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ABSTRACT

The indexing of large datasets is a task of great importance, since it directly impacts

on the quality of information that can be retrieved from these sets. Unfortunately, some

datasets are growing in size so fast that manually indexing becomes unfeasible. This

phenomenon can be observed on the broadcast TV databases, that are already big and

are continuously growing. Automatic indexing techniques can be applied to overcome

this issue, and in this study, a unsupervised technique for multimodal person discovery

is proposed, which consists in detecting persons that are appearing and speaking simul-

taneously on a video and associating names to them. To achieve this objective, related

works proposed frameworks based on detecting names via OCR and automatic speech

transcripts, and associating these names to clusters of detected faces. Others model a

graph of faces, and spread names through the graph structure. In this study, the data is

modeled as a graph of speaking-faces, and names are extracted via OCR and propagated

through the graph based on audiovisual relations between speaking faces. To propagate

labels, two methods are proposed, one based on random walks and the other based on a

hierarchical approach. In order to analyze the proposed framework, it is evaluated using

the MediaEval 2017 MPD database, along with graph clustering baselines and the study

of different modality fusions and their impact on the label propagation techniques. The

proposed propagation methods over multimodal graphs outperform all literature methods

except one, which uses a different approach on the pre-processing step. It is also shown

that the use of multiple modalities improves the results, although better modality fusion

techniques can be studied make these improvements even more significant.

Keywords: Multimodal analysis. Graph Modeling. Label Propagation strategies.



RESUMO

A indexação de grandes bases de dados é uma tarefa de grande importância, uma vez que

afeta diretamente a qualidade das informações que podem ser recuperadas desses conjun-

tos. Infelizmente, alguns conjuntos de dados estão crescendo tão rápido que a indexação

manual torna-se inviável. Esse fenômeno pode ser observado nos bancos de dados de

broadcast televisivo, que já são extensos e continuam a crescer. Técnicas de indexação

automática podem ser aplicadas para superar esse problema e, neste estudo, é proposta

uma técnica não supervisionada para descoberta multimodal de pessoas, que consiste em

detectar pessoas que aparecem e falam simultaneamente em um v́ıdeo e associar nomes

a elas. Para atingir esse objetivo, trabalhos relacionados criaram estratégias baseadas na

detecção de nomes através de OCR e transcrições automáticas de fala, e associando esses

nomes a clusters de faces detectadas. Outros modelam um grafo de faces e espalham no-

mes através da estrutura do grafo. Neste estudo, os dados são modelados como um grafo

de faces-falantes, os nomes são extráıdos através de OCR e propagados através do grafo

com base em relações audiovisuais entre faces falantes. Para propagar rótulos, são pro-

postos dois métodos, um baseado em random walks e outro baseado em uma abordagem

hierárquica. Para analisar o trabalho proposto, ele é avaliado usando o conjunto de dados

MediaEval 2017 MPD, juntamente com trabalhos de referência baseados em agrupamento

em grafos, e o estudo de diferentes fusões de modalidades e seus impactos nas técnicas de

propagação de etiquetas. Os métodos propostos de propagação de etiquetas sobre grafos

multimodais superam todos os métodos da literatura, exceto um, que usa uma aborda-

gem diferente na etapa de pré-processamento. Também é mostrado que o uso de múltiplas

modalidades melhora os resultados, embora melhores técnicas de fusão de modalidades

possam ser estudadas afim de tornar essas melhorias ainda mais significativas.

Palavras-chave: Análise Multimodal. Modelagem de Grafos. Estratégias de propagação

de etiquetas.
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1 INTRODUCTION

Television has been the main mean of communication for years, and even with the

advances of the Internet, it still plays a big role on the communication world. According

to a research done by SECOM in 2016, 63% of the Brazilian population use TV as their

main source of information (SECOM, 2016). With TV channels broadcasting for decades,

there is a huge amount of stored content on their archives, and since there are no signs

that TV is going to be replaced by other means of communication anytime soon, these

archives will continuously grow. The need to make these archives searcheable has led

researches to devote a big effort on developing better indexing technologies. Often, the

provided video indexing relies on few, and usually subjective tags and small descriptions,

which makes large scale searches fairly difficult. A human interest that is not fulfilled by

these descriptions is the interest in other people - metadata and annotations usually do

not provide information regarding the participants of a video. Also, even when there is

some information, it does not cover all appearing persons. It happens since we cannot

know if someone with no interest to the public today will become a person of interest in the

future. This fact combined with the impossibility of manually labeling entire databases

implicate on partially, usually minimally, annotated archives. To solve such problem,

many methods to automatically index video databases are studied.

One of the methods used for video indexing is automatically naming people on

videos. It consists in detecting persons of interest in a video, name them, and then create

a list of persons that appeared on video linked with when they appeared. When this

work is performed with no prior information such as biometric models and pre-processed

data, this task can be addressed as person discovery on videos. Solving this problem on

a unsupervised way is facilitated by multimodal analysis, but choosing which modalities

and how to use them can be quite complicated.

Figure 1 – Interviewed guest on news video.

(a) (b)

Two shots showing the same guest with visual description on (a) and no description on (b).

Source: Youtube ∗

There are many different sources of information within a video as it can be seen
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in Figure 1, such as visual data, acoustic data, text extracted from visual sources and

in the form of audio transcripts, metadata, and temporal relations. When working with

multimodal person discovery on videos (MPD), using multiple types of data can ease

the process if done well, but if done without care, one can be accumulating noises and

propagating errors instead of stacking gains. An example of a troublesome step on the

MPD task is the name extraction step, which is usually done via the analysis of automatic

speech transcripts (AST) or visually overlaid texts. The first source is very noisy and

hard to filter in order to get satisfying results. The second one demands less effort on its

analysis, but does not cover a big amount of appearing persons, leading to sparse number

of information, also noticeable on Figure 1. Considering this, methods that smartly use

multiple modalities can lead to improvements on MPD performances, thus leading to

better indexing techniques for large video archives.

1.1 Goals

In this section, the main and specific goals are presented.

1.1.1 Main Goal

It is stated that acquiring labeled data in some fields where unlabeled data is

abundant can be quite expansive, and sometimes impossible. For the task of automatic

naming persons on video, the name extraction part is rather difficult due to a high amount

of noise present on data extracted via AST and by optical character recognition (OCR)

(POIGNANT; BREDIN; BARRAS, 2017). Semi-supervised learning methods present

good performances when dealing with low amounts of labeled data for training, and a

considerable share of the semi-supervised algorithms are graph based.

Considering these assertions, the main goal of this work is to develop methods

for automatically naming persons on video using a multimodal and graph-based label

propagation solution. To achieve this, a multimodal graph representation and graph-

based naming methods are proposed and studied.

1.1.2 Specific Goals

The specific goals of this work are:

• Use a multimodal graph modeling for the PD problem, here named as speaking-

facesgraphs.
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• Propose graph-based label propagation methods to work around the sparsity of

labeled data.

• Assess the proposed methods, analyzing their performances against traditional graph-

based baselines and literature methods.

• Assess the impact of different modality fusion types on the proposed methods.

1.2 Justification

The Internet and TV archives are already big enough to be manually indexed, and

they grow faster each day. With a consistent method for automatically indexing these

databases, the retrieval of multimodal data becomes possible and more reliable. There

are strong indications that graph-based label propagation methods can be successfully

used on multimedia data (ZOIDI et al., 2015). So, by studying and developing a graph-

based label propagation method that efficiently makes use of multimodalities to solve the

MPD problem, it is improved - and sometimes made possible - the automatic indexing of

important archives, saving enormous amounts of human resources at the same time.

1.3 Main Contributions

The main contribution of this work is a novel strategy for solving the multimodal

person discovery problem, combining the use of speaking-facegraphs and label propagation

techniques. For propagating labels, two methods are employed, one based on the vastly

utilized Random Walks algorithm, and the other as a new modified version of the hie-

rarchical label propagation proposed in (PERRET et al., 2015). The proposed methods

achieved good performances, outperforming other methods based on speaker/face diari-

zation. Along with the formal presentation of the proposed strategy, a study is done to

analyze its possible perks and flaws. For this study, the proposed method is assessed

under different modality fusion types and different levels of graph pruning. For deeper

comparison with other naive methods applied on the speaking-faceenvironment, two graph

clustering baselines are also presented in this work.

1.4 Document organization

The remainder of this study is organized in six chapters. Chapter 2 presents the

basic concepts related to this work, as well as related works. Chapter 3 introduces the

speaking-facesgraph modeling along with proposed strategies for graph based label propa-

gation. In Chapter 4 it is described the setup of the experimental framework with details
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on the method design choices, with the experimental results and analysis. Chapter 5

summarizes the main contributions of this study and also present ideas for possible future

works.
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2 THEORETICAL BACKGROUND

In this Chapter it is presented the basic concepts that support this dissertation.

The Section 2.1 is dedicated to the description of semi-supervised label propagation

methods, specifically the ones that are graph-based. Section 2.2 introduces the MPD

problem, describing its concepts and reviewing some related works, including specific

ones that also use label propagation approaches, graph based or not.

2.1 Graph based label propagation

The process of tagging can be understood as applying labels to elements on a

dataset, similar to a classification problem. Tagging a dataset can be achieved in various

ways, using different techniques to specific problems based on their constraints. One classic

way to perform a tagging is executing a clustering technique and then assigning different

tags for each group created (YEUNG et al., 1995), also known as a categorization strategy.

Another well used technique is the learning of models based on pre-tagged elements for

labeling others in the future (LIN; HAUPTMANN, 2002). The first approach relies only on

the data information itself to work, not needing a tag-related prior knowledge, defining this

approach as a unsupervised one. The second method needs the tag-related information to

create the models that are used to infer tags to elements, so it is defined as a supervised

method. On unsupervised methods, the tagging is done by creating a distinct tag for

each group found. Even though it works well, sometimes elements are given a priori with

specific tags that are used to tag the remaining elements of the set. For these cases,

supervised learning is usually preferred.

Supervised methods are getting an increased attention over the last years, thanks

to the advances on machine learning techniques. Many tasks that were once extremely

difficult to solve using computers are now trivial with the use of well trained models. One

limitation of these methods however is the need of a great number of examples to learn

the models well enough, without hitting walls such as overfitting. One way to dodge the

issue of not having enough annotated data on training sets is to make use the labeled data

altogether with the unlabeled data, and the relations existing between all the elements.

This type of approach is known as semi-supervised learning, and it has been shown that

for minimally labeled sets, it can perform better than supervised learning methods (ZHOU

et al., 2004).

The key to the success of most semi-supervised learning methods is the use of the

relations between all elements to improve label inference. Since the relations between

elements become so important, many well-known strategies are based on the use of graph

modeling (ZHU, 2005).
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2.1.1 Basic concepts on graphs

A basic graph is defined as a set of elements and its relations. These elements can

be called nodes, and can be connected by edges, which represent relations between these

nodes. Formally, a graph is defined as G = (V,E), where V stands for the set of nodes

- or vertices - and E stands for the set of edges. A graph can be directed, where the

relations also have directions, meaning that an edge Ei, j between the nodes i and j can be

different than the edge E j,i between the same nodes but in the opposite direction. Also, a

graph can be paired with a set of weights W , thus having a ordered pair (G,W ) such that

for each edge Ei, j there is a correspondent weight Wi, j. When that happens, the graph is

called a weighted graph.

Since graph modeling is simple in its essence and can be used to represent relati-

onships between different types of raw data, it becomes a very powerful tool with great

generalization aspects. Thanks to this, for many years graph representations are used to

model multimedia data for various tasks, and methods can be adapted from one task to

another.

2.1.2 Label Propagation

Label propagation algorithms are a special type of semi-supervised learning methods.

Semi-supervised methods can be either transductive or inductive classifiers. The induc-

tive classifiers can learn a generic representation of the used learning data, and can be

used on initially not known data. The transductive classifiers are local classifiers that

make use of all labeled and unlabeled data to perform a classification, and therefore can

only be used on the available data. Label propagation algorithms fit in the transductive

share of the semi-supervised learning algorithms. As it can be observed on Figure 2, using

label propagation algorithms is preferred over common supervised learning methods on

minimally annotated datasets.

Label propagation algorithms are methods that try to spread labels through the

entire data using the structure of the data along with the initial labeling information.

These strategies are similar to the graph diffusion models usually seen in social network

analysis, where the opinions of the users (labels) are adopted by different users. This diffu-

sion methods are usually based on biological (OPUSZKO; RUHLAND, 2013) or physical

(WANG; KING; LEUNG, 2011) phenomenons.

A very common approach to propagate labels through graphs is by using iterative

label inference methods. In this type of method, the labels are gradually spread from

labeled to unlabeled data, following the data structure and finishing when convergence is

reached. One of the first label propagation methods (ZHU; GHAHRAMANI, 2002) used



17

the following algorithm for propagating labels:

In this algorithm, T is calculated by D−1W , where W is the affinity matrix of a

input graph and Dii = ∑ j Wi j. In this method, the labels are gradually spread and updated

within each iteration. A similar method proposed in (ZHOU et al., 2004), uses a slowing

factor to reinforce the initial labeling during the propagation and also uses a normalized

laplacian transition matrix. The propagation occurs by iteratively calculating:

F t+1 = µ(I− L̃)F t +(1−µ)Y (2.1)

where F is a labeling function that applies for each node a value for each possible

label. In the end, the label with greatest value is applied for each node. The use of the L̃

matrix guarantees that the labeling process is applied symmetrically on the matrix.

Figure 2 – SVM and label propagation comparison

(a) (b)

Classification of the ”two moons”dataset done by SVM on the left and by label propagation on the

right. In this case, the label propagation achieves the expected classification.

Source: (ZHOU et al., 2004)

There are also random walk based methods for label propagation. The random

walk methods rely on labeling nodes based on the commute time between nodes on a

converged probability matrix. The commute time is the expect number of steps needed

from one node reaching another by taking only random steps (LOVÁSZ, 1993). The

random walk can also be computed with a fixed number of steps, and if done so with a

probability matrix calculates as W , the step function is equal to:

Pt = P×Pt−1 (2.2)

where PD−1W . After the iterative calculation of the random walk, a labeling

function F can be applied on Pt , and depending on the used function, the results can be

equivalent to the ones on the method proposed by (ZHU; GHAHRAMANI, 2002). In this
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work, a variant of the random walk label propagation is used. The main difference in this

variation is that the initially labeled nodes are set as absorbing states, to assure that their

labels do not change during the propagation.

2.2 Person discovery on videos

Many methods of naming persons on video were developed during the last decades.

In a video, there are many sources for extracting information, and in each different work

the authors usually focus a specific source to solve a direct task. The result is a vast

gamma of strategies that use different means of name extraction, person identification

and description, and name-person associations. In this section, there is a small revision

of the related person discovery works.

One of the first proposed approaches for naming persons is the one proposed in

(EVERINGHAM; SIVIC; ZISSERMAN, 2006), where the authors name characters from

the ”Buffy: The vampire slayer” series. In this work, names are extracted from scripts

gotten in fan websites. The scripts are then matched with the TV subtitles, for applying

temporal information to the extracted names. Finally, the detected names are assigned to

detected faces that are temporally co-occurring. Although it is automatic naming process,

it is made use of external human-made scripts for the name extraction, and this type of

information is usually non existent on other real life scenarios.

Figure 3 – Automatic person naming on video

Result of a person naming strategy on videos.

Source: (EVERINGHAM; SIVIC; ZISSERMAN, 2006)

In (CANSECO; LAMEL; GAUVAIN, 2005; CANSECO-RODRIGUEZ; LAMEL;

GAUVAIN, 2004), Canseco et al. proposed the first approaches to automatic person

identification, with the name extraction based on pronounced names; while the use of

biometric models for speaker identification appears in (TRANTER, 2006; ESTÈVE et

al., 2007; MAUCLAIR; MEIGNIER; ESTEVE, 2006). However, these audio-only appro-

aches did not achieve good performance because of high error rates due to poor speech

transcriptions and bad named entity detection. Similarly, visual-only approaches were

very dependent on the quality of overlaid title box transcriptions (HOUGHTON, 1999;

SATOH; NAKAMURA; KANADE, 1999; YANG; HAUPTMANN, 2004; YANG; YAN;
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HAUPTMANN, 2005). In (TUYTELAARS; MOENS et al., 2011), the authors proposed

an approach for naming persons in TV news by extracting names from video transcripts

and using graph based label propagation algorithms to spread names to appearing persons.

Figure 4 – Person discovery illustration

Illustration of the MPD task, as defined in the MediaEval 2016 MPD benchmark. The output boxes

represent the ”who appears and speaks when”

Source: (BREDIN; BARRAS; GUINAUDEAU, 2016)

Two common obstacles found on the works cited above are related to the use of

monomodal approaches and to the unsupervised name extraction strategies. Started in

2011, the REPERE challenge aimed at supporting research on multimodal person re-

cognition (GALIBERT; KAHN, 2013; KAHN et al., 2012) to overcome the limitations

of monomodal approaches. Its main goal was to answer the two questions “who speaks

when” and “who appears when?” using any available source of information (including

pre-existing biometric models and person names extracted from text overlay and speech

transcripts). To assess the technology progress, annual evaluations were organized in 2012,

2013 and 2014. Much progress was achieved in either supervised or unsupervised multi-

modal person recognition (BECHET et al., 2014; BENDRIS et al., 2013; BREDIN et al.,

2014a, 2014b; GAY et al., 2014; POIGNANT; BESACIER; QUéNOT, 2015; POIGNANT

et al., 2016; ROUVIER et al., 2014). MediaEval Person Discovery task (POIGNANT;

BREDIN; BARRAS, 2015) can be seen as a follow-up campaign with a strong focus on

unsupervised person recognition, promoting two campaigns of the Multimodal Person

Discovery task, on the years of 2015 and 2016.
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3 LABEL PROPAGATION ON SPEAKING-FACES GRAPHS

In this Chapter, the methodology for tackling the MPD task is presented and

formalized. It consists in using label propagation algorithms over graphs of speaking-

faces to overcome the sparsity of names automatically extracted from videos. A basic

pipeline representation for the proposed strategy is illustrated on Figure 5.

Figure 5 – Flow diagram of the proposed method

Pre-processing

Name Extraction

Input Video

Label Propagation OutputGraph Creation
Speech

Segmentation

Face Segmentation

High level illustration of the steps for the proposed method.

Source: Elaborated by the author.

This Chapter is organized as follow: in Section 3.1 the speaking-facesgraph mode-

ling using in this work is formalized. In Section 3.2 the two proposed label propagation

methods that are applied on the speaking-facesgraphs are presented.

3.1 Speaking Faces graph

Common works tend to extract names via audio transcripts or OCR, and then per-

form a speech diarization or face clusters to create mono-modal name-cluster associations.

In this work, to avoid errors that are ordinarily present in cluster based strategies, a graph

based approach is chosen. This approach is a continuation of the one first presented in

(JR.; GRAVIER; SCHWARTZ, 2015), in which the authors proposed the use of a mul-

timodal graph, where nodes represent persons and the edges are audio-visual similarities

between them. Here, this model is referred as a speaking-facegraph, and its concepts and

definitions are described as follows.

To create a representation that fits well on the MPD problem, it was proposed

in (JR.; GRAVIER; SCHWARTZ, 2015) a multimodal graph representation of speaking

persons. In this modeling, a speaking-face graph G = (V,E) is a graph in which each

node in V represent a person that appears speaking on a video, and the edges represent

audio-visual relations between these nodes. In this graph, each speaking-face Vi can have

a name Yi assigned to it. The process for creating a speaking-faces graph is illustrated in

Figure 6 and described as follows.
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Figure 6 – Flow diagram of the speaking-face graph cration

Face Detection

Face Tracking

Speech Turn
Diarization

Facetrack Similarities Speech Similarities

Fusion

Name Detection

OCR

Source: Elaborated by the author.

First, a video is divided in a set of shots, passed through a face detection and

tracking method and a speech diarization method. The set of face tracks and speech

turns are represented by FT and ST respectively. Then, names are extracted from the

video overlays by applying an OCR followed by an name entity recognition method. The

set of names can be represented as Y . A speaking face is defined by Vn as the association

of a face track FTi and a co-occurring speech segment STj, assumed to belong to the same

person. In particular, Vn exists if and only if the intersection of temporal spans of FTi and

STj is non-empty. Let the set of speaking faces be V = {Vn}1≤n≤N , N ∈ N. After the set

of speaking faces is set for a video, a weighted complete graph G = (V,E) is calculated,

in which each node is a speaking face and every pair of nodes Vi and Vj is connected by

an edge Ei, j = (Vi,Vj) with weight Wi, j that represent the similarity between two speaking-
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faces, which can be a visual similarity, acoustic similarity or a fusion of both (more details

of the similarity calculation are described on Section 4.2.2). A speaking-faces graph is

illustrated at the end of the flow diagram on Figure 6.

For a given pair of speaking faces, visual similarity σV evaluates the resemblance

between face tracks related to it; while audio similarity σA measures the proximity between

speech segments belonging to the same pair. Thus, audiovisual similarity σAV between

speaking faces could be interpreted as a function of visual and audio similarities, i.e.,

σAV
i, j = f (σV

i, j,σ
A
i, j),1≤ i, j ≤ N. In this work, we study the impact of three different fusion

approaches for audio and visual modalities. The first is an intermediate fusion, done

by the weighted average of two distance values. The second is an early fusion, done

by concatenating two feature vectors, thus creating a single audio-visual descriptor for

calculating similarities. The last is a late fusion approach, in which the labeling methods

are executed separately for each modality and then the fusion occurs on decision level.

3.2 Label Propagation Strategies

In the speaking-faces graph model, due to the sparsity of information given by the

overlaid person names, usually only a very small portion of data is initially annotated.

This highly encourages us to make use of semi-supervised graph based tag propagation

approaches to tag the speaking faces that were not initially tagged. Semi-supervised

methods stand somewhere between the unsupervised methods and the supervised ones,

as they utilize tagged and unttaged data together to work. For some minimally annotated

datasets, the use of semi-supervised approaches has been shown better than the use of

supervised ones (ZHOU et al., 2004).

In this work two methods are used for propagating tags over speaking faces, one

as a novel hierarchical approach, and another as an a adaptation of a commonly utilized

tag propagation approach. The propagation methods presenter hereafter are:

1 Minimum spanning tree label propagation: The first method uses the hie-

rarchical tree created by applying the Kruskal’s algorithm for creating a minimum

spanning tree (MST) of a graph to propagate labels. The labels are propagated

through the process of the MST’s creation.

2 Random walk label propagation: The second method relies on propagating

labels through applying random walks on a graph of probabilities. The labeling

process relies on calculating the probabilities of a unlabeled node reaching a labeled

node by randomly walking through the probability graph.

In both methods tags are assigned to every speaking face detected, leaving none unttaged
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at the end of the propagation. Also, it is set a confidence score for each labeled node,

representing the level of certainty of that labeling being correct. The confidence score can

take values between 0 and 1, with 0 representing a weak correlation between a name and

a node, and 1 representing a very strong certainty that a tagging is correct. We assume

that the initial tags have a confidence score of 1, and this must not change during the tag

propagation phase.

3.2.1 Minimum spanning tree based propagation

In the first method, we make use of the Kruskal algorithm on a distance graph

for propagating tags between sets hierarchically, based on the propagation proposed in

(PERRET et al., 2015). The novelty in our method is the implementation of a confidence

score calculation that allows the propagation to continue even when there is conflict

between two different labels.

Generating a MST using Kruskal’s algorithm consists in sorting the edges of a graph

and then start clustering its nodes in a agglomerative way, always taking the smallest edges

possible to unite sets until there is only one set composed by all nodes and N−1 edges,

being N the number of nodes in the graph. So we chose the Kruskal’s algorithm as base

for the first propagation method since the MST connects all elements of a graph with a

minimal cost, which in our case represents the highest audio-visual similarities. With that

in mind, the tag propagation happens through an optimal path. The steps to perform the

MST label propagation (MSTLP) are described hereafter.

Algorithm 1: MSTLPAlgorithm

1 MST Propagation ((G,W ), where G = (V,E));
Input : Partially labeled graph G
Output: Labeled graph G′

2 Sort E
3 foreach vertex Vi ∈ G do
4 MAKE-SET(Vi)

5 foreach edge Ei, j taken in nondecreasing order do
6 if FIND-SET(Vi) 6= FIND-SET(Vj) then
7 UNION(Si,S j)
8 PROPAGATE(Si,S j)

In the Kruskal’s algorithm, the graph’s edges are sorted in a nondecreasing way,

and since the original algorithm treats edges as costs, we must apply the MSTLP in a graph

Gsim where the edge weights W ′i j represent distances between speaking faces. Then, for

each edge taken beginning from the one with the smallest value first, it is checked if this

edge connects two different sets or not (step 6 on the Algorithm 1). If it does connect two
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different sets, a merging of these sets happen, and if not, the selected edge is skipped.

On the MSTLP, there is an extra step, and the propagation happens when two dis-

joint sets are merged, and in this phase, three situations can happen: (i) if only one of the

sets is labeled, its label propagates to all nodes belonging to the other set, as illustrated in

Figure 7; (ii) if none of the sets is labeled, nodes of both sets remain unlabeled, illustrated

in Figure 8; and (iii) if both sets are labeled, their labels do not change, and one of the

labels is taken to represent the new set formed (this representative label will be the one

propagated to other groups when the new set eventually merge with another one), illustra-

ted in Figure 9. The choose the representing label, their confidence scores are compared,

and the one with biggest score is selected. Since there is only one extra operation on the

union find step for this algorithm when compared to the original Kruskal’s algorithm, the

time complexity is still the same. In this case, the complexity is O(E logE).

To calculate the confidence scores when propagating a label to an unlabeled set,

we take into consideration the edge Ei, j that united both sets and sets the confidence score

of the propagated label based on W ′i j, remembering that the initial tags have a confidence

score of 1. The confidence score of the new tagged elements will be the result of the

product between the last confidence score and the scoring function applied on W ′i j.

Figure 7 – MST merging - case (i)

Sa

UnionL1

L1
Sb

Sc

First case of merging, when only one of the sets is tagged.

Source: Elaborated by the author
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Figure 8 – MST merging - case (ii)

Sa

Union

Sb

Sc

Second case of merging, when none of the sets is tagged.

Source: Elaborated by the author

Figure 9 – MST merging - case (iii)

Sa

Union

Sb

Sc

L1 L2

L2

Third case of merging, when both of the sets is tagged. The tags do not change and one is chosen to

represent the set, in this case, the label L2.

Source: Elaborated by the author

3.2.2 Random walk based propagation

The concept of random walks has been vastly used in various fields due to its

interesting theoretic aspects and practical power. Many methods that opt for a stochastic

inference strategy uses random walk based modeling for their problems. As cited on

(MASUDA; PORTER; LAMBIOTTE, 2017), random walk methods have been used in

tasks ranging from locomotion of animals and descriptions of financial markets to ranking

systems. Label propagation can also be achieved by utilizing random walks on graphs.

The classification of unlabeled data is made based on the expected random steps required

for a unlabeled node to reach each labeled one. For the second propagation approach,

random walks with absorbing states are used to perform the label propagation, adapting

from (ZHU; GHAHRAMANI; LAFFERTY, 2003).
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Given a graph, a walk with an unitary step is defined by moving from one deter-

mined node to one of its neighbors. If a walk Wlk =< a,b,c,d...k > is composed by non

repeated elements, i.e. with no cycles, it is defined as a path between the starting and the

ending node. If a node is taken as a starting point, and one of its neighbors is selected

at random to be walked into, that is called a Random Walk. The probability of a node

walking to another can be distributed evenly based on the degree - number of connections

- of this node, or based on a probability graph. On a probability graph P = (V,E), the Wi, j

set represents the probability of i walking to j in one step. On Pt = (V,E,), W ′i, j represents

the probability of i randomly reaching j in t steps. The concept of Random Walks on a

probability graph is very similar to a finite Markov Chain (LOVÁSZ, 1993).

In order to perform the random walk on a speaking-faces graph, the probability

matrix P must be created. To do that, first the degree matrix D is calculated by Dii =

∑ j Wi j, where W is the weight matrix of a speaking-face. Than, P is initially defined as

D−1W , and can be represented in the form of 4 quadrants.

P→

(
Pll Plu

Pul Puu

)

The sub-matrix Pll represents the probability of labeled nodes walking to other labeled

nodes. Plu represents the probability of labeled nodes randomly walking to unlabeled

nodes. Pul and Puu represent the probability of unlabeled nodes walking to labeled nodes

and to unlabeled nodes respectively. Since we assume that the initial tags must not

change, the initially tagged nodes are set as absorbing states on P, which means that the

probability of a tagged node walk to any other node is 0. Thus, after setting labeled nodes

as absorbing states, P is represented as follows:

P→

(
I 0

Pul Puu

)
,

in which I is an identity matrix. Pul and Puu remain unchanged.

The random walk with t steps is calculated by Pt = P×Pt−1, and the number

of steps should be enough for Pt reaching convergence. To achieve a random walk based

labeling (RWLP) that is consistent with the initial label information, a slowing factor can be

applied to the walk, and in this work it is given by ω . The final random walk with slowing

factor is calculated by Pt = (ω×P×Pt−1)+((1−ω)×P). As it can be observed, the core

of this algorithm is a V ×V matrix multiplication, which leads to a time complexity of

O(n3) if we consider the basic algorithm for matrix multiplication.

With Pt calculated, the label assignment is made based on the Pt
ul sub-matrix

probabilities. For each unlabeled node in Pt
ul, there are the probabilities of it randomly

walking to all labeled nodes. The label from the most probable ending node will be applied
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Algorithm 2: RWLPAlgorithm

1 RW Propagation (G);
Input : Partially labeled graph G and weight matrix W
Output: Probability Matrix Pt

2 Calculate Dii = ∑ j Wi j

3 Calculate P = D−1W
4 foreach Node Vi do
5 if Vi is Labeled then
6 Set Vi as absorbing state

7 for t in [0..Max Steps] do
8 Pt = (ω×P×Pt−1)+((1−ω)×P)

Figure 10 – Example of RW propagation

(a) (b)

Graph example before propagation on the left and after RWLPon the right.

Source:Research data

to each unlabeled node. This maximum probability is also used as the confidence score

for the tagging.

A variant of the random walk algorithm for multimodal environments is also propo-

sed. In this variant, named Alternating Random Walk (AltRW), it is created one proba-

bility matrix for each modality, and these propability matrices are alternated on each step

of the propagation. An AltRW with two modalities A and B is performed by alternating

between Pt = (ω ×PA×Pt−1) + ((1−ω)×PA) and Pt = (ω ×PB×Pt−1) + ((1−ω)×PB).

The core of the algorithm would still the same, having the same amount of V ×V ma-

trix multiplications, since the aural and visual matrices have the same size, hence the

complexity of this variant still is O(n3).
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4 EXPERIMENTAL FRAMEWORK

In this chapter, the details on the framework setup are presented, along with the

datasets used to validate this work as well as the evaluation setup and metrics used

for assessment. The main objective of the experimental set is to analyze the aspects of

the proposed method on solving the MPD problem, with a focus on the proposed label

propagation methods applied over the speaking-face graphs.

The dataset used for the assessment is described on Section 4.1. The framework

setup describing the sub-processes involved on the task is presented in Section 4.2. Two

graph clustering methods are proposed to serve as baselines to the label propagation

methods, and its details are described in Section 4.3. The metrics used on the evaluation

of this work are detailed in Section 4.4. At last, the experiments and evaluations are

presented in Section 4.5.

4.1 Dataset

To evaluate the proposed methods we use the test set of the MediaEval 2016

MPD task, which was manually annotated during the campaign of the respective year

(BREDIN; BARRAS; GUINAUDEAU, 2016). This set is divided in three parts, named

as 3-24, INA and DW. The 3-24 is composed by a Catalan TV news channel, named 3/24.

The subset used from the INA dataset is composed by 2 different French TV channels.

Lastly, the DW dataset is composed by downloaded videos from Deutsche Welle website,

containing videos in English and German. The INA dataset is contains a total of 90 hours

of duration, the DW has a total duration of 50 hours, and the 3/24 has a duration of 13

hours of TV broadcast. The dataset was free of annotation before the Mediaeval 2016

event, and it was annotated based on the participants submissions, more details about the

annotation process can be found in (BREDIN; BARRAS; GUINAUDEAU, 2016). The

final annotation was assembled at 16th of October 2016, and it is the one used in this

work as ground truth. The ground truth contains 3431 annotated shots, which can have

one or more names assigned to it.

Along with the raw data, the Mediaeval organization also provided a baseline,

containing pre-processed data related to all MPD’s steps. This baseline is given so if

someone wants to change only a step and not the whole method, it is possible to do that

without having to process all the other steps unrelated to the tweaked part. The provided

baseline includes:

• Segmentation of the video stream as a sequence of S contiguous shots, two shots

being delimited by a brief or smooth change of camera take.
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• Detection of the face tracks within the video stream, a face track being a sequence

of portions of frames which are contiguous in time and relate to a single face. A

face track is assumed to be completely contained within a single shot.

• Detection and transcription of the overlays from the video frames for finding names.

• Segmentation of the audio stream into speech segments.

• Similarity values between all high-level features.

• Speech transcription that can be also used for name detection.

Figure 11 – Example of dataset videos

Source:Data extracted from Mediaeval MPD 2016 dataset.

4.2 Framework Setup

In this Section, each sub-process of the framework is detailed. An expanded version

of the pipeline illustrated on Figure 5 is shown on Figure 12, detailing the logical order

of the processes to be described. This Section is organized as follows: first, the pre-

processing involved and the extracted features are detailed in Section 4.2.1. The process

for calculating the audio-visual features, including the applied modality fusion types are

explained in Section 4.2.2. The pruning formula and parameters are described in Section

4.2.3. Finally, the procedure to choose the number of steps for the RWLP is shown on

Section 4.2.4.
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Figure 12 – MPD flow diagram

Diagram illustrating all the steps of the proposed MPD framework.

Source: Elaborated by the author

4.2.1 Pre-Processing and Feature Extraction

As mentioned in Section 4.1, the Mediaeval 2016 dataset provides some pre-processed

steps to help the participants, allowing them to focus on specific parts of the problem.

The pipeline of the MPD method applied in this work is illustrated in Figure 12. In

some of the showed steps, it was used the provided pre-computed features, and in others,

features are computed to best fill the project needs.

The provided features used are the shot segmentation - shots whose duration is less

than 1 s or more than 10 s are discarded -, the text detection and recognition by IDIAP

(CHEN; ODOBEZ, 2005), the segments of speech obtained with the speaker diarization

system from LIUM (ROUVIER et al., 2013), the facetracks obtained with a histogram

of oriented gradients-based detector (DALAL; TRIGGS, 2005) and a correlation tracker

(DANELLJAN et al., 2014). The features we computed are listed hereinafter:

Name Detection: For the name detection, the text extracted by OCR is then filtered

by an name entity detection tool designed for the French language (RAYMOND, 2013).

Visual Features: Two visual features are computed in this work. One is a generic

convolutional neural network (CNN) based feature, and the other is also a convolutional

network based descriptor, but it is specific for describing faces.

Previous work shows how to extract generic visual descriptors from pre-trained

Convolutional Neural Networks. Oquab et al. (OQUAB et al., 2014) extract intermediate

layers to build mid-level generic visual representations for classification. Razavian et al.

(RAZAVIAN et al., 2016) similarly build descriptions for image retrieval. More recently,
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Tolias et al. (TOLIAS; SICRE; JÉGOU, 2016) uses convolutional layers of a pretrained

CNN to efficiently build the MAC and R-MAC descriptors for retrieval while Sicre et al.

(SICRE et al., 2016) uses both fully connected and convolutional layers output to build

region descriptors. For calculating visual features, each face track is first represented by

its central face, or key face. The image of the face is further described by one of the two

descriptors:

• CNN: The very deep vd-19 (SIMONYAN; ZISSERMAN, 2015) CNN trained on

the ImageNet dataset.

• FaceNet: The face specific descriptor FaceNet (SCHROFF; KALENICHENKO;

PHILBIN, 2015).

For the CNN feature, similarly to Tolias et. al. (TOLIAS; SICRE; JÉGOU, 2016),

the last convolutional layer of the network is extracted, then a average pooling followed by

power normalization is performed, i.e.signed square root and l2-normalization. The final

descriptor is 512 dimensional and can be used to compute similarities between face using

cosine similarity. The resulting similarity σV takes values between 0 and 1 as these visual

features were normalized. For the FaceNet descriptors, similarities are also calculated by

calculating the cosine similarities between features.

Acoustic Features: For the audio features we also calculate two different features.

• GMM: For calculating the first feature, each speech segment is described by a

sequence of Mel-Frequency Cepstral Coefficients from which is learned a Gaussian

Mixture Model with components. Their computation is done using the SPro∗ and

Audioseg† toolboxes.

• i-vector: For the second feature, an i-vector is calculated. The i-vector for an

audio segment is obtained by stacking all the mean coefficients of the GMMs in

a supervector, and expressing this supervector in a reduced spaces with emphasi-

zes speaker similarity regarding channel properties (GARCIA-ROMERO; ESPY-

WILSON, 2011).

For calculating audio features, each speech segment is described by a sequence

of Mel-Frequency Cepstral Coefficients (hop size 10 ms, window size 20 ms) from which

is learned a Gaussian Mixture Model with 16 components. Two speech segments are

compared using a normalized distance approximating of the Kullback-Liebler divergence

∗https://gforge.inria.fr/projects/spro/
†https://gforge.inria.fr/projects/audioseg/
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(BEN et al., 2004). It is turned into a similarity using the function σA
i, j = exp(αδ A

i, j), where

σA
i, j and δ A

i, j are respectively the similarity and the distance between segments i and j. In

the case of i-vector descriptors, the computation of the cosine similarity between them

incorporates a channel compensation processing which emphasizes again the similarity

between channels (DEHAK et al., 2011). In the end, all the similarities are values between

0 and 1, with 1 meaning most similar possible.

Two pairs of audio-visual features are created in this work, one containing a ge-

neric video descriptor along with a GMM based audio descriptor, and the other using

a face specific descriptor along with a state-of-the-art audio descriptor. Apart from two

configurations, the other two possible feature combinations are also produced, leading to

four different graph configurations. These configurations are referred as:

• CNN-GMM

• FaceNet-iVector

• CNN-iVector

• FaceNet-GMM

4.2.2 Audio-visual Similarities

For calculating the audio-visual similarities between speaking-faces, three different

modality fusions are used in the present work. The different fusion types are listed herei-

nafter:

• A early fusion approach: visual and audio features are concatenated in one vector,

creating a audio-visual feature, which is then used to calculate similarities between

nodes. The cosine similarity is chosen to calculate similarities between the audio-

visual feature vectors.

• A intermediate approach: visual and audio similarities are combined using a weigh-

ted average, i.e., σAV = f (σV ,σA) = γσA +(1− γ)σV , in which γ is the range [0,1]

• A late fusion approach: tag-propagation is done for each modality (producing two

confidence scores). This is equivalent to use two distinct functions (with γ = 1 or

γ = 0): σAV
1 = σV and σAV

2 = σA. Then, the tag with the highest confidence score is

kept for each speaking face.

In the framework there are two parameters regarding the similarity creation on

the speaking-faces. These parameters are the α and γ , which relates to the weighted ave-

rage when applying the intermediate fusion and the distance to similarity transformation
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respectively. To better assess the proposed methods, a tuning of these parameters is pro-

posed. The tuning is based on a cross-validation scheme, in which the dataset is divided

into small groups and different parameters are tested in each of these subsets. This type

of strategy usually reduces the bias when choosing parameter values.

Table 1 – Alpha and gamma values for each configurations

Configurations α γ

CNN-GMM 0.3 0.5
CNN-iVector n/a 0.3
FaceNet-GMM 0.3 0.7
FaceNet-iVector n/a 0.3

Values set for α and γ parameters on each graph configuration. Since the only feature that uses

distances is GMM, only the configurations containing it have a α value.

Source:Research data

In order to perform the cross-validation, first it is created an intersection of the

whole dataset and the ground truth, so only the annotated videos are used. After, this

first subset is divided randomly into 10 different folds, containing approximately the same

number of videos in each one. Then, for each fold, its is executed a label propagation

with all combinations of α and γ in the range [0,1] with a step of 0.1. To select the label

propagation used in this phase, all propagation methods were tested with the α and γ

set as 0.5, and the best scoring one —in this case the RWLP—was selected. Each run is

evaluated by its recall. The α and γ combination with the biggest mean recall is selected

for each graph configuration.

On the creation of the graphs, the speaking-faces creation was the same for all

configurations. For calculating the similarities, besides from applying the three different

fusion types, they were also pruned in three different levels. The α parameter for the

distance-to-similarity transformation when using GMM audio features was tuned along

with the γ parameter for doing the weighted intermediate fusion of modalities. It can be

observed in Table 1 that the γ values are never 0 or 1, showing that the use of audio-visual

modalities is better than using only audio or only visual relations.

For each of the four configurations, a combination of α and γ values were set using

the protocol described in above. The selected values are exhibited on table 1.

4.2.3 Graph Pruning

Originally, we calculate the similarities between all nodes in a graph, ending with a

complete graph. However we also want to study the impact of pruning in our propagation

methods. For pruning the graphs we use an adaptive method that consists in setting a
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threshold,

T hreshold = m−δ ∗ std (4.1)

where m is the average and std is the standard deviation of the similarities of a given

graph, with delta being a negative real number. The values for the δ pruning parameter

were manually set as 0, −1 and −2. These values were selected in a way that leads to a

very soft pruning, a moderate pruning, and a drastic one.

4.2.4 Random Walk steps

On the label propagation algorithms, only one parameter needed to be set, which

is the t number of steps on the RWLP. The parameter value was set heuristically, checking

the number of necessary steps to achieve convergence on the development dataset of the

Mediaeval MPD 2016 campaign. The 2016 development contains 106 hours of video,

corresponding to 172 editions of evening broadcast news “Le 20 heures” of the French

public channel “France 2” (BREDIN; BARRAS; GUINAUDEAU, 2016). The minimum

tested value that achieved convergence on all used graphs was 50 steps.

4.3 Baselines

A more classical approach to tackle the MPD problem is to label elements that are

grouped together into clusters. The usual framework applies a clustering method on the

elements, and then applies a intra-cluster labeling policy. To assess the proposed label

propagation approaches against more naive methods, but without leaving the speaking-

faces graph scenario, two graph clustering baselines are proposed, one using spectral

clustering and the other using Markov clustering (ENRIGHT; DONGEN; OUZOUNIS,

2002).

The baselines are identical to the proposed methods up to the initial labeling part,

differing only on the propagation step. Here graph clustering techniques are used to tag

speaking faces which were not initially tagged. To perform the baseline tagging, one of

the graph clustering methods is applied on a speaking faces graph G . The number of

clusters is set as the number of distinct tags on each graph plus one, where this one extra

cluster represents possible speaking faces which do not have a name related to them. After

clustering the nodes, a cluster can contain a combination of untagged nodes and nodes

with different tags. To decide which tags are going to be propagated, a histogram of tags

is calculated for each cluster and the tag with the highest number of incidence on each

cluster is used to tag the untagged nodes on that same cluster, with a confidence score

set as 0.5. Note that unlike the other propagation methods, in the baseline methods some

nodes can remain untagged due to clusters formed by only untagged nodes.
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Figure 13 – Baseline labeling illustration
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L1

L2L1

Label spreading inside a cluster. Note that the initial labels do not change after the labeling process.

Source: Elaborated by the author

4.4 Evaluation Metrics

Since the ground-truth of the used dataset is not fully annotated, we consider

the Mean Average Precision at K (MAP@K) used in MediaEval‡ (BREDIN; BARRAS;

GUINAUDEAU, 2016) to evaluate our frameworks, as if it was a recommendation task. To

have complementary insights on the performance of the distinct methods we also use the

error rates and recall measures. When measuring the level of agreement of two different

configurations we use the Kappa coefficient.

To calculate the MAP@K, let {q j}1≤ j≤J be a list of J “firstname lastname”reference

names. Each name q j is assigned to the set of reference shots Sr
j where the related person

appears. Then, for each q j is returned the set of shots Sa
j which were automatically

associated to a tag approximating or equaling q j in terms of edit distance. Sa
j is ranked

using decreasing confidence scores and the classical average precision value PK
av(q j) is

calculated on the K first elements of this ranking. Finally, the MAP@K is computed as:

MAP@K =
∑

J
j=1 PK

av(q j)

J
(4.2)

The error rates and recall are calculated as follows: for each video document v, let

na be the number of (name, shot) ca couples found by the algorithm and let nr be the

number of (reference name, shot) cr couples associated to this video. Let NC be the size

of the intersection between ca and cr. We allow a small tolerance for matching two tags

Tn and Tm ;1≤ n,m≤N, i.e. when a symmetrized and normalized Levenshtein distance dL

between them is below 0.2. Let ND be the number of deletions and let NI the number of

‡we use the script written and provided by Hervé Bredin in the context of the MPD task
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insertions to get the list of reference names of the video from the list of estimated names

of the algorithm. The error rate Err, and recall R are computed as:

Err =
ND + NI

nr , (4.3)

R =
NC

nr (4.4)

The Kappa coefficient is a metric that measures the level of agreement between

two sets of results, as if they were decisions made by different judges. To calculate the

coefficient, two results A and B must be given as inputs. For each query, the answers of A

and B are matched, and set as CACB if both methods are correct, CAFB if only A is correct,

FACB if only B is correct, and FAFB if both are wrong. Then, it is possible to calculate

po, which is the relative observed agreement among the two judges, and pe, which is the

hypothetical probability of chance agreement. They are computed as:

po = (CACB + FAFB)/(CACB +CAFB + FACB + FAFB) (4.5)

pc = (CACB +CAFB +CACB + FACB)/(2∗ (CACB +CAFB + FACB + FAFB)) (4.6)

p f = (FAFB +CAFB + FAFB + FACB)/(2∗ (CACB +CAFB + FACB + FAFB)) (4.7)

pe = pc
2 + p f

2 (4.8)

Finally, the Kappa coefficient can be computed by:

Kappa = po− pe/1− pe (4.9)

4.5 Experiments

The experiments done to assess the proposed approaches on solving the MPD task

are described in this section, along with the experimental setup. In this section we study

the impact of our proposed tag-propagation approaches with respect to cases where no

propagation is performed or where graph-clustering techniques are used to spread the

initial tags. Also, it is studied the impact of different modality fusions and graph pruning

on the proposed methods. The strategies defined in this work are also compared to

literature methods applied on the same dataset.

The remainder of this section is as follows. First, it is described and discussed

the quantitative results obtained through different experiments Section 4.5.1, including

the consequences of using different fusion strategies and the impact of different levels of

pruning on the label propagation. On Section 4.5.3, a qualitative analysis of the label
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propagation methods is presented.

4.5.1 Quantitative assessment

The quantitative analysis of the framework is presented and discussed in this sec-

tion. The main objective of this analysis is to validate the characteristics of the proposed

label propagation methods when applied to the MPD problem solving. The proposed

methods are assessed with regard to the proposed baseline methods, to observe if label

propagation techniques really outperform the naive clustering baselines.

Two pairs of different features -two audio features and two visual features- are used

to describe speaking-faces, and three different fusion strategies are used to merge these

modalities, namely early fusion, intermediate fusion and late fusion. Every propagation

method is evaluated under all configurations, and hence they are referred in this work as:

• NoProp: Only the initial tagging, with no propagation applied.

• MST: Hierarchical Label propagation with intermediate fusion.

• MST LF: Hierarchical Label propagation with late fusion.

• MST EF: Hierarchical Label propagation with early fusion.

• RW: Random Walk Propagation with intermediate fusion.

• RW LF: Random Walk Propagation with late fusion.

• RW EF: Random Walk Propagation with early fusion.

• Markov: Markov Clustering with intermediate fusion.

• Markov LF: Markov Clustering with late fusion.

• Markov EF: Markov Clustering with early fusion.

• Spectral: Spectral Clustering with intermediate fusion.

• Spectral LF: Spectral Clustering with late fusion.

• Spectral EF: Spectral Clustering with early fusion.

• AltRW: Alternate Random Walk.

In the first batch of experiments displayed on Tables 2, 3, 5, and 4 we can observe

the error rates, recall and MAP@K results of the methods proposed in this work. The two

best scoring methods for each metric are highlighted in bold. If there is a tie, all methods

scoring best and second best values are highlighted.

Observing Table 2 one can observe that all labeling methods improve the results

when compared to the initial taggin only (NoProp). This suggests that by only using
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OCR extracted names it is not possible to correctly name all appearing persons on a

video, and labeling techniques can help to solve this issue.

Table 2 – CNN-GMM Results

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100
NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov 0.60 0.41 0.618 0.471 0.448 0.433
Spectral 0.59 0.44 0.604 0.447 0.426 0.412

MST 0.49 0.52 0.658 0.546 0.523 0.506
RW 0.51 0.54 0.671 0.553 0.531 0.512

MST LF 0.53 0.53 0.659 0.543 0.520 0.502
RW LF 0.49 0.54 0.663 0.539 0.517 0.500

Markov LF 0.64 0.41 0.628 0.479 0.456 0.440
Spectral LF 0.60 0.44 0.613 0.457 0.436 0.420

AltRW 0.68 0.36 0.628 0.476 0.452 0.436

Source:Research data

Table 3 – FaceNet-iVector Results

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100
NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov 0.62 0.42 0.604 0.443 0.426 0.413
Spectral 0.68 0.42 0.594 0.417 0.398 0.386

MST 0.57 0.51 0.669 0.550 0.528 0.510
RW 0.59 0.53 0.659 0.535 0.508 0.490

MST LF 0.58 0.52 0.653 0.515 0.493 0.476
RW LF 0.59 0.52 0.649 0.520 0.494 0.477

Markov LF 0.62 0.44 0.626 0.478 0.454 0.439
Spectral LF 0.63 0.42 0.604 0.433 0.414 0.400

AltRW 0.71 0.39 0.611 0.455 0.431 0.416

Source:Research data

Table 4 – FaceNet-GMM Results

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100
NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov 0.65 0.36 0.623 0.467 0.445 0.430
Spectral 0.57 0.46 0.606 0.447 0.428 0.416

MST 0.48 0.53 0.644 0.536 0.515 0.498
RW 0.50 0.55 0.666 0.550 0.528 0.508

MST LF 0.56 0.53 0.659 0.532 0.508 0.492
RW LF 0.57 0.52 0.653 0.526 0.500 0.484

Markov LF 0.61 0.46 0.623 0.473 0.450 0.434
Spectral LF 0.57 0.47 0.618 0.460 0.437 0.423

AltRW 0.62 0.43 0.626 0.484 0.461 0.444

Source:Research data

One can also observe that the proposed label propagation methods RWLP and

MSTLP achieved the best scores on all metrics, with intermediate fusion on some and
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Table 5 – CNN-iVector Results

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100
NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov 0.60 0.42 0.598 0.447 0.430 0.414
Spectral 0.66 0.40 0.596 0.430 0.409 0.395

MST 0.51 0.52 0.661 0.541 0.515 0.497
RW 0.57 0.51 0.681 0.557 0.532 0.511

MST LF 0.54 0.53 0.649 0.530 0.508 0.491
RW LF 0.52 0.52 0.659 0.527 0.504 0.488

Markov LF 0.64 0.41 0.616 0.470 0.446 0.430
Spectral LF 0.64 0.40 0.599 0.434 0.413 0.399

AltRW 0.73 0.33 0.613 0.455 0.431 0.418

Source:Research data

late fusion on others. The alternate RWLP achieved worst results than the traditional

RWLP, by a considerable margin. The label propagation methods also perform better than

the naive clustering approaches, ranging from 0.500 to 0.512 against 0.412 to 0.440 on

MAP@100. This shows that using semi-supervised learning algorithms leads to better

results than only using clustering based labeling processes.

On Table 3 the strategies were tested using the combination of a face specific image

descriptor and a state-of-the art audio descriptor, opposed to the prior CNN-GMM confi-

guration, which uses good but generic descriptors. The results on 3, show that improving

the quality of the features does not necessarily improve the results obtained when using the

proposed framework. In some cases, like the MST, the scores are improved by using the

FaceNet-iVector configuration, but the opposite happens for the RW propagation. On Ta-

bles 5 and 4, there is the combination of the CNN-iVector descriptors and FaceNet-GMM

descriptors. Like in the other configurations, the observed behaviours remain constant.

In this work, three different fusion modalities are utilized, named early fusion,

intermediate fusion and late fusion. To asses the impact of different fusion types on

the labeling methods, the three different fusion types are tested on the GMM-CNN and

FaceNet-iVector graph configurations. The results for all methods on both configurations

are illustrated on Figure 14.

Observing the two bar charts, one can observe that the behaviors of all methods

remain constant on the two graph configurations with regard to the fusion types. The first

observation is that the AltRW achieves the worst results compared to all other RWLP fu-

sion types, showing itself as a bad performing late fusion approach. On the proposed

label propagation methods, i.e.MSTLP and RWLP, the best performing fusion type is the

intermediate fusion, followed by the late fusion and early fusion, in this specific order. The

comportment of the fusion type results on the graph-clustering based baselines is different.

On them, the best performing fusion type is the late fusion, followed by the intermediate
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Figure 14 – Fusion Strategies.
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fusion and early fusion at last. What is common between all methods, with exception for

the AltRW, is that the early fusion approach was the worst performing fusion type.

By analyzing these results is possible to assume that simply applying a generic

similarity function over the concatenation of aural and visual features does not create

better discriminant relationships. This happens since two feature vectors, not normalized

and extracted from two different information channels are combined in a naive way. Using

a better suited multimodal feature fusion and more appropriate similarity metric for the

new multimodal features could lead to improvements on the early fusion performance.

Table 6 – Number of edges per each pruning intensity

Total number of edges
Configurations No Pruning δ = -2 δ = -1 δ = 0

CNN-GMM 56.578.108 54.343.228 42.349.534 13.794.879
FaceNet-iVector 56.578.108 56.012.823 43.338.496 11.567.599

Source:Research data

To understand the impact of graph pruning on the used labeling methods, three

levels of pruning were applied to the graphs. The graph configurations used to analyze

the impact were the CNN-GMM and FaceNet-iVector configurations. The total number

of edges on each graph configuration before and after the pruning are exhibited on Table

6. On the FaceNet-iVector configuration, the smoothest pruning leaves 99% of the total

number of edges, and the hardest one leaves only 20%.

The results for all propagation methods using intermediate and late fusion under

the different pruning levels are shown in Figure 15. Once again, the behaviors of each

method on the two different graph configurations are very similar. On most cases, pruning

the graphs results on diminish the scores, with a few exceptions. On the Markov pro-

pagation pruning improved the results. For the FaceNet-iVector configuration, pruning

also improved results for the Spectral and MST LF labeling methods. For the rest, the
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Figure 15 – Impact of pruning edges.
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act of pruning is always prejudicial, but not always proportionally to the level of pruning

applied.

These results are heterogeneous along the methods at a certain level, but showing

on most cases that pruning is prejudicial to the propagation methods when regarding the

evaluation scores. Although, the score differences are not substantial, and even with a

very low quantity of edges the propagation methods can still perform well and improve

the efficacy with regard to not using label propagation. This is a very interesting charac-

teristic, meaning that the proposed methods still perform well on scenarios where there is

a low percentage of edges, which can diminish drastically the computational cost without

suffering much loss on the resulting labeling.



42

4.5.2 Comparison with the state-of-the-art

In this section, the proposed methods are compared to literature methods applied

to the same dataset. The propagation methods are applied on the CNN-GMM configu-

ration, as it was used by the author in the MediaEval 2016 benchmark. The compared

methods are the MSTLP and RWLP with intermediate and late fusion variants, including

the AltRW.

Table 7 – MAP@K comparison against literature methods.

Method MAP@1 MAP@5 MAP@10 MAP@100
(LE; MEIGNIER; ODOBEZ, 2016) 0.791 0.672 0.650 0.629

(OTERO; DOCIO-FERNANDEZ; MATEO, 2016) 0.249 0.199 0.188 0.166
(NGUYEN et al., 2016) 0.100 0.091 0.089 0.086

(NISHI et al., 2016) 0.254 0.173 0.157 0.147

(MARTÍ et al., 2016) 0.474 0.350 0.335 0.323
NoProp 0.543 0.342 0.323 0.312

MST 0.658 0.546 0.523 0.506
RW 0.671 0.550 0.531 0.512

MST LF 0.659 0.543 0.520 0.502
RW LF 0.663 0.539 0.517 0.500
AltRW 0.628 0.476 0.452 0.436

Comparative results between the proposed methods and the literature. The proposed methods are

evaluated using the CNN-GMM configuration. The two best performing methods are highlighted in

boldface.

Source:Research data

In Table 7 the comparative results of the participant teams on MediaEval MPD

2016 and the proposed propagation methods are shown. The best performing method

is the one proposed by EUMSSI team (LE; MEIGNIER; ODOBEZ, 2016), and it is the

only one not based on speaker and face diarization. Apart from the EUMSSI team, our

proposed strategy outperformed all the other literature methods by a significant margin.

When comparing the proposed methods with the ones that used speaker or face

diarisation, one can see that the NoProp configuration, which stands for the initial tag-

gin only is almost equivalent to the UPC team (MARTÍ et al., 2016), and already top

the Tokyo Tech, HCMUS (NGUYEN et al., 2016) and GTM-UVIGO (OTERO; DOCIO-

FERNANDEZ; MATEO, 2016) scores. When using the RWLP, which is the best per-

forming of the proposed methods, it outscores the second best method by 0,189 on

MAP@100.

4.5.3 Qualitative analysis of results

In order to enrich the assessment of the proposed methods, in this section two main

analysis are presented. The first analysis displays some more detailed information on the
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dataset and its annotations, and how they can impact the evaluations. In the second

analysis, the MSTLP and RWLP methods are put under a paired comparison, exploiting

some of their perks and flaws.

As mentioned in Section 4.1, the used dataset is not fully annotated. The ground

truth was built by a collaborative effort, and in its final form, it contained 3431 annotated

shots. On the graph creation step, the number of detected speaking-faces is 179.905.

After the initial automatic naming, 11.267 speaking-faces are labeled, which represents

6.7% of the total number of speaking-faces. This fact confirms the expectations extracting

names from visual overlays would end in a sparsely labeled set. After temporally gathering

the speaking-faces into their respective shots, the total number of shots to be evaluated

is 94193. The ground truth contains 3431 annotated shots, therefore only a portion of

approximately 3.5% of the annotated shots can be evaluated. This is not an optimal

scenario, and having more annotated data would help to improve the evaluation of the

proposed methods.

From the 3431 annotated shots in the ground truth, 811 were named after the

initial tagging phase, i.e. NoProp configuration. From the 811 initially tagged nodes, 207

labels are wrong, resulted by errors in the pre-processing and graph creation parts. This

leaves a portion of 2620 shots to evaluate the effects of the proposed label propagation

methods.

Table 8 – Relation of correct and wrong propagation

Propagated Labels
Configurations Correct Wrong

MSTLP 1207 677
RWLP 1261 623

Source:Research data

It can be observed on Table 8 that both methods have similar results. On a total

of 2620 unlabeled shots after the speaking-face graph creation, 677 remain unlabeled after

propagation. This happens because the speaking-face related to this shots were not found

during the pre-processing, hence these entities cannot be labeled. From the 1884 propa-

gated labels, both methods correctly propagate around 65% of it, with RWLP excelling

MSTLP by 54 hits. In this work, the label propagation methods leave no unlabeled nodes

in the graphs, and by selectively leaving unlabeled nodes, the methods would be able

continue propagating correct labels without propagating noise and false labels through

the graphs.

The MSTLP and RWLP strategies score 0.86 on the Kappa’s coefficient, which accor-

ding to (LANDIS; KOCH, 1977) can be considered as an almost perfect agreement. If we

analyze both algorithms, the MSTLP has a smaller time complexity, which makes it more
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scaleable. The processing times of both algorithms are measured for propagating labels

for the entire dataset§. The processing time of the RWLP is of 7m12s, and for the MSTLP it

is 1m8s, representing a speedup of 6.35 times and corroborating with the difference of

complexity between both algorithms.

§The computational times were measured on an Intel i3-6100 CPU @ 3.70GHz with 4GB of 1333MHz
DDR3 RAM
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5 CONCLUSION

In this chapter, the main contributions and conclusions are presented, along with

the possible future extensions for this work. Also, it is presented the published papers

regarding the label propagation over speaking-face graphs for multimodal person discovery

strategies.

5.1 Contributions

This study tackled the multimodal person discovery problem. This task has gai-

ned a lot of attention over the years, but many of the related studies use mono-modal

clustering based strategies to solve the problem. It is presented in this work a multimo-

dal modeling for the problem, along with two methods for propagating labels over the

proposed speaking-face graph model.

In the following, it is addressed the main scientific contributions of this work:

• The formal definition of a multimodal graph representation, named speaking-

face graph. It is shown that the use of multiple modalities is superior than using

one only modality for calculating similarities between the detected speaking per-

sons. It is also shown that the use of different acoustic and visual features, from

generic to case-specific features, do not change the behavior of methods applied on

the speaking-face graphs significantly, but that behavior could be affected by the

use of a similarity measure that is not perfectly suited for the used representations.

• Two semi-supervised, graph based label propagation algorithms to expand the

initially named entities on the speaking-face graphs. One of the proposed methods

is an novel hierarchical label propagation strategy, using confidence scores decisions

to leave no unlabeled nodes. The second is an adaptation of existing methods,

based on random walks. Both methods improve the labeling by propagating names

through the speaking-face graphs. The MSTLP and RWLP methods produce highly

equivalent results, according to the Kappa coefficient. The MSTLP method however is

approximately 6.35 times faster than the RWLP method. Both methods outperformed

all diarization and clustering based literature methods applied to the same dataset.

• Two graph-clustering baselines to study the impact of the label propagation

algorithms against more naive methods applied on speaking-faces graphs. The pro-

posed label propagation methods achieve better results than the baselines on all

graph configurations. This suggests that semi-supervised learning methods are best

suited for this specific environment.
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• The study of how graph manipulations impact the proposed label propaga-

tion algorithms. Three fusion types were studied to create multimodal similarities

between speaking-faces. The intermediate fusion performed better when using the

proposed label propagation methods, but when using the clustering baselines, the

best results are achieved by using the late fusion strategy. Early fusion is the worst

choice for both labeling types. Also, it was studied the effects of graph pruning on

the labeling methods. On the greater part of the experiments, graph pruning shows

itself bad for the label propagation, but the achieved recall is not proportional to

the intensity of the pruning on all cases. Nevertheless, even if the pruning is not

beneficial, it does not invalidate the proposed methods, showing that they can still

work well in cases where there is a low percentage of edges, giving good results with

diminished computational cost for creating the graphs and propagating the labels.

We believed that creating person specific modeling using multimodal information

might result in good data representation for the MPD task, and using semi-supervised la-

bel inference methods can work around the sparsity issues of the visually extracted names,

increasing the number of indexed persons without sacrificing the labeling correctness. It

is showed in this work that the proposed strategy beats all other methods also based on

face and/or speaker diarizartion, which enforces the first affirmative. It is also shown that

the label propagation methods increase the number of correctly labeled faces, with regard

to the initially labeled speaking-face graphs. Additionally, the label propagation methods

outperform the graph-clustering baselines, showing that semi-supervised methods are the

best choices for the presented scenario.

5.2 Future work

The proposed work opens possibilities for novel studies, such as:

• Using metric learning to create better similarity values on initially labeled graphs.

• Applying the speaking-face graph modeling for tackling other multimodal tasks;

• Using the hierarchical label propagation as an alternative semi-supervised learning

method on different areas;

• Study the extraction of audio-visual features to create better speaking-faces simila-

rities;

• Study better suited modality fusion techniques;

• Limiting the hierarchical propagation by applying cuts on the tree, as a way of

avoiding wrong propagation; and
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• Using mathematical morphological operations to improve the hierarchical propaga-

tion.

5.3 Published papers

This study resulted in the following published papers:

• PUC Minas and IRISA at Multimodal Person Discovery (SARGENT et

al., 2016). In: Working Notes Proceedings of the MediaEval Workshop. 2016.

• Towards large scale multimedia indexing: A case study on person dis-

covery in broadcast news. (LE et al., 2017). In: Proceedings of the 15th

International Workshop on Content-Based Multimedia Indexing (CBMI) 2017.

• Tag Propagation Approaches within Speaking Face Graphs for Multi-

modal Person Discovery. (FONSECA et al., 2017) Proceedings of the 15th

International Workshop on Content-Based Multimedia Indexing (CBMI) 2017.

• Tag Propagation Approaches within Speaking Face Graphs for Multi-

modal Person Discovery. Journal in preparation for the IEEE Transactions on

Multimedia.
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