithm maintains seeds closer to the object saliency bound-
aries or with higher saliency. To generate the object saliency maps, the authors used
an U2-net (QIN et al., 2020). Finally, ODISF iteratively performs the generation and
removal steps until reaching the desired number of superpixels.

The proposed method demonstrates a generalization ability by performing an effective
superpixel segmentation in datasets with different object properties. The proposal also
demonstrates robustness to saliency map errors in comparison with OISF. Despite the
ODISF delineation step being saliency-independent, its object-based removal strategy can
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circumvent the saliency errors. On the other hand, the ODISF does not allow controlling
the number of iterations. Also, despite its computational complexity, it has a high running
time, being faster only than the OISF.

4.5 Hierarchical clustering

Hierarchical segmentation methods are generally not mentioned in the literature as
superpixel methods. However, they fit most definitions for superpixels. Although hierar-
chical methods do not obtain a compact or regular segmentation, the regions produced
are generally homogeneous. Furthermore, from the generated hierarchy, it is possible to
control the desired number of regions without increasing the execution time.

HMLI-SLIC. A Hierarchical and Multi-Level LI-SLIC (HMLI-SLIC) algorithm is pro-
posed in (DI et al., 2021) to improve segmentation accuracy and robustness to noise. The
HMLI-SLIC consists of three steps: (i) initial segmentation, (ii) hierarchical multi-level
segmentation, and (iii) superpixel merging. In the first step, the proposal produces a con-
trolled number of superpixels with SLIC (ACHANTA et al., 2012) segmentation. Then,
it performs coarse to fine segmentation with the SLIC algorithm to ensure that each su-
perpixel does not contain multiple object regions, producing a hierarchical segmentation.
Finally, it performs a merging step with the most similar superpixels.

The proposal is robust to noise and can fit image boundaries since it produces more
superpixels in heterogeneous regions and less in homogenous ones. In addition, the HMLI-
SLIC does not perform under- or over-segmentation, setting the number of seeds and
superpixels automatically. Therefore, it does not allow controlling the number of su-
perpixels. However, compared with other superpixels methods, the proposal has high
time-consuming and does not produce regular or compact superpixels.

RISF. In a previous work (GALVÃO; FALCÃO; CHOWDHURY, 2018), the authors
present a hierarchical segmentation algorithm based on ISF. The proposal in (GALVÃO;
FALCÃO; CHOWDHURY, 2018) is limited to two observation scales, being incapable
of producing an entire hierarchy. In (GALVÃO; GUIMARÃES; FALCÃO, 2020), the
authors surpass this drawback by proposing a Recursive Iterative Spanning Forest (RISF)
to hierarchical segmentation using a region merging algorithm as post-processing. RISF
produces a sparse hierarchy by computing a multi-scale superpixel segmentation using ISF
over the Region Adjacency Graph (RAG) resulting from the previous scale. The region
merging algorithm produces a dense hierarchy from a mid-level superpixel segmentation
for more accurate segmentation in coarser scales.

The proposal produces more irregular superpixels than ISF, but the quantitative and
qualitative results demonstrate that RISF has better segmentation than the state-of-the-
art superpixel methods. Compared to dense hierarchical superpixel methods, RISF’s
performance is competitive. The RISF can produce a hierarchy from any superpixel
segmentation method and has a low complexity of O(n log n), being faster than most of
the evaluated methods due to its computation over RAGs. However, due to the hierarchy
construction, errors in coarser scales are propagated to the finer ones.

UOIFT. The proposal in (BEJAR; GUIMARÃES; MIRANDA, 2020) extends (BEJAR;
MANSILLA; MIRANDA, 2018) to propose a hierarchical and unsupervised image segmen-
tation method that exploits non-monotonic-incremental cost functions in directed graphs
to incorporate high-level priors of the objects as boundary polarity. The proposal, named
Unsupervised OIFT (UOIFT), computes an initial forest over the image pixels and par-
titions the graph with multiple executions of the OIFT (MANSILLA; MIRANDA, 2013;
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Figure 6 – The DAL-HERS framework

Source: Peng, Aviles-Rivero and Schönlieb, 2022.

MIRANDA; MANSILLA, 2013) computed over the Region Adjacency Graph (RAG) of
the previous forest.

The UOIFT is fast and demonstrated its ability to accurately segment medical images
and colored images with different lighting conditions, outperforming all hierarchical im-
age segmentation methods compared. Besides its boundary polarity allowing improved
segmentation for a specific color (or texture or local contrast) transition, setting this
parameter can be challenging, for more generic applications.

DAL-HERS. The DAL-HERS, a two-stage superpixel framework is proposed in (PENG;
AVILES-RIVERO; SCHÖNLIEB, 2022), which consists of aDeep Affinity Learning (DAL)
neural network architecture and aHierarchical Entropy Rate Segmentation (HERS) method.
As shown in Figure 6, the DAL network learns an 8-channel pixel affinity map (left), used
by the HERS algorithm to construct a hierarchical tree structure.

The DAL network aggregates multi-scale information to learn pairwise pixel affinities,
and the HERS builds a hierarchical tree structure by maximizing the graph’s entropy rate.
The proposed DAL network consists of two parts: (i) a convolutional residual model based
on (HE et al., 2016) to learn intermediate pixels affinities without too much additional
computational cost and (ii) a HED (XIE; TU, 2015) model to capture neighborhood infor-
mation from the intermediate pixels affinities at varying scales with increasing receptive
field sizes. Using the DAL’s affinity map, the proposed HERS algorithm constructs a
hierarchy with Bor̊uvka’s algorithm (WEI et al., 2018) based on the entropy rate of the
graph.

The DAL-HERS method preserves fine details on the objects by focusing on rich-
structure parts rather than uniform regions, producing large superpixels in homogeneous
regions and an over-segmentation in texture-rich regions. Therefore, it captures semanti-
cally homogenous regions and highly adheres to the object boundaries. Also, compared
with deep-based learning methods, the DAL-HERS running time is competitive, and it
requires the same O(N) time to produce any number of superpixels. Due to the highly
adaptive nature of the produced superpixels, delineating fine details, the proposal has a
low ASA score. The authors mitigate this problem by incorporating edge information,
but the variant suffers from BR and EV degradation.
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Figure 7 – PGDPC segmentation procedure

Source: Guan et al., 2021.

4.6 Density-based clustering

In the density-based clustering approach, the superpixel methods rely on an optimiza-
tion function to find the cluster centers, calling them density peaks. The clustering of the
non-peak pixels is performed according to the centers, generally assigning a pixel to the
superpixels with the spatially closest density peak. Therefore, such methods model the
problem of finding superpixels in a problem of finding density peaks.

PGDPC. In (GUAN et al., 2021), authors proposed a fast density peak clustering
method, the Peak-Graph-based fast Density Peak Clustering (PGDPC), based on DPC
(WANG; WEI; TSE, 2018) to improve its time complexity and accuracy. The proposal
performs a two-step strategy, firstly dividing data points into peaks and non-peaks and
computing a graph using DPC-based allocation. Then, the peaks candidates are assigned
along geodesic paths in a peak graph.

The PGDPC initializes computing the KNN density (XIE et al., 2016) for each pixel
and classifies them as peak candidates and non-peaks. Then, compute a graph based on a
DPC allocation, and initializes a peak graph with peak candidates as roots (Figure 7 (a)).
The non-peak nodes are assigned to the closest root cluster, forming trees whose edges’
weights are the minimum path distance between pixels, called a geodesic path (Figure 7
(b)). The trees are connected by adding edges between neighbors’ pixels from different
trees whose edge’s weight is an association distance, as the sum of the geodesic distance
of these nodes. Finally, by the centers of the clusters as candidate peaks with higher
density than their neighbors and high geodesic distance for the highest density peaks
(Figure 7(c)), the clustering step is complete (Figure 7(d)).

The proposal is faster than the compared methods, having an O(n log n) time com-
plexity. In synthetic datasets, PGDPC demonstrates its ability to cluster complex struc-
tures using the proposed peak graph methodology, achieving an improved performance
compared with DPC. To evaluate the proposal, the authors combined PGDPC and
SLIC (ACHANTA et al., 2012) to reduce the computational cost for natural images,
and they used image compressing for medical images. The PGDPC achieves competitive
performance in natural and medical datasets. However, using SLIC as pre-processing, the
SLIC errors can be propagated to PGDPC, reducing its performance.

DPS. Density peak-based algorithms often achieve excellent performance, but they can
have a high computational cost (RODRIGUEZ; LAIO, 2014), due to their high search
range for density peaks. In (SHAH et al., 2021), the authors propose a Density Peaks Su-
perpixel (DPS) algorithm to perform an efficient non-iterative density peak segmentation
in a limited search region.

The DPS initializes computing the pixels’ density ρ (Equation 4.13) and finds the
density of peaks δ (Equation 4.14), searching in a limited region Ωi, where dc is a threshold
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Figure 8 – SCSC diagram

Source: Li et al., 2020.

distance and dij measures the distance between pixel i and j. Then, the superpixels’
centers are founded based on pixel density threshold T1 and peak density T2 threshold.
Finally, it assigns the remaining pixels to their nearest superpixel with a higher density.
Due to the regional search, its time complexity is O(m2), where m×m is the region size.

ρi =
∑
j∈Ωi

e−(
dij
dc

)2 (4.13)

δi = min
j:ρj>ρi

(dij) (4.14)

The proposed DPS is faster than Density Peak (RODRIGUEZ; LAIO, 2014) and has a
competitive segmentation, even using only color and spatial distances in a single iteration
to compute the superpixels. However, the DPS does not produce regular and compact
superpixels. Also, its control over the number of superpixels is indirect and based on two
parameters.

4.7 Sparse linear system clustering

ANRW. Random walk-based superpixel methods (GRADY, 2006) have improved per-
formance in textured images and weak borders. However, these methods usually are
sensitive to their initial seed points. To overcome this issue, (WANG et al., 2020) propose
the Adaptive Nonlocal Random Walk (ANRW), which performs seed initialization based
on the regional minima with a trade-off between local contrast and spatial distance.

The ANRW is based on the nonlocal random walk (NRW) (YUAN et al., 2015), which
uses K-Nearest Neighbor (KNN) linking points to weight pixel features exploring local
relationships. From the generated seed set, the ANRW computes the weight matrix of the
pixels according to an adaptative gaussian function and the KNN features. The authors
propose an adaptative method to choose the number of KNN-linking points according to
the size of the superpixel. Also, the proposal computes the KNN weights with the Fast
Library for Approximate Nearest Neighbors in (VEDALDI; FULKERSON, 2010).

From the adaptative gaussian and KNN features, the proposed method computes a
Laplacian matrix and solves the Dirichlet problem to achieve the pixels’ probabilities
and assign the labels according to it. The KNN link may produce many small parts in
the superpixel segmentation. Therefore, after the clustering step, the ANRW performs a
coarse-to-fine merging strategy. The ANRW can deal with textured images, outperforming
the compared methods in boundary recall, under-segmentation error, and accuracy, but
the proposal has high computational complexity. Although the ANRW doesn’t produce
compact superpixels in complex regions, it does in homogeneous ones.
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Figure 9 – The EAM diagram

Source: An et al., 2020.

GLl1/2RSC. The authors in (FRANCIS; BABURAJ; GEORGE, 2022) propose a noise-
robust image segmentation algorithm based on subspace clustering with enhanced seg-
mentation capability using Laplacian and l1/2 regularization techniques. The proposed
Graph laplacian l1/2 regularized subspace clustering (GLl1/2RSC) method addresses the
challenge of obtaining an improved sparse solution or a sparse representation matrix under
the circumstances of noise-corrupted feature data vectors.

The GLl1/2RSC starts with an initial superpixel segmentation (LU et al., 2012) and
computes its Local Spectral Histogram (LSH) features to obtain a feature data matrix.
Then, perform a spectral clustering on the matrix to obtain clustered data points and exe-
cute an encoding procedure to map the clustered superpixels into optimal regions (WANG;
WU, 2017) (ZOHRIZADEH; KHEIRANDISHFARD; KAMANGAR, 2018). The GLl1/2RSC
segmentation preserves the image structures, producing better results for images with a
large number of small dominant regions. However, similar to other subspace clustering
methods, the proposal has a high running time due to the LSH feature vector generation.

SCSC. The authors in (LI et al., 2020) proposed a Spatially Constrained Subspace Clus-
tering (SCSC) algorithm capable of capturing detailed regions without significantly in-
creasing the number of superpixels. The SCSC formulates the superpixels problem as a
subspace clustering problem. The SCSC diagram is shown in Figure 8. The proposed
method first performs a K-means clustering. Then, it constructs a coding matrix us-
ing the superpixel-based feature vectors and solves the matrix with an algorithm based
on the alternating direction method of multipliers (ADMM) (BOYD et al., 2011). The
superpixel-based feature vectors chosen are mean gradient and color, the superpixel’s cen-
ter, and texture (SILVA; BOUWMANS; FRÉLICOT, 2015). Finally, the SCSC computes
the affinity graph and performs an NCut segmentation (SHI; MALIK, 2000) with a further
merging step to guarantee connectivity.

The method can achieve good performance even with a low number of superpixels. The
SCSC outperforms the classic methods evaluated and is comparable to the deep learning
ones. Its quantitative results produce more flat plots, meaning that its performance
doesn’t decrease so fast as the other methods when the number of superpixels decreases.
Also, the superpixels generated are capable of capturing finer boundary details. However,
the proposal may not produce regular or compact superpixels. Also, its execution can
take many seconds to generate hundreds of superpixels.
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Figure 10 – The ECCPD diagram

Source: Ma et al., 2020.

4.8 Regional attributes extraction

EAM. The Extract and Merging (EAM) (AN et al., 2020) algorithm computes superpixels
based on regional attributes. The proposal extracts multi-level attributes using squared
windows of various sizes, called power-windows. Then, it performs clustering based on
the regional attributes.

The EAM pipeline is shown in Figure 9, where the green arrows in the figure indicate
inputs and the red arrow indicates outputs. Firstly, the EAM removes noise from the in-
put image with a bilateral filtering (TOMASI; MANDUCHI, 1998) and extracts regional
attributes using power-windows by computing its boundary clearness, which determines
whether a power-window contains a single object (Figure 9 on left). The power-windows
with more than one object are iteratively split into four until achieving a minimum size.
Next, the EAM performs a merging step (Figure 9 on right) computing a Dijkstra (DI-
JKSTRA et al., 1959) algorithm to merge similar power-windows, followed by a binary
search algorithm to merge them with unreached windows. To reach a more appropri-
ate number of superpixels, the authors use the cluster diameter threshold to control the
degree of detail of segmentation.

The EAM is relatively fast and generates larger and fewer superpixels in homogenous
regions, capturing more details in complex regions. The proposal’s ability to capture more
homogenous superpixels, with a superior adherence to the image boundaries, with superior
performance in Explained Variation. Also, it achieves a highly competitive accuracy with
results closer to deep-based approaches. However, the EAM’s superpixels were neither
compact nor regular. Also, its running time is not competitive with other unsupervised
methods with linear time complexity.

4.9 Polygonal decomposition clustering

ECCPD. In (MA et al., 2020), the authors propose a polygonal decomposition method
to generate compact and convex superpixels while adhering to the image boundaries. The
proposed Edge-Constrained Centroidal Power Diagram (ECCPD) algorithm formulates
the superpixel generation problem into a Centroidal Power Diagram (CPD) (AUREN-
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Figure 11 – E2E-SIS diagram

Source: Wang, Li and Zhang, 2020.

HAMMER, 1987) problem.

The proposed method shown in Figure 10, initializes superpixels with fixed cluster
centers according to the CPD and random centers equally spaced. Then, iteratively
adapt the power cell sizes according to the superpixel’s distance from the edges, and the
similarity between adjacent superpixels. The power cell centers (cluster centers) are also
iteratively updated according to their centroid. After performing a number of iterations
or achieving a certain threshold, run post-processing to align some boundaries.

Compared with other polygonal superpixel methods, the ECCPD can capture better
boundaries in more complex regions. Also, the generated superpixels capture more in-
formation in these regions, and the proposal is faster than other strategies to compute
the CPD with capacity constraints in geometry. However, ECCPD is very slow compared
with some evaluated methods, and it has no competitive performance in boundary recall,
under segmentation error or accuracy.

4.10 Data distribution-based clustering

In superpixel segmentation, we name data distribution-based methods the approaches
that assume that the image pixels follow a specific distribution. From this initial conjec-
ture, the clustering step is performed. As far as we know, the distribution-based methods
that perform superpixel segmentation are based on the gaussian mixture model and as-
sume that the image pixels follow a Gaussian distribution.

gGMMSP. To explore the parallelism in GMMSP (BAN; LIU; CAO, 2018), a real-time
solution without the loss of segmentation consistency is proposed in (BAN; LIU; FOURI-
AUX, 2020). The proposed gGMMSP is implemented on CUDA for GPU processing and
gives very similar segmentation results as GMMSP with much faster computation. The
proposal maintains the core of the GMMSP algorithm, adapting its data structures and
arithmetic computations to perform GPU processing. The GMMSP and gGMMSP require
post-processing to ensure connectivity. However, this step has data dependencies that pre-
vent parallel computing, reducing the speedup’s proposal. Even with post-processing, the
gGMMSP is faster than the serial and openMP versions of GMMSP, achieving speedups
of 92.6 and 27.5, respectively.

4.11 Deep learning-based methods with a simple FCN architecture

E2E-SIS. In (WANG; LI; ZHANG, 2020) authors proposed a deep learning-based frame-
work for superpixel and image segmentation. The proposal uses an end-to-end trainable
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Figure 12 – Edge-Aware RIM (EW-RIM) diagram

Source: Yu, Yang and Liu, 2021.

CNN that learns deep features with two final layers, one for superpixels and the other for
image segmentation. The diagram for E2E-SIS is presented in Figue 11.

For superpixel segmentation, the deep features from the final layer of the CNN fed a
differentiable clustering algorithm module (JAMPANI et al., 2018), generating the final
superpixel segmentation. The superpixel results and the deep features from the second
final CNN layer are used by a superpixel pooling (KWAK; HONG; HAN, 2017) to learn
semantic similarities between superpixels. The final image segmentation is achieved by
merging superpixels with high similarities. The E2E-SIS has a high ability to segment
superpixels and to perform image segmentation, both with competitive results. Since
the proposal is end-to-end trainable, it can be integrated into other deep learning-based
methods. However, compared to other superpixel segmentation methods, the proposed
framework has a high computational time.

ss-RIM. Based on the idea that low-level features are insufficient to improve segmentation
with few superpixels, the authors in (SUZUKI, 2020) induce non-local properties into an
unsupervised CNN-based method. The proposal uses the Deep Image Prior (DIP) (LEM-
PITSKY; VEDALDI; ULYANOV, 2018) procedure to generate task-agnostic superpixels
with a new loss function based on clustering, spatial smoothness, and reconstruction.

The clustering term is similar to the mutual information term of RIM (KRAUSE;
PERONA; GOMES, 2010), and the spatial smoothness cost is the same as proposed
in (GODARD; AODHA; BROSTOW, 2017). Finally, the reconstruction cost helps the
loss function fit the superpixels at the components’ boundaries. The proposal can gener-
ate regular superpixels in homogenous regions and also outperforms the other superpixel
methods in ASA, especially for a few superpixels. For the Boundary Recall metric, the
proposal also outperforms the other methods, but only for a low number of superpix-
els. According to the results, the proposed method is able to generate superpixels more
attached to the image boundaries, especially in heterogeneous regions. However, the ss-
RIM only allows control of the upper bound number of superpixels and does not ensure
connectivity.

EW-RIM. An edge-aware term for a deep learning-based superpixel algorithm based
on SS-RIM (SUZUKI, 2020) and DIP (LEMPITSKY; VEDALDI; ULYANOV, 2018) is
proposed in (YU; YANG; LIU, 2021) to improve boundary adherence using image gra-
dient. The proposal, named Edge-Aware RIM (EW-RIM), encompasses a loss func-
tion composed of four terms based on clustering (KRAUSE; PERONA; GOMES, 2010),
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Figure 13 – Superpixel Embedding Network (SEN) diagram

Source: Gaur and Manjunath, 2020.

smooth (SUZUKI, 2020), reconstruction (GODARD; AODHA; BROSTOW, 2017), and
edge-aware. The edge-aware accomplishes a differential approximation to the distribution
of image gradients. The proposed model enhances the image edges with filters provided
in (YIN; GONG; QIU, 2019) and the Contrast Limited Adaptive Histogram Equalization
(CLAHE) to improve the smooth and edge-aware loss terms.

Figure 12 shows the EW-RIM diagram. Using RGB color and spatial information as
input, the EW-RIM extracts feature information from a CNN architecture (blue layers
in Figure 12) with a feature merging step (green layers), to obtain the association proba-
bility maps (purple layers in Figure 12). For loss computation, an edge-enhanced image
is applied to obtain the edge loss Ledge and smooth loss Lsmooth. The proposed edge-
aware term improves the boundary adherence of the proposed EW-RIM compared with
its baseline and outperforms all compared methods, also producing compact superpixels.
However, since the proposal’s segmentation generates more similar superpixels in size, it
does not preserve finer details in complex regions.

LNSNet. In (ZHU et al., 2021), the authors proposed an unsupervised CNN-based
superpixel segmentation method, called LNSNet, to learn superpixels in a lifelong manner.
The LNSNet (Figure 14) is composed of three major modules: a feature embedder module
(FEM) (Figure 14(A)), a gradient rescaling module (GRM) (Figure 14(B)), and a non-
iterative clustering module (NCM) (Figure 14(C)). The FEM embeds the original feature
into a cluster-friendly space. The NCM uses the embedded features in a seed estimation
layer (SEL) to estimate the optimal cluster centers and assigns labels to each pixel based
on similarity using the clustering layer (CL). Finally, the GRM solves the forgetting caused
by lifelong learning during the backward step using a Gradient Adaptive Layer (GAL)
and a Gradient Bi-direction Layer (GBL). While the GAL manages the importance of
different feature channels to avoid overfitting, The GBL generates confrontation based on
the spatial context to improve generalization.
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Figure 14 – LNSNet diagram

Source: Zhu et al., 2021.

The experiments showed that the proposed method has a high generalization capacity.
In addition, it was able to obtain better quantitative results on the BSDS500 and DME
datasets and presented competitive results on the DRIVE dataset. Therefore, the LNSNet
generates improved or more competitive superpixels using less complex and computation-
ally faster architecture and without ground truth data. However, the proposal has some
drawbacks. Firstly, the proposed model cannot reach a complete convergence, due to the
sequential training strategy, requiring post-processing to remove trivial regions. Secondly,
GBL’s boundary map may contain noises and lead to irregular superpixels when facing
a background with a complex texture. Finally, the clustering step requires a distance
matrix with an NxK dimension, which is inefficient when calculated by a CPU with a
large K.

4.12 Deep learning-based methods with an encoder-decoder architecture

SEN. Inspired by (KONG; FOWLKES, 2018), the authors in (GAUR; MANJUNATH,
2020) proposed the Superpixel Embedding Network (SEN), an unsupervised deep network
method that learns deep embeddings for superpixel segmentation. The SEN diagram
is shown in Figure 13. To learn the pixel embeddings, they used the U-net (RON-
NEBERGER; FISCHER; BROX, 2015) architecture with a differentiable Mean-Shift re-
current clustering based on (KONG; FOWLKES, 2018) for density estimation.

The differentiable clustering module considers the global context, preventing embed-
dings from being labeled to optimize local distances. To train the SEN architecture,
the authors proposed a variable-margin contrastive loss that compares the embedding
distances with a superpixel segmentation generated with a randomly selected scale and
detail attribute. The proposal is end-to-end trainable and uses superpixel segmentation
maps as a pseudo-ground-truth label to learn a new manifold whose feature distances act
as a proxy for semantic similarity. The superpixel segmentations for the proposed loss
function are generated by the SNIC (ACHANTA; SUSSTRUNK, 2017).

SEN network significantly outperforms the other superpixel segmentation methods in
boundary F1 score, but its UE and ASA results are barely competitive with the other
methods. Therefore, SEN presents a better boundary adherence, but with larger leakage



50

Figure 15 – DMMSS-FCN diagram

Source: Huang and Ding, 2020.

regions. The proposal also produces more superpixels in homogenous image regions,
missing some image boundaries in complex regions.

DMMSS-FCN. In (HUANG; DING, 2020), the authors propose a superpixel segmenta-
tion framework that treats the segmentation problem as multiple merging decision prob-
lems. The proposal, named Deep Merging Model for Superpixel Segmentation by Fully
Convolutional Networks (DMMSS-FCN), contains a fully convolutional network and a
superpixel merging algorithm (Figure 15).

From an RGB image, a superpixel boundary map, and an edge-detection map, the
proposal’s network decides whether remove each image edge and outputs an edge re-
moval map. The authors compute the edge-detection map using Refine Contour Net
(RCN) (KELM; RAO; ZÖLZER, 2019) and the superpixel boundary map from the
SEAL (TU et al., 2018) and SSN (JAMPANI et al., 2018) segmentations. For the net-
work architecture, the proposal uses a DeepLabV3+ (CHEN et al., 2017) with Inception-
ResNetV2 (SZEGEDY et al., 2017) as the encoder. The superpixel merging algorithm
dynamically thresholds the edge removal map and uses majority voting for a superpixel
pair. The algorithm merges based on the boundary removal rate until it achieves a final
threshold.

The DMMSS-FCN captures complex structures, performing a more accurate segmen-
tation with fewer small regions. Also, its running time is faster than some evaluated
methods. However, for real-time computation, the DMMSS-FCN requires a GPU for the
network processing with further CPU processing for the merging algorithm. In addition,
the DMMSS-FCN segmentation results fail to capture finer image details, and the final
number of superpixels is not controllable.

Figure 16 – UDAG diagram

Source: Bhugra et al., 2021.
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Figure 17 – SuperAE-DSC algorithm

Source: Lin, Zhong and Lu, 2021.

UDAG. Motivated by the GL graph (WANG et al., 2015), the authors in (BHUGRA et
al., 2021) proposes using unsupervised Deep Learning Affinities in a Graph-based segmen-
tation (UDAG) to perform segmentation based on contextual information. Based on the
idea that inpainting networks can learn pixel association, the proposal uses the contextual
layer (YU et al., 2018) information learned by an inpainting network (PATHAK et al.,
2016) to generate an affinity matrix.

In the first step, the authors perform a superpixel aggregation, following the strategy
in (LI; WU; CHANG, 2012), generating superpixels using different methods (FELZEN-
SZWALB; HUTTENLOCHER, 2004) (COMANICIU; MEER, 2002) (Figure 16 (a)). Then,
for every superpixel obtained in the decomposition, compute inpainting results (PATHAK
et al., 2016) and utilize the features in the contextual layer (YU et al., 2018) to extract
similar regions for every pixel in a superpixel (Figure 16 (b)). Using the similarity score,
they construct a bipartite graph structure and generate the final superpixels with SAS (LI;
WU; CHANG, 2012) algorithm (Figure 16 (c)).

The proposed method demonstrates that the affinity graph learned from the contextual
layer (YU et al., 2018) in an inpainting network (PATHAK et al., 2016) provides useful
information for superpixel segmentation. Also, the UDAG algorithm can produce fewer
superpixels compared to other unsupervised methods, and their superpixel boundaries are
similar to semi-supervised approaches. However, the proposal’s results do not outperform
most of the evaluated methods in the qualitative assessment and the number of superpixels
is not controllable.

SuperAE-DSC. The SuperAE-DSC (LIN; ZHONG; LU, 2021) is a deep learning method
for superpixel segmentation which consists of a Superpixel-wise Autoencoder (SuperAE)
and a Deep Superpixel Cut (DSC) algorithm. The SuperAE takes the original image and
a high-quality over-segment template (ARBELÁEZ et al., 2011) and outputs a smoothed
image. The SuperAE encoder learns deep embeddings guided by the high-quality tem-
plate. On the other hand, the DSC measures the deep similarity between superpixels and
partitions them into perceptual regions by soft association, which is differentiable and can
be optimized by backpropagation.

Figure 17 presents the SuperAE-DSC diagram, where the purple arrows indicate the
gradient flow. The proposed SuperAE-DSC firstly trains the autoencoder for image re-
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Figure 18 – SENSS architecture

Source: Wang et al., 2022.

construction using an over-segment template (ARBELÁEZ et al., 2011) as a guideline.
By using the deep features embeddings from the SuperAE’s encoder and superpixels gen-
erated by an existing algorithm like (FELZENSZWALB; HUTTENLOCHER, 2004) with
the reconstructed image, the DSC iteratively minimizes its loss function based on the su-
perpixel similarity and deep embeddings to output the final segmentation. The proposed
method visually preserves the main structures of the image and its results are competi-
tive with the evaluated algorithms. The SuperAE-DSC segmentation does not produce
regular or compact superpixels but preserves fewer finer details of the image.

SSFCN. A challenge faced by deep learning-based superpixel methods is how to in-
corporate superpixels into standard convolution operations. Inspired by grid sampling
(ACHANTA et al., 2012), an initialization strategy commonly adopted by traditional
superpixel methods, (YANG et al., 2020) proposes an end-to-end trained deep learning
model to predict superpixels on a regular image grid.

The proposal generates superpixels competitive with the state-of-the-art, with an eas-
ily integrated pre-processing in deep learning models with other applications. The pro-
posed superpixel segmentation for Fully Convolutional Network (SSFCN) uses a standard
encoder-decoder design with skip connections to predict superpixel association scores be-
tween pixels and regular grid cells.

To make the objective function differentiable, they replace the hard assignment with a
soft association map. The loss function computes the distance between each reconstructed
pixel’s value and its superpixel’s center value. In this work, the authors proposed two
loss functions: one, similar to SLIC, uses an L2 norm as feature distance; and the other
follows SSN (JAMPANI et al., 2018) using cross-entropy with a one-hot encoding vector
of semantic labels. Using the predicted map, SSFCN computes superpixels by assigning
each pixel to the grid cell with the highest probability.

Compared to the other deep-based methods, the SSFCN generates more compact
superpixels, is faster, and is competitive in ASA and BP-BR. It also outperforms in these
metrics all non-deep learning methods evaluated. As the main drawbacks, the number
of superpixels is indirectly controlled by input image resizing, and a post-processing step
is required to enforce connectivity. The authors also demonstrate the proposal’s efficacy
by modifying a network architecture for stereo matching (CHANG; CHEN, 2018) to
simultaneously predict superpixels and disparities.
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Figure 19 – DAFnet diagram

(a) DAFnet diagram. (b) SFM module.

Source: Wu et al., 2021.

SENSS. Although the SSFCN (YANG et al., 2020) does not outperform existing methods
on some metrics, it generates superpixels in a regular grid, and it’s easy to integrate with
other deep learning-based tasks. The work in (WANG et al., 2022) presents an improved
end-to-end trainable deep learning-based superpixel method. The proposed Squeeze-
and-Excitation Network for superpixel segmentation (SENSS) incorporates Squeeze-and-
Excitation (SE) modules (HU; SHEN; SUN, 2018) into an SSFCN architecture (YANG
et al., 2020) (Figure 18).

The SE block explicitly models the interdependencies between channels, improving
the representation power of the network. Therefore, the proposal has an encoder-decoder
architecture with an attention module at each decoder block. The encoder produces high-
level feature maps, and the decoder gradually upsamples the feature maps while modeling
the channel-wise relationship. For training, the proposal uses the SSFCN’s differentiable
loss function. The proposed network outperforms the SSFCN performance, improving its
learning ability with the SE blocks and achieving competitive results. However, the SE
blocks have an additional computational cost. Also, SENSS has the same drawbacks as
SSFCN, with limited control of the superpixels’ number, and needs post-processing to
guarantee connectivity.

4.13 Deep learning-based methods with other architectures

DAFnet. The depth information captured by stereo image pairs and the correspondence
of the two views can improve superpixel segmentation to capture information difficult to
be distinguished. To exploit stereo images, (WU et al., 2021) proposes an end-to-end
Dual-Attention Fusion Network for superpixel segmentation (DAFnet), which integrates
mutual information from both image views.

The proposal first extracts deep features from both image views with a weight-shared
convolution network (Figure 19(a)). Then, the features from both views are integrated
with a Stereo Fusion Module (SFM), composed of a Parallax Attention Module (PAM) and
a Stereo Channel Attention Module (SCAM). Figure 19(b) presents the SFM architecture.
The PAM module models the relationship between the stereo image pair to capture its
spatial level correspondence, generating an attention map through a parallax-attention
mechanism (WANG et al., 2019). On the other hand, the SCAM module adaptively
enhances the important information’s channel (HU; SHEN; SUN, 2018). Finally, inspired
by SSN (JAMPANI et al., 2018), a soft clustering module uses deep features and pixel-
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Figure 20 – Superpixel Interpolation Network (SIN) architecture

Source: Yuan et al., 2021a.

level information to generate the superpixels.

The DAFnet is the first superpixel segmentation method that extracts deep features
from stereo image pairs and its proposed PAM and SCAM modules are demonstrated to
improve the results. In addition, the DAFnet achieves visually better border adherence
and competitive quantitative results without fine-tuning. However, it does not produce
compact superpixels.

DMMSS. A Deep Merging Model for superpixel-based segmentation (DMMSS) is pro-
posed in (HUANG; DING; HUANG, 2021) to manage superpixels with irregular shapes
and non-fixed sizes. The proposal transforms the clustering problem into a two-stage
decision problem using two deep networks to decide whether merge a pair of superpix-
els. Instead of receiving the whole image as the input directly, the DMMSS receives a
square image patch with only two neighboring superpixels and outputs a label to indicate
whether they will be merged.

The DMMSS initializes with an initial superpixel segmentation. Then, a pair of neigh-
boring superpixels is trimmed in a bounding box. The regions in the bounding box that
do not belong to the chosen superpixels’ pair are removed using the inpainting technique
with the Dirichlet boundary condition. The final bounding box is fed into a learning
model to decide whether they will merge. The proposal uses two sequentially connected
models, each with a ResNet (HE et al., 2016) architecture. For edge-preserving, the pro-
posal applies some merging criteria after each model. The first merging model uses fixed
thresholds with object boundary detection, superpixels’ pair neighborhood strength, and
area. And the second model uses adaptative thresholds with boundary detection, su-
perpixels’ pair neighborhood strength, texture, area, and color difference. The contour
map for object boundary detection and the texture features uses the RefineContourNet
(RCN) algorithm (KELM; RAO; ZÖLZER, 2019) and the Log-Gabor filter (FIELD,
1987), respectively.

For the initial clustering of DMMSS, the authors use the mean-shift algorithm (CO-
MANICIU; MEER, 2002), SEAL (TU et al., 2018), and SSN (JAMPANI et al., 2018), and
it outperforms all other segmentation methods whether the initial clustering algorithm.
By transforming the segmentation problem into a decision problem and incorporating
mid-level information to improve the merging decision, the DMMSS surpasses the irreg-
ular shape and annotated data problems. Since the input of the DMMSS is a superpixel
pair, it can acquire a huge amount of data to train the network. In addition, the pro-
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Figure 21 – BP-net diagram

Source: Zhang, Kang and Ming, 2021.

posal can merge complex background regions and preserve object regions, but with a high
running time and no control over the number of superpixels.

SIN. The authors in (YUAN et al., 2021a) propose a Superpixel Interpolation Network
(SIN), a deep learning-based method and integrable end-to-end in downstream tasks.
The SIN’s architecture utilizes multi-layer outputs to predict association scores using in-
terpolations. The proposed architecture is presented in Figure 20, where deconv (orange
arrows) operations reduce the feature channels by half to extracts multi-layer features
with outputs to conv operations. Then, the conv (blue arrows in Figure 20) operation is
a convolutional neural network, which transforms the multi-layer features to 2-dimensional
association scores. Finally, a pixel-superpixel map procedure uses multiple interpolations
with the association scores to expand the pixel-superpixel association matrix while enforc-
ing spatial connectivity. The initial pixel-superpixel map has a reduced size and initializes
with regular sampling.

The proposed method produce connected components without post-processing, being
able to integrate them into downstream tasks in an end-to-end way. The SIN is faster than
other deep learning-based superpixel methods, and it produces more compact and regu-
lar superpixels. Nevertheless, it underperforms some compared methods, not achieving
competitive quantitative results for superpixel evaluation.

BP-net. A deep learning-based superpixel method for RGB-D images composed of a
boundary detection network (B-net) and pixel labeling network (P-net) in (ZHANG;
KANG; MING, 2021). The proposed BP-net combines the geometry edge information
extracted by the B-net using multiscale information from depth images with the pixel
features extracted by P-net. The BP-net consists of two networks: B-net and P-net.
While B-net learns boundaries in different scales to detect the geometry edges for depth
information, the P-net extracts k-dimensional features from color information. The fea-
tures extracted from P-net incorporate the geometry edge information from B-net by using
a proposed boundary pass filter. The final feature map feds a differentiable SLIC (JAM-
PANI et al., 2018) to produce the final segmentation with a merging procedure to enforce
superpixel connectivity as post-processing. The B-net is training with a cross-entropy
loss and the P-net is training with the proposed block regularity loss, which combines an
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accuracy term with an additional regularity term.
The BP-net generates visually more regular pixels than the other evaluated deep

learning-based algorithms, achieving a generally reasonable regularity and capturing structured-
rich regions. At the same time, its accuracy and boundary adherence outperform all the
other algorithms. However, it has low compactness compared with unsupervised learning
methods.
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5 A COLOR HOMOGENEITY MEASURE FOR SUPERPIXELS

This Chapter introduces a new measure to assess color homogeneity in superpixel seg-
mentation. As discussed earlier, the ICV and the EV measures to assess color homogeneity
have severe limitations. The mean superpixel color used to calculate its color variation
may be unrepresentative. Conversely, one could argue that a small set of representative
colors, not very different from each other, should describe the superpixel’s colors. Such
a set of colors must be able to represent a perceptually homogeneous texture. Ideally,
such quantity should be minimal for an acceptable description, being only one when it is
monochromatic.

To overcome the mean color drawback, we propose a novel color descriptor, the RGB
Bucket Descriptor (RBD), representing the superpixel as a small set of its most relevant
colors. The RBD exploits the well-behaved RGB space, grouping colors based on their
similarities to the cube’s edges. Then, it divides each group into several subgroups,
selecting the most relevant colors to describe the superpixel. Finally, using RBD, a new
superpixel-reconstruction quality assessment function named Similarity between Image
and Reconstruction from Superpixels (SIRS) measures the segmentation quality.

Using an RBD descriptor for each superpixel, SIRS measures the segmentation qual-
ity based on the exponential error of the reconstruction. For image reconstruction, SIRS
selects the RBD color most similar to each pixel. Then, a variation of the Mean-Squared
Error, the Mean Exponential Error (MEE), expresses the reconstruction error between
the original and reconstructed image. The MEE increases the error weight of heteroge-
neous colors based on the maximum distance between the colors of the RBD. The MEE’s
exponent interval varies between one and two (the absolute or the mean error). Finally,
SIRS defines segmentation quality as the Gaussian weighted error of reconstruction using
MEE. By doing so, SIRS provides values normalized between zero and one with ade-
quate spread to differentiate between segmentation qualities easily. SIRS appropriately
penalizes superpixels with heterogeneous colors while maintaining high scores for percep-
tually homogeneous ones. Also, it adequately expresses discrepancies between different
segmentation qualities.

5.1 RGB Bucket Descriptor

We argue that the color information of any superpixel can be represented by a minimal
set of colors due to its homogeneity property. In order to build the palette of the most
relevant colors in each superpixel Si ∈ S, we exploit the RGB space, represented as a

Figure 22 – RGB cube
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Source: Author.
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Figure 23 – Toy example of RBD execution

(a) Image (b) RBD example

Source: Author.

cube in [0, 1]3 (Figure 22). By merging the white and black color vertices, the vertices
correspond to the colors with maximum intensity in some channel. Therefore, considering
an image I = (I, I) and the reconstructed image R = (I, R), I and R map to normalized
RGB colors.

The Figure 23 presents a toy example of RBD. First, let GSi ∈ S(Si, 7) represent
the set of 7 disjoint groups related to each of the cube’s vertices, whose colors are V =
{c1, ..., c8}, in which cl ∈ [0, 1]3 for 1 ≤ l ≤ 7 (the 7 group colors in Figure 23(b)). RBD
divides the RGB space according to the vertices of its cube representation and merges
the white and black vertices to represent gray levels. Therefore, V correspond to all
possible combinations of RGB color channels. Let x = ⟨xi⟩mi=1 a vector that indicates
the color channels with maximum intensity in I(p) such that xi = 1(Ii(p) = ∥I(p)∥∞).
We populate each GSi

l ∈ GSi by assigning every p ∈ Si to its most similar group using a
mapping function M(p) (Equation 5.1).

M(p) = argmin
ci∈V

{∥x− ci∥1} (5.1)

Although GSi
l contains pixels similar to cl, they may present significantly distinct lu-

minosities (i.e., color shades), which can be suppressed if the mean color is desired. Thus,

we split it into λ ∈ N∗ subgroups (or buckets), denoted by ĜSi
l ∈ S(GSi

l , λ). Without abuse

of notation, we insert every p ∈ GSi
l into its respective group ĜSi

l,b given b = ⌊∥I(p)∥∞ λ⌋
(λ = 4 in Figure 23).

We name RGB Bucket Descriptor (RBD) the descriptor RBD(Si) = {c1, ..., cα}, in
which ci ∈ [0, 1]3, resultant from the selection of the α ∈ N∗ most relevant colors within
GSi by some predetermined criterion. In this work, RBD(Si) selects the average color
µ(GSi

l,b) of the most populated buckets, irrespective of l (i.e., its vertex-based group). In
Figure 23(b), α = 2. Although inaccurate for heterogeneous sets of pixels, the refinement
for generating GSi

l,b leads to a better approximation of the most predominant colors by
the mean operator. On the other hand, by promoting such grouping, colors with visually
indistinguishable differences are assigned to the same bucket, reducing the probability of
selecting slight variations of the most frequent color.

5.2 Similarity between Image and Reconstruction from Superpixels

Given RBD(Si) = {c1, . . . , cα}, one could generate a proper approximation of the
original texture by the correct ordering, but such task is challenging. Conversely, we
propose evaluating the best reconstruction possible from the most relevant colors for
measuring the color variation description of Si. Thus, we build R such that R(p) =
argmincj∈RBD(Si)

{
∥I(p)− cj∥1

}
.
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After generating R from S, we may compute the Mean Exponential Error (MEE),
shown in Equation 5.2 between it and the original image I for weighting each error
accordingly:

MEE(S) =
1

|I|
∑
Si∈S

∑
p∈Si

∥R(p)− I(p)∥2−ψ1 (5.2)

in which ψ = max
{
∥cl − cj∥1

}
and cl, cj ∈ RBD(Si). If a superpixel requires a palette

of highly discrepant colors, the error impact should be greater since it is describing a
complex pattern. Conversely, if the relevant colors are similar and, thus, are representing
a more uniform texture, such impact must be small. Finally, we may define the Simi-
larity between Image and Reconstruction from Superpixels (SIRS), in Equation 5.3, by a
Gaussian distribution centered at MEE(S):

SIRS(S) = exp−MEE(S)

σ2 (5.3)

in wich σ2 is a parameter that controls the importance of small error variations. In SIRS,
higher the value, better is the color homogeneity of the superpixels in S, represented
within [0, 1].
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6 COLOR HOMOGENEITY MEASURE EVALUATION

In this Chapter, we describe the experimental setup for validating our proposed mea-
sure, SIRS. First, we discuss the impacts of the parameter selection (Section 6.1). Then,
in Sections 6.2 and 6.3, we compare our proposal to the EV in quantitative and qual-
itative evaluations, respectively, on five superpixel segmentation methods with varying
segmentation qualities. The implementation of SIRS is available online ‡.

We selected three different datasets which impose different challenges in assessing seg-
mentation. The Birds (MANSILLA; MIRANDA, 2016) consists of 150 images of Birds
whose thin elongated legs are difficult to segment and, thus, may compromise the color
description. The Sky (ALEXANDRE et al., 2015) has 60 images with large homoge-
neous regions with subtle luminosity variations. Finally, the Extended Complex Scene
Saliency Dataset (ECSSD) (SHI et al., 2015) is composed of 1000 images with objects
and backgrounds whose textures are complex.

Moreover, we select five superpixel methods with different properties to evaluate SIRS’
expressiveness, leading to distinct color variation descriptions. Specifically, DISF (BELÉM;
GUIMARÃES; FALCÃO, 2020) and SH (WEI et al., 2018) are state-of-the-art methods in
object delineation, while IBIS (BOBBIA et al., 2021) and SLIC (ACHANTA et al., 2012)
present more compact superpixels with fair delineation. Finally, we consider a grid-based
segmentation (GRID), representing a segmentation with maximum compactness but poor
delineation.

6.1 Parameter Analysis

For evaluating the impact of RBD’s α and λ in SIRS, we performed a grid-search for
a varying α ∈ [1, 2, 4, 8] and λ ∈ [8, 16, 32, 64] on a random selection of 30% of the Birds
images. From Figure 24(a), it is possible to infer that α and λ are highly correlated.
By selecting α = 2 and λ = 32, the reconstruction is compromised due to the reduced
number of relevant colors selected in contrast to the low discretization of the color space
(i.e, small color intervals are grouped on RBD). On the other hand, α = 8 and λ = 8 offers
a small penalization for few superpixels, which often present low-quality color variation
description. Therefore, we opt for α = 4 and λ = 16 since it severely penalizes for few
superpixels, while selecting a fair quantity of relevant colors for reconstruction. Figure 25
illustrates the impacts on such selection: by increasing α and λ, RBD is capable of
improving the set of relevant colors, leading to a more accurate reconstruction. It is
important to note that the reconstruction may have no errors for α values equal to the
number of populated buckets. Therefore, the λ and α values are crucial for our proposal’s
performance.

Similarly, to evaluate the impact of the Gaussian variance σ2, we evaluated varying it
between [0.005, 0.05] with step of 0.005. From Figure 24(b), we infer that σ2 influences
on the steepness of the curves, indicating lighter penalizations as σ2 increases and, finally,
reducing expressiveness. Therefore, for a fair error influence and a better spread of the
curves, we opted for σ2 = 0.01.

6.2 Quantitative Results

As one can see in Figure 26, both SIRS and EV distinguish methods which maximize
delineation (i.e., DISF and SH) with those opting for more compact superpixels (i.e.,
GRID, SLIC, and IBIS). However, EV presents a lesser spread than SIRS, as exempli-
fied in the distance between IBIS’ and SH’s curves. Moreover, EV tends to result in

‡ ⟨https://github.com/IsabelaBB/SIRS-superpixels⟩

https://github.com/IsabelaBB/SIRS-superpixels


61

Figure 24 – Impact of different λ, α, and σ2 for varying superpixel numbers
on the train images of Birds dataset
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(a) Impact of different λ and α for varying superpixel
numbers on the train images of Birds dataset with

GRID (gray), IBIS (blue), and DISF (red) segmentations.

(b) Impact of different σ2 for varying superpixel
numbers on the train images of Birds dataset with

GRID (gray), IBIS (blue), and DISF (red) segmentations.

Source: Author.

Figure 25 – Impact of different λ and α for image reconstruction using RBD
in GRID segmentation with 200 superpixels

(a) Original Image
(b) Reconstruction with

α = 2 and λ = 8
(c) Reconstruction with

α = 4 and λ = 16
(c) Reconstruction with

α = 8 and λ = 32

Source: Author.

significantly higher values, especially in contexts where superpixels are increasingly het-
erogeneous. For example, GRID obtains a score over 0.5 on the Sky dataset with only 25
superpixels. Conversely, SIRS offers a more meticulous discrepancy even with methods
with similar performance, like DISF and SH. Also, due to its penalization, SIRS exhibits
a more coherent range of values when few superpixels are generated — i.e., in a more
heterogeneous segmentation. In the same example, GRID scored less than 0.4 on the
same dataset.

6.3 Qualitative Results

Figure 27 presents a visual comparison between the evaluations obtained with SIRS
and EV in segmentations of images with large homogeneous (first three columns of Figure
6) or texturized last three columns of Figure 6) regions. The first and fourth column
consist on the respective segmentation with 25 and 500 superpixels. The second and fifth
column present the EV evaluation representation (whiter values indicate higher scores),
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Figure 26 – Results obtained for Birds, Sky and ECSSD for EV and SIRS.
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and it is analogous for the third and sixth columns for SIRS. As shown in the first three
columns of Figure 6, while the EV has a higher penalty even in smooth color transitions,
the SIRS is robust to such changes. For example, in the gray plane segmentation (first
three columns of the second row of Figures 6(a)-(e)), superpixels with low color variation
in the sky present low scores in EV. On the same superpixels, SIRS can evaluate its
homogeneity accordingly. In addition, SIRS also obtains a coherent penalty in more
significant color variations. For example, in yellow plane segmentation (first three columns
of the first row of Figures 6(a)-(e)), the visually more relevant variations between distinct
shades of yellow and between yellow and red present worse evaluations since they are
more different from each other.

Concerning more textured backgrounds, SIRS also demonstrates robustness in simpler
textures, as can be seen in the three columns to the right of the first line of Figures 6(a)-
(e). However, more complex textures, as shown in the three columns to the right of
the second row of Figures 6(a)-(e), can receive a significant penalty but are generally
softer than EV. In contrast, SIRS consistently perceives homogeneous regions as low-
variant ones, independently from the number of superpixels, in both Sky and ECSSD
segmentations (first and last three columns of Figure 6, respectivelyy). Moreover, it is
interesting to notice that our measure tends to be more correlated to delineation than
EV, given the penalizations in regions with high color variance — often at the object
borders. As the delineation performance decreases, the color variation captured tends to
be more heterogeneous (i.e. RBD generates a more diverse palette), leading to a more
drastic penalization. We argue that such robustness is directly linked to the accurate
selection of colors from RBD, properly describing superpixel homogeneity. Finally, it is
worth noticing that, although SIRS may penalize more heterogeneous regions (e.g., those
with complex textures), it tends to be lighter than those from EV.
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Figure 27 – Segmentation comparison with images from Sky and ECSSD with
100 and 500 superpixels with EV (second column) and SIRS (fifth

column) evaluations.

(a) Original images

(a) DISF

(b) GRID

(c) IBIS

(d) SH

(e) SLIC
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7 AN EVALUATION OF THE STATE-OF-THE ART SUPERPIXEL SEG-
MENTATION

This Chapter presents the experimental evaluation of state-of-the-art superpixel seg-
mentation methods. From the analyzed methods in Chapter 3, we identified 18 as
open source, of which 12 show no execution errors. However, we discarded five: ss-
RIM (SUZUKI, 2020) and ew-RIM (YU; YANG; LIU, 2021), for demanding execution
time, SSFCN (YANG et al., 2020) and SIN (YUAN et al., 2021a), for offering an indi-
rect and limited control of the number of superpixels, and the PGDPC (GUAN et al.,
2021) for not offering an automatic strategy for cutting the generated density graph.
Therefore, from the analyzed methods in Chapter 3, DISF (BELÉM; GUIMARÃES;
FALCÃO, 2020), RSS (CHAI, 2020), ODISF (BELÉM et al., 2021), IBIS (BOBBIA et
al., 2021), DRW (KANG; ZHU; MING, 2020), DAL-HERS (PENG; AVILES-RIVERO;
SCHÖNLIEB, 2022), and LNSNet (ZHU et al., 2021) were evaluated. In addition to these
seven methods, we include the ISF (VARGAS-MUÑOZ et al., 2019), SNIC (ACHANTA;
SUSSTRUNK, 2017), SH (WEI et al., 2018), GMMSP (BAN; LIU; CAO, 2018), LSC (LI;
CHEN, 2015), and SCALP (GIRAUD; TA; PAPADAKIS, 2018) in this evaluation. We
also selected the six methods assessed as state-of-the-art in Stutz, Hermans and Leibe
(2018): SLIC (ACHANTA et al., 2012), SEEDS (BERGH et al., 2012), ERS (LIU et
al., 2011), ETPS (YAO et al., 2015), CRS (CONRAD; MERTZ; MESTER, 2013), and
ERGC (BUYSSENS; GARDIN; RUAN, 2014). Finally, as in Chapter 6, a grid segmen-
tation (GRID) was used as a baseline.

7.1 An overview of the evaluated methods

The Table presented in Appendix A contains an overview of all superpixel methods
in this work, including their respective codes. The strategies ERGC, RSS, ISF, DISF,
and ODISF , perform clustering based on paths. While RSS provides a non-iterative
method that guarantees the optimality of the generated forest, ISF, DISF, and ODISF
use iterative strategies. The ISF recalculates the position of the seeds at the end of
each iteration. At the same time, the DISF and ODISF perform an iterative removal of
the seeds generated by an initial oversampling. While DISF only uses pixel and path-
based characteristics, ODISF includes saliency information in its removal step. Unlike
the others, ERGC formulates the segmentation with the Eikonal equation, solving it with
the Fast Marching Algorithm (SETHIAN, 1999), which calculates the minimum geodesic
paths of the graph.

SLIC, SCALP, and LSC perform clustering based on a distance function limited to a
region concerning a reference point in the image. In these three methods, the reference
point consists of the center of the cluster, and the search region size depends on the
expected superpixels size. In SCALP, the distance function from a center to a pixel is
weighted according to the linear path between these two points using a boundary map.
On the other hand, LSC explores features at the pixel level, mapping them into 10-
dimensional points. Based on SLIC, the SNIC uses a dynamic center update strategy
that guarantees the connectivity of its superpixels during clustering and does not require
multiple iterations. The DRW performs a similar clustering step, which formulates the
clustering problem based on the Random Walk algorithm (GRADY, 2006) and adds
dynamic nodes to the graph to reduce redundant computation and capture features at
the region level.

Unlike previous approaches, CRS, SEEDS, ETPS, and IBIS start with a grid segmen-
tation and update the superpixel contours according to an energy function. While IBIS
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has a reduced execution time and an optimization function similar to SLIC, SEEDS, and
ETPS evaluate the superpixels boundaries with a coarse-to-fine strategy. In its itera-
tions, SEEDS uses an approach based on the hill-climbing algorithm and an optimization
function with characteristics based on the color histogram. On the other hand, ETPS
orders the superpixels boundaries evaluation using a priority queue. Its optimization
function uses features at the pixel level to optimize homogeneity, compactness, size, and
smoothness.

The SH and DAL-HERS produce a superpixel hierarchy. While SH is based on Boru-
vka’s algorithm (WEST et al., 2001), the DAL-HERS generates affinity maps with a
residual convolutional network and uses these maps to create a superpixel hierarchy. In
addition to DAL-HERS, LNSNet is also a deep learning-based approach. It uses a cluster-
ing module with training based on the loss function of a Lifelong learning reconstruction
module. Finally, the GMMSP models the segmentation as a weighted sum of Gaussians,
where each gaussian is associated with a superpixel. On the other hand, ERS models
the segmentation problem based on the Random Walk (GRADY, 2006) and generates
superpixels from the cut in the image graph that optimizes its function.

7.2 Experiments settings

As the SIRS assessment in Chapter 6, we selected Birds, Sky, and ECSSD datasets as
they contain different challenging aspects. We also chose the Insects dataset (MANSILLA;
MIRANDA, 2016), composed of 130 images of spiders, insects, and other invertebrates,
whose images have more homogeneous backgrounds than in Birds. We evaluate the meth-
ods in these four datasets according to the object delineation, compactness, and color ho-
mogeneity. In addition to the proposed SIRS measurement, we used Explained Variation
(EV) (MOORE et al., 2008) to assess color homogeneity. We evaluate delineation using
Boundary Recall (BR) (MARTIN; FOWLKES; MALIK, 2004) and Undersegmentation
Error (UE) (NEUBERT; PROTZEL, 2012). Finally, we assess superpixels’ compactness
using the Compactness index (CO) (SCHICK; FISCHER; STIEFELHAGEN, 2012).

As Stutz, Hermans and Leibe (2018), we also evaluated the stability of segmentations
using each evaluation metric’s minimum (min), maximum (max), and standard deviation
(std). While the minimum and maximum indicate the evaluation limits reached by the
segmentations of each method, the standard deviation indicates its stability. Finally, we
performed a qualitative evaluation concerning the delineation, compactness, and color
homogeneity.

7.3 Quantitative evaluation

As shown in Figure 28, the quantitative differences between the best methods in BR
and UE delineation to the other methods are minor. Concerning the delineation with BR
and UE, GRID, CRS, and SEEDS achieve the worst results in all datasets. According
to the evaluation with UE, most methods have low leakage. Similarly, the delineation
measured by BR is generally high. In both BR and UE, ODISF, DISF, LSC, ISF, GMMSP,
SH, and ERS achieved best scores. However, followed by GRID, ODISF obtained the
lowest delineation according to BR in Sky dataset. Also, RSS have a competitive BR
delineation with more leakage measured with UE. Among the other methods, IBIS, ETPS,
SLIC, LNSNet, and ERGC obtained a low delineation, only superior to the GRID, SEEDS,
and CRS. Their results are followed by ERGC, SNIC, SCALP, and DRW.

One may see in Figure 28 that DAL-HERS obtains low delineation for numbers of
superpixels smaller than 400, approximately, in the Birds, ECSSD, and Insects datasets.
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Figure 28 – Results for Birds, Sky, ECSSD and Insects for BR and UE.
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However, DAL-HERS presents a competitive delineation after 400 superpixels. These low
results occur because the method may generate very small regions, resulting in segmen-
tations with low delineation and low color homogeneity.

Concerning Compactness (CO) (Figure 29), GRID obtains the most compact seg-
mentations. Aside GRID, CRS and ETPS obtained the highest compactness, followed
by SCALP and SNIC. SLIC and IBIS achieve similar compactness, usually lower than
SCALP and SNIC. All these methods have a parameter to determine the compactness.
While CRS and ETPS produce superpixels by optimizing the contours of a grid segmen-
tation, the others use different approaches based on SLIC. On the other hand, LSC and
GMMSP present a similar and moderate compactness. Among the evaluated methods,
only SEEDS had greater variability in its compactness. More delineation-focused meth-
ods, such as ODISF, DISF, SH, and DAL-HERS produced less compact segmentations.

When evaluating the homogeneity of the segmentations (Figure 29) with EV and SIRS,
the results of the first metric were generally very high and closer to each other compared
to the second. However, their results show some similarities. In both, GRID and CRS
had the worst results in all datasets. In addition, ODISF has low color homogeneity in
both measures, being the second worst in ECSSD dataset. In all datasets, it is not easy
to define the best methods in the EV evaluation, while DISF obtains the best results in
the SIRS evaluation. In both measures, DISF, SH, ISF, LSC, RSS, GMMSP, and SCALP
achieve competitive results.

In our analysis, most path-based clustering methods had similar performance in ob-
ject delineation, compactness, and homogeneity. Among these methods, DISF had better
delineation and color homogeneity. On the other hand, ODISF obtained a similar de-
lineation in most datasets but with low color homogeneity. The significant performance
reduction of ODISF in the Sky dataset is due to the saliency maps identifying wrong
objects. Although path-based methods had optimal delineation, their superpixels have
low compactness. With a similar clustering approach, ERS performs clustering based on
graphs and obtains excellent delineation in Sky and Insects datasets.

Neighborhood-based clustering approaches had more variate results while LSC achieved
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Figure 29 – Results for Birds, Sky and ECSSD for EV, SIRS, and CO.
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better delineation and more homogeneous superpixels. SLIC had superpixels with mod-
erate compactness and worse delineation. On the other hand, SCALP obtained a com-
petitive delineation with homogeneous and more compact superpixels than in SLIC.

Methods that perform clustering based on contour optimization also reached different
results due to the distinction between their optimization functions. Among these, IBIS
achieved better object delineation and color homogeneity, with results similar to SLIC in
all evaluation measures. On the other hand, CRS and SEEDS had the worst delineation
and homogeneity but greater compactness among all the methods evaluated. Therefore,
among the main processing approaches, clustering based on contour evolution produced
the worst results in object delineation and color homogeneity but with higher compactness.

Regarding clustering with a dynamic center update, DRW, and SNIC use strategies
to adapt the number of generated superpixels to the image content. Despite their simi-
larities, DRW and SNIC use different features and optimization functions, which explains
their different results. While DRW has better delineation and fewer superpixels, SNIC
generates more compact and homogeneous superpixels. The lower color homogeneity of
DRW compared to SNIC is due to the smaller number of superpixels generated by the
DRW than in the other methods.

Concerning hierarchical approaches, SH and DAL-HERS, have low compacity and
high color homogeneity. However, SH had competitive delineation in contrast with worse
results with DAL-HERS. Finally, GMMSP and LNSNet, unique in their clustering cat-
egory, presented excellent delineation with BR. Concerning UE and color homogeneity,
LNSNet had heterogeneous superpixels with moderate compactness and more leakage.
On the other hand, GMMSP achieved competitive results in all evaluated measures.
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7.4 Evaluating stability

As one may see in Figure 30, most methods showed high stability regarding object
delineation, with low standard deviation, increasing minimum and maximum values in
BR, and decreasing in UE. While DAL-HERS, SEEDS, ETPS, and CRS showed lower BR
stability in Birds and ECSSD datasets, ODISF showed high instability in the Sky dataset,
with very high and almost constant standard deviations. Despite being a delineation-

Figure 30 – Results for Birds, Sky and ECSSD for minimum, maximum and
standard deviation of BR and UE.

101 102 103
0.00

0.10

0.20

0.30

0.40

st
d
B
R

Birds

101 102 103
0.00

0.10

0.20

0.30

0.40

Sky

101 102 103
0.00

0.10

0.20

0.30

0.40

ECSSD

101 102 103
0.00

0.10

0.20

0.30

0.40

Insects

101 102 103
0.00

0.20

0.40

0.60

0.80

1.00

m
in

B
R

101 102 103
0.00

0.20

0.40

0.60

0.80

1.00

101 102 103
0.00

0.20

0.40

0.60

0.80

1.00

101 102 103
0.00

0.20

0.40

0.60

0.80

1.00

101 102 103
0.60

0.70

0.80

0.90

1.00

m
ax

B
R

101 102 103
0.60

0.70

0.80

0.90

1.00

101 102 103
0.60

0.70

0.80

0.90

1.00

101 102 103
0.60

0.70

0.80

0.90

1.00

101 102 103
0.00

0.02

0.04

0.06

0.08

0.10

0.12

st
d
U
E

101 102 103
0.00

2.00

4.00

6.00

8.00
·10−2

101 102 103
0.00

2.00

4.00

6.00

8.00
·10−2

101 102 103
0.00

2.00

4.00

6.00

8.00
·10−2

101 102 103
0.000

0.500

1.000

1.500

2.000
·10−2

m
in

U
E

101 102 103
0.000

0.500

1.000

1.500

2.000
·10−2

101 102 103
0.000

0.500

1.000

1.500

2.000
·10−2

101 102 103
0.000

0.500

1.000

1.500

2.000
·10−2

101 102 103
0.00

0.05

0.10

0.15

0.20

Log Number of Superpixels

m
ax

U
E

101 102 103
0.00

0.05

0.10

0.15

0.20

0.25

Log Number of Superpixels

102 103
0.00

0.05

0.10

0.15

0.20

0.25

Log Number of Superpixels

102 103
0.00

0.05

0.10

0.15

0.20

0.25

Log Number of Superpixels

CRS DAL-HERS DISF DRW ERGC ERS ETPS GMMSP GRID IBIS
ISF LNSNet LSC ODISF RSS SCALP SEEDS SH SLIC SNIC



69

focused method, the ODISF leakage deviation (UE) in the Sky dataset achieve worse
results than GRID for superpixel number greater than 200. The ODISF obtained a
similar instability in the UE evaluation in the same dataset, which contrasts with the
stability presented in the other datasets. The high standard deviation with BR with
the ODISF in the Sky dataset indicates that the low performance shown in the mean
evaluation is due to a more significant number of segmentations with low delineation.
On the other hand, DAL-HERS was the method that presented greater instability due
to the small regions generated mentioned above. As can be seen in Figure 30, the min
BR indicates that the DAL-HERS remains with very bad segmentations for almost all the
amounts of superpixels evaluated. Based on the results obtained for this method by Peng,
Aviles-Rivero and Schönlieb (2022), we consider that the low performance of DAL-HERS
evaluated in this work results from some code or execution error.

As shown in Figure 28, in BR and UE evaluation, the DISF, GMMSP, LSC, SH,
and ERS methods showed high stability. These methods presented more varied values
in the evaluation of minimum BR, while their maximums were concentrated in very high
values. On the other hand, ISF, RSS present stable and low std BR and std UE, but
with some instability in max UE and min BR values. GRID, CRS, and SEEDS had the
worst results among the minimum BR values, while SH, ISF, RSS, GMMSP, DISF, LSC,
and ERS had the highest minimums. In the delineation evaluation, while the assessment
with BR obtained slightly more varied values, the evaluation with minimum UE resulted
in small and similar values between the methods.

When evaluating homogeneity with EV and SIRS (Figure 31), both resulted in very
high maximum values, especially SIRS in the ECSSD dataset. On the other hand, the
minimum assessments of the EV and SIRS showed more significant variation between
the methods. In both the maximum EV and SIRS, the GRID and CRS presented worse
evaluations — i.e., lower maximums. However, in the ECSSD dataset, the maximum
SIRS of the DRW obtained worse results but was close to the other methods. In the
evaluation with SIRS and minimum EV, while the results with EV had increasing values,
the results with SIRS had more rigorous minimum scores, with increasing values only
in the Sky dataset. In both minimum metrics, the methods evaluated with the highest
minimum differ, except for DISF, which presents higher results in all datasets, followed
by SH. Among the evaluations with minimum EV, the ODISF presents almost constant
and worse results than GRID in the Sky and ECSSD datasets.

The standard deviation of SIRS and EV also showed distinct variations. While the
standard deviation of the EV evaluation obtained less stable results, the standard devia-
tion of the SIRS evaluation presented more increasing results, indicating greater instability
in some methods. For the EV’s standard deviation assessment, the DISF, SH, and LSC
methods showed high stability in all datasets. In addition, the ISF, RSS, and SCALP
also showed high stability in at least one dataset. Unlike the EV, in the SIRS standard
deviation evaluation, the LNSNet, GRID, IBIS, ODISF, and SLIC methods showed less
stability in Birds and Insects. On the other hand, the DISF method showed high stability
in SIRS, followed by the SH and ETPS methods.

7.5 Qualitative evaluation

Considering that the image object can vary according to the application, we evaluated
the segmentation delineation concerning the image boundaries, regardless of its ground
truth. We also evaluated the superpixels’ quality according to their contours’ smoothness
and compactness. In this work, we defined that superpixels have smooth contours when
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their shapes are close to convex shapes. And we determine that a superpixel is compact
when its shape is close to a regular polygon.

Figures 32 and 33 shows superpixel segmentation in Birds, Sky, ECSSD, and Insects
datasets, where the superpixels boundaries are shown in red. Relative to path-based
clustering methods, the superpixels produced by RSS are not compact. In addition,
for a high number of superpixels, RSS tends to generate elongated and thin superpixels

Figure 31 – Results for Birds, Sky and ECSSD for minimum, maximum and
standard deviation of EV and SIRS.
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at the most evident image boundaries, leading to an optimal delineation. However, by
reducing the number of superpixels, the delineation quality decreases dramatically for
smooth boundaries. As one may see in Figure 33, unlike RSS, ISF produces compact
superpixels in homogeneous regions. However, its high sensitivity to color variations
generates non-smooth superpixels in less homogeneous regions with high size variations.
For a higher number of superpixels, ISF has excellent delineation. However, reducing the
number of superpixels implies a noticeably worse delineation.

An improved delineation may be seen in DISF segmentation, in which its superpixels
are neither compact nor smooth, but its segmentation presents a high adherence to the
image boundaries. As one may see, DISF maintains good adherence to the image bound-
aries and generates larger superpixels in more homogeneous regions even with a smaller
number of superpixels. Based on DISF, ODISF presents very different results from the
previous ones. ODISF produces more superpixels in the area identified by the saliency
map. This can improve the delineation of this region, but the superpixels generated are
neither compact nor smooth. Due to this, there is a low number of superpixels in regions
not identified by the saliency map, leading to a worse delineation. Similar to the previ-
ous ones, the segmentation with ERGC has good adherence to the image boundaries. In
addition, its superpixels do not have significant variations in size, and their contours are
smooth. However, for a smaller number of superpixels, the boundary adherence of ERGC
segmentation reduces significantly.

Regarding the neighborhood-based methods, one may see that SLIC produces very
compact superpixels with good adherence to the image boundaries. In less homogeneous
regions, SLIC generates superpixels with slightly non-smooth contours. By reducing the
number of superpixels, the compactness is slightly reduced, even in complex areas of the
image. On the other hand, the delineation is more affected. In contrast, SCALP pro-
duces very compact superpixels with excellent delineation. The compactness of SCALP
segmentation is reduced for a reduced number of superpixels, but the contours remain
smooth, and the delineation is reduced slightly. Unlike SLIC and SCALP, LSC produces
compact superpixels in more homogeneous regions. However, its high sensitivity to minor
color variations results in superpixels with less smooth contours in regions with simpler
textures. Furthermore, the LSC generates more elongated superpixels in the most evident
image boundaries, obtaining a great delineation but without compactness. By reducing
the number of superpixels, the delineation quality suffers a small reduction, and its su-
perpixels have significantly less smooth contours in regions with textures.

With a segmentation visually very similar to SLIC, SNIC also produces superpixels
with high compactness and better delineation. On the other hand, in DRW, the superpix-
els are not compact, and the number of superpixels is noticeably smaller than expected.
Despite this, the DRW generates superpixels with good adherence and a smaller number
of superpixels in more homogeneous regions. Similar to DRW, the superpixels in SEEDS
are not compact and have non-smooth boundaries. The segmentation with a higher num-
ber of superpixels in SEEDS has moderate delineation with small leakage regions. By
reducing the number of superpixels, the compactness and smoothness do not increase in
SEEDS, and there is a noticeable reduction in delineation.

In contrast to SEEDS, CRS generates very compact superpixels but with low adherence
to the image boundaries. In a segmentation with 100 superpixels, the image boundaries
seem to be almost completely ignored. Similarly, ETPS produces very smooth and com-
pact superpixels, with some elongated and non-smoothness in image boundaries. For a
higher number of superpixels, the segmentation generated with ETPS has high adherence
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to the boundaries. The compactness is maintained by reducing the number of superpixels,
but the delineation suffers drastically. IBIS also generates significantly compact pixels,
whose compactness and smoothness vary depending on the region’s homogeneity. For a
larger number of superpixels, their compactness in homogeneous regions is very high, and
IBIS has good adherence to the image contours, even in more complex regions. However,
its sensitivity to color variations reduces compactness and smoothness in less homoge-
neous areas. Also, by reducing the number of superpixels, its adherence to contours is
significantly reduced.

Regarding the hierarchical methods, the segmentation with SH has an excellent de-
lineation, but its superpixels are not compact and have non-smooth contours in more
textured regions. In addition, the method generates elongated and thin superpixels at
some of the prominent image boundaries. DAL-HERS also has superb delineation but
generates rough superpixels and some tiny ones, resulting in visibly poor segmentation.
LNSNet produces a significantly higher number of superpixels than desired. Like ISF,
LNSNet produces compact superpixels in homogeneous regions, but its sensitivity to color
variations implies very rough superpixels. It has good delineation when the number of
superpixels is higher, but the non-smooth contours of the superpixels do not have a high
delineation even in regions with a more pronounced boundary, causing small leaks.

In ERS, for a larger number of superpixels, they do not vary much in size and have low
smoothness but good boundary adherence. By reducing the number of superpixels, its
boundary adherence reduces, but not drastically. In comparison, the GMMSP produces
significantly more compact superpixels in more homogeneous regions and less compact,
but generally smooth contours, superpixels in less homogeneous regions. By reducing
the number of superpixels, the compactness is maintained in the homogeneous areas of
the image, but in the less homogeneous regions, the compactness and smoothness are
drastically reduced.

Among the evaluated methods, CRS, ERGC, ERS, ETPS, SCALP, SLIC, SNIC, and
GMMSP produced visibly compact superpixels. CRS, SCALP, and ETPS showed greater
compactness with smoother contours from these methods. Among the less compact seg-
mentations, those of DAL-HERS, SH, and LNSNet presented less smoothness in their
superpixels’ contours. Regarding the delineation, the CRS presented the worst result,
while DISF, GMMSP, ERS, LSC, RSS, and SH presented excellent delineation. DISF
and GMMSP generated the segmentations with better adherence to the image bound-
aries. In addition, ODISF also showed exceptional adherence to boundaries belonging
to a specific image region, indicated as an object in the saliency map. As observed in
the quantitative evaluation, when the saliency map corresponds to the desired object in
the image, the ODISF delineation outperforms the other methods. However, as shown
in Figure 32, the high ODISF performance is due to greater competition between super-
pixels for the object borders indicated in the salience map. This competition results in a
smaller amount of superpixels in the other regions of the image. Therefore, it obtains a
low delineation in areas not identified as object.

Regarding the main processing, methods with more compact superpixels generally
use clustering based on contour evolution followed by those with clustering based on re-
gion. One may also observe the same in SNIC, ETPS, and ERGC. On the other hand,
hierarchical methods, paths-based clustering methods, and LNSNet showed less compact-
ness concerning the others. These methods, GMMSP and ERS, generally have excellent
delineation.
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Figure 32 – Segmentation comparison with images from Birds, Sky, ECSSD,
and Insects with 100 and 700 superpixels.
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Figure 33 – Segmentation comparison with images from Birds, Sky, ECSSD,
and Insects with 100 and 700 superpixels.
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8 CONCLUSIONS

In this work, we extensively review the recent literature on superpixel segmentation
and propose a taxonomy to relate its methods. Our review aims to inform about the most
recent approaches, considering the rapid advances in superpixel literature. In this work,
we identified that superpixel methods can be divided into up to three processing steps.
When dividing each algorithm, we assign to it high-level categories for each step according
to its main task. We also identify that the superpixel algorithms incorporate different
features, being able to extract them during their execution or using other algorithms for
this purpose. Therefore, the taxonomy also includes a categorization according to the
processing level of the features used.

The third proposal of this work consists of a new evaluation measure to assess color
homogeneity in superpixel segmentation. The proposed measure models the problem of as-
sessing homogeneity in segmentation as an image reconstruction problem. To reconstruct
the original image based on segmentation, we developed a new superpixel descriptor, the
RGB Bucket Descriptor (RBD). The RBD divides the RGB color space into color sets
and describes a superpixel by its most frequent average color intensities. By describing
the colors of each superpixel with RBD, the proposed measure, named Similarity between
Image and Reconstruction from Superpixels (SIRS), assess the homogeneity of each su-
perpixel based on the error of its reconstruction. Compared to Explained Variation, SIRS
is more robust to less perceptual color variations.

Finally, we performed a state-of-the-art superpixel segmentation evaluation to assess
the contribution of the recent methods to those widely used in the literature. We iden-
tified that from the six recommended methods, the CRS, SEEDS, and ETPS have a
significantly lower object delineation than most of the other evaluated methods. From
the recommended methods, only the ERS obtained competitive results. Our evaluation
demonstrates that methods with path-based and hierarchical clustering on their main pro-
cessing usually achieve the best delineation with low compactness. In contrast, bound-
ary evolution clustering methods usually have the highest compactness and the worse
delineation. Also, neighborhood-based and dynamic center update clustering usually pro-
duces compact superpixels with moderate delineation. Concerning other main process
categories, the graph-based and the data distribution-based clustering obtain moderate
compactness. While the former has a moderate delineation, the second has excellent
delineation.

In addition, we assess the superpixel methods’ stability based on their standard de-
viation, minimum, and maximum delineation, and homogeneity. Our results show that
DAL-HERS, SEEDS, CRS, ODISF, ETPS, ISF, RSS, and IBIS have instability. The
results show that DISF, SH, GMMSP, ERS, and LSC achieved better delineation and
stability. Also, LSC, ERS, and GMMSP generate compact superpixels, especially in
homogeneous regions. In all datasets, DISF presents the best delineation and color ho-
mogeneity. For little more compactness with minimal delineation loss, we recommend
GMMSP. However, for applications that require greater compactness and good object
delineation, we recommend SCALP. For future works, we intend to explore the optimal
selection for λ and α values and improve SIRS to highly correlate it with accurate object
delineation. We also intend to include more recent methods in our analysis and perform
time and robustness evaluations.
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//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12875⟩. 31

LEMPITSKY, V.; VEDALDI, A.; ULYANOV, D. Deep image prior. In: IEEE. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.], 2018. p.
9446–9454. 30, 47, 89

LEVINSHTEIN, A. et al. Turbopixels: Fast superpixels using geometric flows. IEEE
transactions on pattern analysis and machine intelligence, IEEE, v. 31, n. 12, p.
2290–2297, 2009. 20, 21, 23

LI, H. et al. Superpixel segmentation based on spatially constrained subspace clustering.
IEEE Transactions on Industrial Informatics, IEEE, v. 17, n. 11, p. 7501–7512, 2020.
30, 43, 44, 89

LI, X. et al. Cluster-based fine-to-coarse superpixel segmentation. Engineering
Applications of Artificial Intelligence, Elsevier, v. 102, p. 104281, 2021. 30, 35, 89

LI, Z.; CHEN, J. Superpixel segmentation using linear spectral clustering. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.:
s.n.], 2015. 64, 89

LI, Z.; WU, X.-M.; CHANG, S.-F. Segmentation using superpixels: A bipartite graph
partitioning approach. In: IEEE. 2012 IEEE conference on computer vision and pattern
recognition. [S.l.], 2012. p. 789–796. 51

LIANG, Y. et al. Robust video object segmentation via propagating seams and matching
superpixels. IEEE Access, IEEE, v. 8, p. 53766–53776, 2020. 13

LIN, Q.; ZHONG, W.; LU, J. Deep superpixel cut for unsupervised image segmentation.
In: IEEE. 2020 25th International Conference on Pattern Recognition (ICPR). [S.l.],
2021. p. 8870–8876. 30, 51, 89

LIU, G.; DUAN, J. Rgb-d image segmentation using superpixel and multi-feature fusion
graph theory. Signal, Image and Video Processing, Springer, v. 14, n. 6, p. 1171–1179,
2020. 30, 32, 89

LIU, M.-Y. et al. Entropy rate superpixel segmentation. In: CVPR 2011. [S.l.: s.n.],
2011. p. 2097–2104. 21, 23, 30, 64, 89

LIU, Y. et al. Del: Deep embedding learning for efficient image segmentation. In: IJCAI.
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APPENDIX A - SUPERPIXEL SEGMENTATION METHODS

Time
complexity

Features

Method Year
It
er
at
iv
e

#
It
er
.

#
S
u
p
er
p
.

C
on

n
ec
.

C
om

p
ac
t.

S
u
p
er
v
.

Color Initial processing Main processing Final processing

P
ix
.

M
id
.

H
ig
h
.

Inspired Code

SLIC 2012 ✓ ✓ ✓ ✓ † ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓

⟨https://www.ep.ch/labs/ivrl/research/slic-
superpixels/⟩

K-SLIC 2021 ✓ ✓ ✓ ✓ RGB Compute optimum K Clustering with SLIC ✓ SLIC (2012)

LSC 2015 ✓ ✓ ✓ ✓ † ✓ CIELAB O(kn+ nz) ‡‡ Seed sampling
Neighborhood-based

clustering
Merging step ✓

SLIC (2012)
NCut (2003)

⟨https://jschenthu.weebly.com/projects.html⟩

SCALP 2018 ✓ ✓ ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
✓ SLIC (2012) ⟨https://github.com/rgiraud/scalp⟩

TASP 2021 ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
✓ SLIC (2012)

MFGS 2020 ✓∗ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓ SLICO (2012)

DSR 2021 ✓ ✓ ✓ CIELAB Seed sampling
Neighborhood-based

clustering
Merging step ✓ dSLIC (2018)

Semasuperpixel 2021 ✓ ✓ ✓ ✓† ✓ CIELAB
arch: Encoder-decoder
train: Semantic map
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SEEDS 2012 ✓ ✓ ✓ ✓ CIELAB Grid segmentation
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✓
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CFBS 2020 ✓ ✓ ✓ ✓ CIELAB Grid segmentation
Boundary evolution

clustering
✓ SLIC (2012)

SCAC 2021b ✓∗ ✓ ✓ CIELAB Grid segmentation
Boundary evolution

clustering
Boundary evolution

clustering
✓ WSBM (2020) ⟨https://github.com/YuanYeNeu/SCAC⟩

LSC-Manhattan 2022 ✓ ✓ ✓ ✓ Classification
Boundary evolution

clustering
✓ LSC (2017)

SNIC 2017 ✓ ✓ ✓ CIELAB O(n) Seed sampling
Dynamic-center-update

clustering
✓ SLIC (2012) ⟨https://github.com/achanta/SNIC⟩

CONIC 2021 ✓ ✓ ✓ CIELAB O(n) Seed sampling
Dynamic-center-update

clustering
✓

SNIC (2017),
SCALP (2018)

DRW 2020 ✓ ✓ O(n) Seed sampling
Dynamic-center-update

clustering
Label propagation ✓ RW (2006) ⟨https://github.com/zh460045050/DRW⟩

FCSS 2021 ✓ ✓∗ ✓ ✓† ✓ CIELAB O(n+ nt)§
Dynamic-center-update

clustering
✓ SNIC (2017)

F-DBSCAN 2021 ✓ ✓ CIELAB O(n)
Dynamic-center-update

clustering
✓ RT-DBSCAN (2018) ⟨https://github.com/scloke/DBScanTest⟩

SCBP 2021 ✓ ✓ ✓ RGB O(n)
Dynamic-center-update

clustering
Merging step ✓ DBSCAN (2016)

A-DBSCAN 2021 ✓ ✓ ✓ RGB O(n) Compute features
Dynamic-center-update

clustering
Merging step ✓ DBSCAN (2016)

ERGC 2014 ✓ ✓ CIELAB Seed sampling Path-based clustering ✓
ISF 2019 ✓ ✓ ✓ ✓ ✓ CIELAB O(n log n) Seed sampling Path-based clustering ✓ IFT (2004) ⟨https://www.ic.unicamp.br/afalcao/downloads.html⟩
RSS 2020 ✓ ✓ ✓ O(n) Seed sampling Path-based clustering ✓ IFT (2004)

⟨https://github.com/dfchai/Rooted-Spanning-
Superpixels⟩

DISF 2020 ✓ ✓ ✓ CIELAB O(n log n) Seed oversampling Path-based clustering ✓ ISF 2019 ⟨https://github.com/LIDS-UNICAMP/DISF⟩
ODISF 2021 ✓ ✓ ✓ CIELAB O(n log n) ‖ Seed oversampling Path-based clustering ✓

DISF (2020),
OISF (2018)

⟨https://github.com/LIDS-UNICAMP/ODISF⟩
SH 2018 ✓ ✓ RGB O(n) Hierarchical clustering ✓ ⟨https://github.com/semiquark1/boruvka-superpixel⟩

UOIFT 2020 ✓ ✓ CIELAB Clustering method Hierarchical clustering ✓
IFT (2004),
OIFT (2013)

HMLI-SLIC 2021 ✓ ✓ ✓∗ ✓ ✓ CIELAB O(nd) ¶ Clustering method Hierarchical clustering Merging step ✓ SLIC (2012)

RISF 2018 ✓ ✓ ✓ ✓ ✓ CIELAB Hierarchical clustering
Hierarchical

region merging
✓ ISF (2019)

DAL-HERS 2022 ✓ ✓ ✓ RGB O(n)‡
arch: Multi-scale
Residual CNN

train: Affinity map
Hierarchical clustering ✓

SEAL (2018),
ERS (2011)

⟨https://github.com/hankuipeng/DAL-HERS⟩

PGDPC,
SLIC-PGDPC

2021 ✓ ✓ CIELAB O(n log n) Seed sampling Density-based clustering ✓ DPC (2018)
⟨https://github.com/Guanjunyi/
PGDPCforImageSegementation⟩

DPS 2021 ✓∗ CIELAB Compute features Density-based clustering Clustering method ✓ DP (2014)

ANRW 2020 ✓ ✓ CIELAB O(n2) Seed sampling
Sparse linear

system clustering
✓ NRW (2015) ⟨http://github.com/shenjianbing/ANRW⟩

GLl1/2RSC 2022 ✓ ✓ Clustering method
Sparse linear

system clustering
Encoding procedure ✓ CAWR (2017)

SCSC 2020 ✓ ✓ ✓ RGB Clustering method
Sparse linear

system clustering
Clustering method ✓

EAM 2020 ✓∗ ✓ RGB O(log2 n) Noise remotion
Regional attributes

extraction
Merging step ✓

ECCPD 2020 ✓ ✓ ✓ ✓ RGB Seed sampling
Polygonal decomposition

clustering
Boundary evolution

clustering
✓ ⟨https://github.com/madongyang-stack/ECCPD⟩

GMMSP 2018 ✓ ✓ ✓∗ ✓† ✓ CIELAB O(n)
Data distribution-based

clustering
Merging step ✓ SCGAGMM (2016) ⟨https://github.com/ahban/GMMSP-superpixel⟩

gGMMSP 2020 ✓ ✓ ✓∗ ✓† ✓ CIELAB O(n) ∗∗ Data distribution-based
clustering

Merging step ✓ GMMSP (2018) ⟨http://github.com/ahban/gGMMSP⟩

ERS 2011 ✓ ✓ RGB Graph-based clustering ✓
⟨https://github.com/akanazawa/collective-
classification/tree/master/segmentation⟩

E2E-SIS 2020 ✓ ✓† ✓ CIELAB
arch: FCN

train: Superpixels
Superpixel pooling layer

and merging step
✓

DEL (2018),
SSN (2018)

ss-RIM 2020 ✓∗ RGB
arch: FCN

train: Image reconstruction
and Superpixels

✓
DIP (2018),
RIM (2010)

⟨https://github.com/DensoITLab/ss-with-RIM⟩

EW-RIM 2021 ✓ ✓ ✓ RBG
arch: FCN

train: Image reconstruction
and Superpixels

✓
ss-RIM (2020),
DIP (2018)

⟨https://github.com/yueyu-stu/EdgeAwareSpixel⟩

SEN 2020 ✓ RGB
arch: Encoder-Decoder
train: Deep embeddings

Clustering method ✓ RPEIG (2018)

DMMSS-FCN 2020 ✓ ✓ RGB
arch: Encoder-decoder

train: Edge map decision
✓

⟨https://drive.google.com/drive/folders/
1NcEsdGh7OkuyTJk9Kx U4N33f-BIglRP⟩

UDAG 2021 ✓ CIELAB Clustering method
arch: Encoder-Decoder

train: Inpainting
Clustering method ✓ GL Graph (2015)

SuperAE-DSC 2021 ✓ ✓ ✓ ✓ RGB
arch: Autoencoder CNN

train: Image reconstruction
and Superpixels

Clustering method Differentiable clustering ✓

SSFCN 2020 ✓∗ ✓ CIELAB
arch: Encoder-Decoder

train: Superpixels
Merging step ✓ SSN (2018) ⟨https://github.com/fuy34/superpixel/superpixel fcn⟩

SENSS 2022 ✓∗ ✓ ✓ ✓ CIELAB
arch: Encoder-Decoder

train: Superpixels
✓ SSFCN (2020)

DAFnet 2021 ✓ ✓ ✓ CIELAB
arch: Weight-shared CNN

train: Superpixels
✓ SSFCN (2020)

LNS-net 2021 ✓ ✓ LAB/RGB
arch: FCN

train: Image reconstruction
and Superpixels

Merging step ✓ ⟨https://github.com/zh460045050/LNSNet⟩

DMMSS 2021 ✓ ✓ Clustering method
arch: FCN

train: Binary classification
arch: FCN

train: Binary classification
✓

⟨https://drive.google.com/drive/folders/
16Q4zXldkUgnTQJI7lvouw6QcJ3YjNa82⟩

SIN 2021a ✓∗ ✓ ✓
arch: Interpolation Network

train: Superpixels
✓ ⟨https://github.com/yuanqqq/SIN⟩

BP-net 2021 ✓ ✓ RGB-D Seed sampling
arch: Multi-scale CNN
train: Boundary map

and superpixels
Merging step ✓

∗ Partially † With post-processing ‡ Time complexity in HERS module § t is the number of

relocations ¶ d is the number of hierarchy levels ‖ without the saliency map computation ∗∗ without

paralelization †† i is the number of iterations ‡‡ k is the number of iterations and z represents the
number of small isolated superpixels to be merged.

https://www.epﬂ.ch/labs/ivrl/research/slic-superpixels/
https://www.epﬂ.ch/labs/ivrl/research/slic-superpixels/
https://jschenthu.weebly.com/projects.html
https://github.com/rgiraud/scalp
https://github.com/xapha/IBIS
https://github.com/xapha/IBIS_cuda
https://bitbucket.org/mboben/spixel/src/master/
https://github.com/YuanYeNeu/SCAC
https://github.com/achanta/SNIC
https://github.com/zh460045050/DRW
https://github.com/scloke/DBScanTest
https://www.ic.unicamp.br/afalcao/downloads.html
https://github.com/dfchai/Rooted-Spanning-Superpixels
https://github.com/dfchai/Rooted-Spanning-Superpixels
https://github.com/LIDS-UNICAMP/DISF
https://github.com/LIDS-UNICAMP/ODISF
https://github.com/semiquark1/boruvka-superpixel
https://github.com/hankuipeng/DAL-HERS
https://github.com/Guanjunyi/PGDPCforImageSegementation
https://github.com/Guanjunyi/PGDPCforImageSegementation
http://github.com/shenjianbing/ANRW
https://github.com/madongyang-stack/ECCPD
https://github.com/ahban/GMMSP-superpixel
http://github.com/ahban/gGMMSP
https://github.com/akanazawa/collective-classification/tree/master/segmentation
https://github.com/akanazawa/collective-classification/tree/master/segmentation
https://github.com/DensoITLab/ss-with-RIM
https://github.com/yueyu-stu/EdgeAwareSpixel
https://drive.google.com/drive/folders/1NcEsdGh7OkuyTJk9Kx_U4N33f-BIglRP
https://drive.google.com/drive/folders/1NcEsdGh7OkuyTJk9Kx_U4N33f-BIglRP
https://github.com/fuy34/superpixel/superpixel_fcn
https://github.com/zh460045050/LNSNet
https://drive.google.com/drive/folders/16Q4zXldkUgnTQJI7lvouw6QcJ3YjNa82
https://drive.google.com/drive/folders/16Q4zXldkUgnTQJI7lvouw6QcJ3YjNa82
https://github.com/yuanqqq/SIN
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