PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós Graduação em Engenharia Mecânica

Davidson Victor Felisberto

# MELHORA DE DESEMPENHO DE UM MOTOR FLEX COMBINANDO RAZÃO DE COMPRESSÃO ADEQUADA PARA O ETANOL E CICLO MILLER PARA CONTROLE DE MASSA ASPIRADA E DETONAÇÃO

Belo Horizonte 2019

Davidson Victor Felisberto

# MELHORA DE DESEMPENHO DE UM MOTOR FLEX COMBINANDO RAZÃO DE COMPRESSÃO ADEQUADA PARA O ETANOL E CICLO MILLER PARA CONTROLE DE MASSA ASPIRADA E DETONAÇÃO

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Pontifícia Universidade Católica de Minas Gerais, como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Rogério Jorge Amorim, PhD.

Área de concentração: Sistemas térmicos e fluidos

FICHA CATALOGRÁFICA Elaborada pela Biblioteca da Pontifícia Universidade Católica de Minas Gerais

|       | F                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F315m | Felisberto, Davidson Victor<br>Melhora de desempenho de um motor flex combinando razão de<br>compressão adequada para o etanol e ciclo miller para controle de massa<br>aspirada e detonação / Davidson Victor Felisberto. Belo Horizonte, 2019.<br>212 f. : il.                                                                                                                                                                              |
|       | Orientador: Rogério Jorge Amorim<br>Dissertação (Mestrado) – Pontifícia Universidade Católica de Minas Gerais.<br>Programa de Pós-Graduação em Engenharia Mecânica                                                                                                                                                                                                                                                                            |
|       | 1. Motores de combustão interna - Simulação por computador. 2. Automóveis<br>- Ignição. 3. Álcool como combustível. 4. Emissões de veículos. 5. Automóveis -<br>Motores. 6. Automóveis - Consumo de combustíveis. 7. Veículos a motor -<br>Dispositivos de controle da poluição. I. Amorim, Rogério Jorge. II. Pontifícia<br>Universidade Católica de Minas Gerais. Programa de Pós-Graduação em<br>Engenharia Mecânica. III, Título. C MINAS |
|       | CDU: 621.43                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Ficha catalográfica elaborada por Elizângela Ribeiro de Azevedo - CRB 6/3393

Davidson Victor Felisberto

## MELHORA DE DESEMPENHO DE UM MOTOR FLEX COMBINANDO RAZÃO DE COMPRESSÃO ADEQUADA PARA O ETANOL E CICLO MILLER PARA CONTROLE DE MASSA ASPIRADA E DETONAÇÃO

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Pontifícia Universidade Católica de Minas Gerais, como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Rogério Jorge Amorim, PhD.

Prof. Rogério Jorge Amorim, Ph.D. - PUC Minas

Prof. Sérgio de Morais Hanriot, D.Sc. – PUC Minas

Prof. Ramon Molina Valle, D.Sc – UFMG

Belo Horizonte, 28 de Novembro de 2019

A toda comunidade acadêmica pelo esforço e dedicação em superar as imensas dificuldades na busca de colaborar com a transformação da sociedade através do ensino e conhecimento.

#### AGRADECIMENTOS

Agradeço, primeiramente, à Deus. Pela luz durante a trajetória e força para concluir essa etapa. Deixo meu agradecimento especial ao orientador Rogério Jorge Amorim e ao professor Sérgio de Morais Hanriot pelo conhecimento e incentivo durante esses anos de estudo e trabalho. Aos meus familiares por me darem condições de focar totalmente nesse projeto. Esse trabalho também é fruto do esforço de vocês. Aos amigos e colegas de Mestrado pela troca de informação, risadas e momentos de descontração que contribuíram a manter o foco e persistência no objetivo.

Registro aqui minha gratidão à PUC-MG e à Secretaria de Cultura e Assuntos Comunitários pelo incentivo, estrutura e disponibilidade de equipamento para a realização e desenvolvimento da pesquisa.

E a todos que, de alguma forma, contribuíram para a realização desse trabalho.

#### **RESUMO**

Como um dos equipamentos geradores de energia mais utilizados, motores de ignição por centelha tem sido assunto recorrente de estudos relacionados à utilização de combustíveis. Alguns dos desafios que concernem motores de combustão interna é o desenvolvimento de motores que sejam altamente eficientes e de menor impacto ambiental devido à crise energética global e à intensificação da poluição do meio ambiente. Alinhado com esse desafio, o estudo consiste em analisar, utilizando modelagem numérica, a utilização do Ciclo Miller combinado com o aumento da razão volumétrica de compressão com o objetivo de melhorar a eficiência de motores de ignição por centelha. A modelagem numérica foi feita através do software AVL Boost® 2017 para representar o funcionamento de um motor 1.6L 16v flex fuel utilizando etanol e gasolina como combustível em três condições de carga e nove frequências de giro do motor. Os modelos foram validados comparando os resultados da modelagem com resultados experimentais do motor base em condições de operação correspondentes às simuladas pelo software. Com um modelo validado, o Ciclo Miller foi utilizado para controle da aspirada - sem alterar a razão volumétrica de compressão. A representação do Ciclo Miller foi feita combinando a configuração da válvula borboleta em máxima abertura (WOT) com alterações no diagrama das válvulas que representassem o fechamento antecipado da válvula de admissão. Comparando os resultados desse modelo com os resultados correspondentes ao modelo de validação, o consumo médio específico apresentou reduções médias de 4,6% para o etanol e 5,2% para a gasolina. Por fim, aumentando a razão volumétrica de compressão de 10,5:1 para 14,5:1 e utilizando o Ciclo Miller para controle da massa aspirada pelo motor e contenção da detonação, o modelo de Ciclo Miller apresentou redução média do consumo específico de combustível de 10,3% para o etanol e 8,0% para a gasolina comparado com o modelo de validação.

Palavras-chave: Motor de combustão interna. Razão volumétrica de compressão. Ciclo Miller. Motor flex fuel. Etanol. Gasolina.

#### ABSTRACT

As one of the most commonly used energy equipment, spark-ignition engines have attracted increasing attentions on its fuel usage. Some of the main challenges related to internal combustion engines are the development of highly efficient and environmental friendly engines by reason of global energy crisis and intensifying environment pollution. These factors encouraged the research into Miller Cycle, early intake valve closing and increased compression ratio in order to improve spark-ignition engines efficiency. This report shows an analysis through numerical modeling on performance parameters of a 1.6L 16v flex fuel using ethanol and gasoline as fuel on three load conditions and nine engine speed. The models were validated by comparing modeling results with base engine experimental results on corresponding operation conditions. Using these validated models, Miller Cycle was applied to control aspirated mass - with no changes on compression ratio. Miller Cycle's representation was done by setting throttle valve on WOT and changing valve diagram in order to represent early intake valve closing. Comparing this model results with corresponding validation model, specific fuel consumption showed mean reductions of 4.6% for ethanol and 5.2% for gasoline. Afterwards, increasing compression ration from 10.5:1 to 14.5:1 and applying Miller Cycle to control aspirated mass and to suppress knocking, Miller Cycle model showed mean reductions on specific fuel consumption of 10.3% for ethanol and 8.0% for gasoline compared to validation model.

Keywords: Internal combustion engine. Compression ratio. Miller Cycle. Flex fuel engine. Ethanol. Gasoline.

### LISTA DE FIGURAS

| Figura 1 - Ações relacionadas à indústria automotiva                               | 36  |
|------------------------------------------------------------------------------------|-----|
| Figura 2 - Geometria básica de um motor alternativo de combustão interna           | 42  |
| Figura 3 - Diagrama PxV de um Ciclo Otto real                                      | 45  |
| Figura 4 - Esquematização de um dinamômetro                                        | 47  |
| Figura 5 - Diagrama PxV de um Ciclo de ar-padrão Otto ideal                        | 52  |
| Figura 6 - Eventos em um motor quatro tempos ignição por centelha                  | 54  |
| Figura 7 - Diagrama PxV de um Ciclo Atkinson                                       | 55  |
| Figura 8 - Diagrama PxV de um Ciclo Miller                                         | 56  |
| Figura 9 - Autoignição durante combustão em motor de ignição por centelha          | 59  |
| Figura 10 - VVT e as diversas possibilidades de mapeamento de válvula              | 61  |
| Figura 11 - Esquematização dos componentes do sistema MultiAir®                    | 62  |
| Figura 12 - Ajustes de diagrama das válvulas MultiAir®                             | 63  |
| Figura 13 - Balanço de energia no cilindro                                         | 64  |
| Figura 14 - Fluxograma geral do estudo                                             | 87  |
| Figura 15 - Diagrama de blocos utilizado como modelo                               | 90  |
| Figura 16 - Fluxograma para configuração do modelo de validação                    | 91  |
| Figura 17 - Fluxograma de configuração do modelo para aplicação do Ciclo Miller    | 92  |
| Figura 18 - Fluxograma para configuração do modelo com Rc otimizada e Ciclo Miller | 94  |
| Figura 19 - Simulation tasks                                                       | 135 |
| Figura 20 - Boost Gas Properties Tool                                              | 136 |
| Figura 21 - Engine                                                                 | 137 |
| Figura 22 - System Boundary                                                        | 137 |
| Figura 23 - Air Cleaner                                                            | 138 |
| Figura 24 - Throttle                                                               | 139 |
| Figura 25 - Plenum                                                                 | 140 |
| Figura 26 - Injector                                                               | 141 |
| Figura 27 - Restriction                                                            | 141 |
| Figura 28 - Cyclinder                                                              | 142 |
| Figura 29 - Cylinder - Valve Port Specifications                                   | 143 |
| Figura 30 - Junction                                                               | 143 |
| Figura 31 - Catalyst                                                               | 144 |
| Figura 32 - Pipes A                                                                | 145 |

| Figura 34 - Pipes C147Figura 35 - Parameters148Figura 36 - Diagrama da válvula de escape165Figura 37 - Diagrama da válvula de admissão original166Figura 38 - Diagrama da válvula de admissão 14 DPMI167Figura 39 - Diagrama da válvula de admissão 6 DPMI168Figura 39 - Diagrama da válvula de admissão 6 DPMI169Figura 40 - Diagrama da válvula de admissão 10 APMI170Figura 41 - Diagrama da válvula de admissão 12 APMI171Figura 42 - Diagrama da válvula de admissão 12 APMI172Figura 43 - Diagrama da válvula de admissão 12 APMI172Figura 44 - Diagrama da válvula de admissão 12 APMI173Figura 45 - Diagrama da válvula de admissão 20 APMI174Figura 45 - Diagrama da válvula de admissão 24 APMI175Figura 46 - Diagrama da válvula de admissão 28 APMI176Figura 47 - Diagrama da válvula de admissão 30 APMI178Figura 50 - Diagrama da válvula de admissão 30 APMI179Figura 51 - Diagrama da válvula de admissão 34 APMI180Figura 52 - Diagrama da válvula de admissão 34 APMI181Figura 54 - Diagrama da válvula de admissão 36 APMI182Figura 55 - Diagrama da válvula de admissão 36 APMI188Figura 56 - Diagrama da válvula de admissão 36 APMI188Figura 57 - Diagrama da válvula de admissão 36 APMI184Figura 55 - Diagrama da válvula de admissão 44 APMI184Figura 56 - Diagrama da válvula de admissão 50 APMI188Figura 57 - Diagrama da válvula de admissão 50 APMI188                        | Figura 33 - Pipes B                                  | 146 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
| Figura 35 - Parameters.148Figura 36 - Diagrama da válvula de escape.165Figura 37 - Diagrama da válvula de admissão original.166Figura 38 - Diagrama da válvula de admissão 14 DPMI167Figura 39 - Diagrama da válvula de admissão 6 DPMI168Figura 40 - Diagrama da válvula de admissão 8 APMI169Figura 41 - Diagrama da válvula de admissão 10 APMI170Figura 42 - Diagrama da válvula de admissão 12 APMI171Figura 43 - Diagrama da válvula de admissão 12 APMI172Figura 44 - Diagrama da válvula de admissão 18 APMI173Figura 45 - Diagrama da válvula de admissão 20 APMI174Figura 45 - Diagrama da válvula de admissão 26 APMI176Figura 47 - Diagrama da válvula de admissão 26 APMI176Figura 48 - Diagrama da válvula de admissão 30 APMI177Figura 49 - Diagrama da válvula de admissão 32 APMI179Figura 50 - Diagrama da válvula de admissão 34 APMI180Figura 51 - Diagrama da válvula de admissão 34 APMI180Figura 52 - Diagrama da válvula de admissão 34 APMI180Figura 53 - Diagrama da válvula de admissão 34 APMI181Figura 54 - Diagrama da válvula de admissão 36 APMI181Figura 55 - Diagrama da válvula de admissão 44 APMI184Figura 56 - Diagrama da válvula de admissão 36 APMI181Figura 57 - Diagrama da válvula de admissão 36 APMI182Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 56 - Diagrama da válvula de admissão 50 APMI188Figura 57 - Diagrama da válvula de admissã | Figura 34 - Pipes C                                  | 147 |
| Figura 36 - Diagrama da válvula de escape.165Figura 37 - Diagrama da válvula de admissão original.166Figura 38 - Diagrama da válvula de admissão 14 DPMI167Figura 39 - Diagrama da válvula de admissão 6 DPMI168Figura 40 - Diagrama da válvula de admissão 6 DPMI169Figura 41 - Diagrama da válvula de admissão 10 APMI170Figura 42 - Diagrama da válvula de admissão 12 APMI171Figura 43 - Diagrama da válvula de admissão 14 APMI172Figura 44 - Diagrama da válvula de admissão 18 APMI173Figura 45 - Diagrama da válvula de admissão 20 APMI174Figura 46 - Diagrama da válvula de admissão 24 APMI175Figura 47 - Diagrama da válvula de admissão 28 APMI176Figura 48 - Diagrama da válvula de admissão 28 APMI177Figura 51 - Diagrama da válvula de admissão 30 APMI178Figura 52 - Diagrama da válvula de admissão 34 APMI180Figura 53 - Diagrama da válvula de admissão 36 APMI181Figura 54 - Diagrama da válvula de admissão 36 APMI182Figura 55 - Diagrama da válvula de admissão 36 APMI181Figura 55 - Diagrama da válvula de admissão 36 APMI183Figura 56 - Diagrama da válvula de admissão 36 APMI183Figura 57 - Diagrama da válvula de admissão 50 APMI184Figura 56 - Diagrama da válvula de admissão 50 APMI184Figura 57 - Diagrama da válvula de admissão 50 APMI184Figura 58 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI189Figura 61 - Di | Figura 35 - Parameters                               | 148 |
| Figura 37 - Diagrama da válvula de admissão original                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figura 36 - Diagrama da válvula de escape            | 165 |
| Figura 38 - Diagrama da válvula de admissão 14 DPMI       167         Figura 39 - Diagrama da válvula de admissão 6 DPMI       168         Figura 40 - Diagrama da válvula de admissão 8 APMI       169         Figura 41 - Diagrama da válvula de admissão 10 APMI       170         Figura 42 - Diagrama da válvula de admissão 12 APMI       171         Figura 43 - Diagrama da válvula de admissão 14 APMI       172         Figura 45 - Diagrama da válvula de admissão 20 APMI       173         Figura 45 - Diagrama da válvula de admissão 20 APMI       174         Figura 45 - Diagrama da válvula de admissão 20 APMI       175         Figura 45 - Diagrama da válvula de admissão 20 APMI       176         Figura 47 - Diagrama da válvula de admissão 20 APMI       176         Figura 47 - Diagrama da válvula de admissão 20 APMI       176         Figura 47 - Diagrama da válvula de admissão 20 APMI       177         Figura 48 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 44 APMI       181         Figura 54 - Diagrama da válvula de admissão 44 APMI       184         Figura 55 - Diagrama da válvula de admissão 50 APMI       184         Figura 57 - Diagrama d      | Figura 37 - Diagrama da válvula de admissão original | 166 |
| Figura 39 - Diagrama da válvula de admissão 6 DPMI       168         Figura 40 - Diagrama da válvula de admissão 8 APMI       169         Figura 41 - Diagrama da válvula de admissão 10 APMI       170         Figura 42 - Diagrama da válvula de admissão 12 APMI       171         Figura 43 - Diagrama da válvula de admissão 14 APMI       172         Figura 44 - Diagrama da válvula de admissão 18 APMI       173         Figura 45 - Diagrama da válvula de admissão 20 APMI       174         Figura 46 - Diagrama da válvula de admissão 20 APMI       175         Figura 47 - Diagrama da válvula de admissão 26 APMI       176         Figura 48 - Diagrama da válvula de admissão 30 APMI       177         Figura 49 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 42 APMI       182         Figura 54 - Diagrama da válvula de admissão 44 APMI       180         Figura 55 - Diagrama da válvula de admissão 50 APMI       183         Figura 57 - Diagrama da válvula de admissão 50 APMI       184         Figura 57 - Diagrama da válvula de admissão 50 APMI       184         Figura 57 - Diagrama d      | Figura 38 - Diagrama da válvula de admissão 14 DPMI  | 167 |
| Figura 40 - Diagrama da válvula de admissão 8 APMI       169         Figura 41 - Diagrama da válvula de admissão 10 APMI       170         Figura 42 - Diagrama da válvula de admissão 12 APMI       171         Figura 43 - Diagrama da válvula de admissão 14 APMI       172         Figura 43 - Diagrama da válvula de admissão 14 APMI       173         Figura 44 - Diagrama da válvula de admissão 20 APMI       174         Figura 45 - Diagrama da válvula de admissão 26 APMI       175         Figura 47 - Diagrama da válvula de admissão 28 APMI       176         Figura 48 - Diagrama da válvula de admissão 30 APMI       177         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 36 APMI       179         Figura 52 - Diagrama da válvula de admissão 36 APMI       180         Figura 53 - Diagrama da válvula de admissão 36 APMI       180         Figura 54 - Diagrama da válvula de admissão 38 APMI       181         Figura 55 - Diagrama da válvula de admissão 42 APMI       183         Figura 56 - Diagrama da válvula de admissão 50 APMI       184         Figura 57 - Diagrama da válvula de admissão 50 APMI       184         Figura 57 - Diagrama da válvula de admissão 50 APMI       185         Figura 58 - Diagrama da válvula de admissão 50 APMI       186         Figura 59 - Diagrama       | Figura 39 - Diagrama da válvula de admissão 6 DPMI   | 168 |
| Figura 41 - Diagrama da válvula de admissão 10 APMI       170         Figura 42 - Diagrama da válvula de admissão 12 APMI       171         Figura 43 - Diagrama da válvula de admissão 14 APMI       172         Figura 43 - Diagrama da válvula de admissão 18 APMI       173         Figura 44 - Diagrama da válvula de admissão 20 APMI       174         Figura 45 - Diagrama da válvula de admissão 20 APMI       175         Figura 46 - Diagrama da válvula de admissão 26 APMI       176         Figura 47 - Diagrama da válvula de admissão 28 APMI       177         Figura 49 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 36 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 42 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 57 - Diagrama da válvula de admissão 50 APMI       183         Figura 57 - Diagrama da válvula de admissão 50 APMI       184         Figura 58 - Diagrama da válvula de admissão 50 APMI       185         Figura 59 - Diagrama da válvula de admissão 54 APMI       186         Figura 50 - Diagrama      | Figura 40 - Diagrama da válvula de admissão 8 APMI   | 169 |
| Figura 42 - Diagrama da válvula de admissão 12 APMI171Figura 43 - Diagrama da válvula de admissão 14 APMI172Figura 43 - Diagrama da válvula de admissão 18 APMI173Figura 44 - Diagrama da válvula de admissão 20 APMI174Figura 45 - Diagrama da válvula de admissão 20 APMI175Figura 46 - Diagrama da válvula de admissão 24 APMI176Figura 47 - Diagrama da válvula de admissão 26 APMI176Figura 48 - Diagrama da válvula de admissão 28 APMI177Figura 49 - Diagrama da válvula de admissão 30 APMI178Figura 50 - Diagrama da válvula de admissão 32 APMI179Figura 51 - Diagrama da válvula de admissão 34 APMI180Figura 52 - Diagrama da válvula de admissão 36 APMI181Figura 53 - Diagrama da válvula de admissão 38 APMI182Figura 54 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI189Figura 61 - Diagrama da válvula de admissão 54 APMI189Figura 62 - Diagrama da válvula de admissão 56 APMI190Figura 64 - Diagrama da válvula de admissão 56 APMI191Figura 64 - Diagrama da válvula de admissão 66 APMI192Figura 64 - Diagrama da válvula de admissão 66 APMI193Figur | Figura 41 - Diagrama da válvula de admissão 10 APMI  | 170 |
| Figura 43 - Diagrama da válvula de admissão 14 APMI172Figura 44 - Diagrama da válvula de admissão 18 APMI173Figura 45 - Diagrama da válvula de admissão 20 APMI174Figura 45 - Diagrama da válvula de admissão 24 APMI175Figura 47 - Diagrama da válvula de admissão 26 APMI176Figura 47 - Diagrama da válvula de admissão 28 APMI177Figura 49 - Diagrama da válvula de admissão 30 APMI177Figura 50 - Diagrama da válvula de admissão 32 APMI179Figura 51 - Diagrama da válvula de admissão 36 APMI180Figura 52 - Diagrama da válvula de admissão 36 APMI180Figura 53 - Diagrama da válvula de admissão 36 APMI181Figura 54 - Diagrama da válvula de admissão 42 APMI183Figura 55 - Diagrama da válvula de admissão 44 APMI184Figura 57 - Diagrama da válvula de admissão 44 APMI184Figura 58 - Diagrama da válvula de admissão 50 APMI185Figura 59 - Diagrama da válvula de admissão 50 APMI186Figura 58 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI188Figura 61 - Diagrama da válvula de admissão 50 APMI189Figura 62 - Diagrama da válvula de admissão 50 APMI190Figura 64 - Diagrama da válvula de admissão 56 APMI190Figura 64 - Diagrama da válvula de admissão 66 APMI191Figura 64 - Diagrama da válvula de admissão 66 APMI193Figura 65 - Diagrama da válvula de admissão 66 APMI193Figur | Figura 42 - Diagrama da válvula de admissão 12 APMI  | 171 |
| Figura 44 - Diagrama da válvula de admissão 18 APMI       173         Figura 45 - Diagrama da válvula de admissão 20 APMI       174         Figura 45 - Diagrama da válvula de admissão 24 APMI       175         Figura 47 - Diagrama da válvula de admissão 26 APMI       176         Figura 48 - Diagrama da válvula de admissão 28 APMI       177         Figura 49 - Diagrama da válvula de admissão 30 APMI       177         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 36 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       180         Figura 53 - Diagrama da válvula de admissão 38 APMI       181         Figura 54 - Diagrama da válvula de admissão 42 APMI       182         Figura 55 - Diagrama da válvula de admissão 44 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 57 - Diagrama da válvula de admissão 50 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       186         Figura 60 - Diagrama da válvula de admissão 54 APMI       188         Figura 61 - Diagrama da válvula de admissão 54 APMI       189         Figura 62 - Diagrama da válvula de admissão 56 APMI       190         Figura 63 - Diagrama da válvula de admissão 58 APMI       191         Figura 64 - Diagrama      | Figura 43 - Diagrama da válvula de admissão 14 APMI  | 172 |
| Figura 45 - Diagrama da válvula de admissão 20 APMI       174         Figura 46 - Diagrama da válvula de admissão 24 APMI       175         Figura 47 - Diagrama da válvula de admissão 26 APMI       176         Figura 48 - Diagrama da válvula de admissão 28 APMI       177         Figura 49 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 36 APMI       182         Figura 54 - Diagrama da válvula de admissão 38 APMI       182         Figura 55 - Diagrama da válvula de admissão 44 APMI       183         Figura 55 - Diagrama da válvula de admissão 46 APMI       184         Figura 56 - Diagrama da válvula de admissão 50 APMI       185         Figura 57 - Diagrama da válvula de admissão 50 APMI       186         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 56 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       189         Figura 62 - Diagrama da válvula de admissão 56 APMI       190         Figura 63 - Diagrama da válvula de admissão 56 APMI       191         Figura 64 - Diagrama      | Figura 44 - Diagrama da válvula de admissão 18 APMI  | 173 |
| Figura 46 - Diagrama da válvula de admissão 24 APMI175Figura 47 - Diagrama da válvula de admissão 26 APMI176Figura 48 - Diagrama da válvula de admissão 28 APMI177Figura 49 - Diagrama da válvula de admissão 30 APMI178Figura 50 - Diagrama da válvula de admissão 32 APMI179Figura 51 - Diagrama da válvula de admissão 34 APMI180Figura 52 - Diagrama da válvula de admissão 36 APMI181Figura 53 - Diagrama da válvula de admissão 36 APMI181Figura 54 - Diagrama da válvula de admissão 38 APMI182Figura 55 - Diagrama da válvula de admissão 42 APMI183Figura 55 - Diagrama da válvula de admissão 44 APMI184Figura 56 - Diagrama da válvula de admissão 46 APMI185Figura 57 - Diagrama da válvula de admissão 50 APMI185Figura 58 - Diagrama da válvula de admissão 50 APMI186Figura 59 - Diagrama da válvula de admissão 50 APMI187Figura 61 - Diagrama da válvula de admissão 50 APMI189Figura 61 - Diagrama da válvula de admissão 54 APMI189Figura 61 - Diagrama da válvula de admissão 56 APMI190Figura 61 - Diagrama da válvula de admissão 56 APMI191Figura 62 - Diagrama da válvula de admissão 58 APMI191Figura 63 - Diagrama da válvula de admissão 58 APMI191Figura 64 - Diagrama da válvula de admissão 66 APMI192Figura 65 - Diagrama da válvula de admissão 66 APMI193Figura 65 - Diagrama da válvula de admissão 66 APMI194Figura 65 - Diagrama da válvula de admissão 66 APMI194Figur | Figura 45 - Diagrama da válvula de admissão 20 APMI  | 174 |
| Figura 47 - Diagrama da válvula de admissão 26 APMI176Figura 48 - Diagrama da válvula de admissão 28 APMI177Figura 49 - Diagrama da válvula de admissão 30 APMI178Figura 50 - Diagrama da válvula de admissão 32 APMI179Figura 51 - Diagrama da válvula de admissão 34 APMI180Figura 52 - Diagrama da válvula de admissão 36 APMI181Figura 53 - Diagrama da válvula de admissão 36 APMI181Figura 54 - Diagrama da válvula de admissão 42 APMI183Figura 55 - Diagrama da válvula de admissão 44 APMI183Figura 56 - Diagrama da válvula de admissão 46 APMI185Figura 57 - Diagrama da válvula de admissão 50 APMI185Figura 58 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI187Figura 59 - Diagrama da válvula de admissão 50 APMI189Figura 61 - Diagrama da válvula de admissão 54 APMI189Figura 62 - Diagrama da válvula de admissão 56 APMI190Figura 61 - Diagrama da válvula de admissão 56 APMI191Figura 62 - Diagrama da válvula de admissão 56 APMI191Figura 63 - Diagrama da válvula de admissão 56 APMI191Figura 64 - Diagrama da válvula de admissão 66 APMI192Figura 65 - Diagrama da válvula de admissão 66 APMI193Figura 65 - Diagrama da válvula de admissão 66 APMI193Figura 65 - Diagrama da válvula de admissão 66 APMI194Figura 65 - Diagrama da válvula de admissão 66 APMI194Figura 65 - Diagrama da válvula de admisão 66 APMI194Figura | Figura 46 - Diagrama da válvula de admissão 24 APMI  | 175 |
| Figura 48 - Diagrama da válvula de admissão 28 APMI       177         Figura 49 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 36 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 50 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 50 APMI       187         Figura 61 - Diagrama da válvula de admissão 52 APMI       188         Figura 62 - Diagrama da válvula de admissão 58 APMI       190         Figura 63 - Diagrama da válvula de admissão 66 APMI       191         Figura 64 - Diagrama da válvula de admissão 66 APMI       192         Figura 65 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 65 - Diagrama      | Figura 47 - Diagrama da válvula de admissão 26 APMI  | 176 |
| Figura 49 - Diagrama da válvula de admissão 30 APMI       178         Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 36 APMI       181         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       185         Figura 57 - Diagrama da válvula de admissão 50 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 50 APMI       187         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 54 APMI       190         Figura 62 - Diagrama da válvula de admissão 56 APMI       191         Figura 63 - Diagrama da válvula de admissão 66 APMI       192         Figura 63 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194                                   | Figura 48 - Diagrama da válvula de admissão 28 APMI  | 177 |
| Figura 50 - Diagrama da válvula de admissão 32 APMI       179         Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 38 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 50 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 50 APMI       187         Figura 60 - Diagrama da válvula de admissão 52 APMI       188         Figura 61 - Diagrama da válvula de admissão 54 APMI       189         Figura 62 - Diagrama da válvula de admissão 58 APMI       190         Figura 63 - Diagrama da válvula de admissão 60 APMI       191         Figura 64 - Diagrama da válvula de admissão 60 APMI       192         Figura 65 - Diagrama da válvula de admissão 60 APMI       193         Figura 65 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 65 - Diagrama      | Figura 49 - Diagrama da válvula de admissão 30 APMI  | 178 |
| Figura 51 - Diagrama da válvula de admissão 34 APMI       180         Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 38 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       186         Figura 59 - Diagrama da válvula de admissão 50 APMI       187         Figura 60 - Diagrama da válvula de admissão 52 APMI       188         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 56 APMI       190         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 65 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                     | Figura 50 - Diagrama da válvula de admissão 32 APMI  | 179 |
| Figura 52 - Diagrama da válvula de admissão 36 APMI       181         Figura 53 - Diagrama da válvula de admissão 38 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 56 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 66 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 65 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                                                                                           | Figura 51 - Diagrama da válvula de admissão 34 APMI  |     |
| Figura 53 - Diagrama da válvula de admissão 38 APMI       182         Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                     | Figura 52 - Diagrama da válvula de admissão 36 APMI  |     |
| Figura 54 - Diagrama da válvula de admissão 42 APMI       183         Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 60 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 60 APMI       193         Figura 65 - Diagrama da válvula de admissão 64 APMI       194         Figura 65 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figura 53 - Diagrama da válvula de admissão 38 APMI  |     |
| Figura 55 - Diagrama da válvula de admissão 44 APMI       184         Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 63 - Diagrama da válvula de admissão 64 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figura 54 - Diagrama da válvula de admissão 42 APMI  |     |
| Figura 56 - Diagrama da válvula de admissão 46 APMI       185         Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figura 55 - Diagrama da válvula de admissão 44 APMI  |     |
| Figura 57 - Diagrama da válvula de admissão 48 APMI       186         Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 65 - Diagrama da válvula de admissão 66 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 56 - Diagrama da válvula de admissão 46 APMI  |     |
| Figura 58 - Diagrama da válvula de admissão 50 APMI       187         Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 67 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figura 57 - Diagrama da válvula de admissão 48 APMI  |     |
| Figura 59 - Diagrama da válvula de admissão 52 APMI       188         Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 67 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figura 58 - Diagrama da válvula de admissão 50 APMI  |     |
| Figura 60 - Diagrama da válvula de admissão 54 APMI       189         Figura 61 - Diagrama da válvula de admissão 56 APMI       190         Figura 62 - Diagrama da válvula de admissão 58 APMI       191         Figura 63 - Diagrama da válvula de admissão 60 APMI       192         Figura 64 - Diagrama da válvula de admissão 64 APMI       193         Figura 65 - Diagrama da válvula de admissão 66 APMI       194         Figura 66 - Diagrama da válvula de admissão 67 APMI       194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figura 59 - Diagrama da válvula de admissão 52 APMI  |     |
| Figura 61 - Diagrama da válvula de admissão 56 APMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 60 - Diagrama da válvula de admissão 54 APMI  |     |
| Figura 62 - Diagrama da válvula de admissão 58 APMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 61 - Diagrama da válvula de admissão 56 APMI  | 190 |
| Figura 63 - Diagrama da válvula de admissão 60 APMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 62 - Diagrama da válvula de admissão 58 APMI  | 191 |
| Figura 64 - Diagrama da válvula de admissão 64 APMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 63 - Diagrama da válvula de admissão 60 APMI  |     |
| Figura 65 - Diagrama da válvula de admissão 66 APMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figura 64 - Diagrama da válvula de admissão 64 APMI  | 193 |
| Figure 66 Diagrame de véluile de admissão 69 ADMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figura 65 - Diagrama da válvula de admissão 66 APMI  | 194 |
| Figura 66 - Diagrama da varvura de admissão 68 APIvir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figura 66 - Diagrama da válvula de admissão 68 APMI  | 195 |

| 96             |
|----------------|
| <del>)</del> 7 |
| <del>9</del> 8 |
| <del>)</del> 9 |
| )0             |
| )1             |
| )2             |
| )3             |
| )4             |
|                |

### LISTA DE GRÁFICOS

| Gráfico 1 - Resultados Modelo de Validação Etanol                     | 96    |
|-----------------------------------------------------------------------|-------|
| Gráfico 2 - Resultados Modelo de Validação Gasolina                   | 98    |
| Gráfico 3 - Modelo EIVC - Etanol 4000 rpm Carga C                     | .100  |
| Gráfico 4 - Resultados Modelo EIVC - Etanol                           | . 102 |
| Gráfico 5 - Modelo EIVC - Gasolina 4000 rpm Carga C                   | .104  |
| Gráfico 6 - Resultados Modelo EIVC - Gasolina                         | 106   |
| Gráfico 7 - Octane Number - Determinação da Rc adequada para o etanol | .109  |
| Gráfico 8 - Modelo Ciclo Miller - Etanol 4000 rpm Carga A             | .111  |
| Gráfico 9 - Modelo Ciclo Miller - Etanol 4000 rpm Carga C             |       |
| Gráfico 10 - Resultados Modelo Ciclo Miller - Etanol                  |       |
| Gráfico 11 - Modelo Ciclo Miller - Gasolina 4000 rpm Carga A          |       |
| Gráfico 12 - Modelo Ciclo Miller - Gasolina 4000 rpm Carga C          |       |
| Gráfico 13 - Resultados Modelo Ciclo Miller - Gasolina                |       |
|                                                                       |       |

### LISTA DE QUADROS

| Quadro 1 - Composição e características dos combustíveis simulados           |     |
|------------------------------------------------------------------------------|-----|
| Quadro 2 - Valores das constantes Knock Model                                | 85  |
| Quadro 3 - Condições de operação e referências dos modelos simulados         |     |
| Quadro 4 - Características geométricas do motor base                         |     |
| Quadro 5 - Plano de simulações                                               |     |
| Quadro 6 - Case Set - Modelo de Validação Etanol Carga A                     | 149 |
| Quadro 7 - Case Set - Modelo de Validação Etanol Carga B                     |     |
| Quadro 8 - Case Set - Modelo de Validação Etanol Carga C                     | 151 |
| Quadro 9 - Case Set - Modelo de Validação Gasolina Carga A                   | 152 |
| Quadro 10 - Case Set - Modelo de Validação Gasolina Carga B                  |     |
| Quadro 11 - Case Set - Modelo de Validação Gasolina Carga C                  | 154 |
| Quadro 12 - Case Set - Modelo EIVC Etanol Carga B                            | 155 |
| Quadro 13 - Case Set - Modelo EIVC Etanol Carga C                            | 156 |
| Quadro 14 - Case Set - Modelo EIVC Gasolina Carga B                          | 157 |
| Quadro 15 - Case Set - Modelo EIVC Gasolina Carga C                          | 158 |
| Quadro 16 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga A   | 159 |
| Quadro 17 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga B   | 160 |
| Quadro 18 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga C   | 161 |
| Quadro 19 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga A | 162 |
| Quadro 20 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga B | 163 |
| Quadro 21 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga C | 164 |
|                                                                              |     |

### LISTA DE TABELAS

| Tabela 1 - Diferenças percentuais - Modelo de Validação Etanol         |     |
|------------------------------------------------------------------------|-----|
| Tabela 2 - Diferenças percentuais - Modelo de Validação Gasolina       | 99  |
| Tabela 3 - Diferenças percentuais - Modelo EIVC - Etanol               |     |
| Tabela 4 - Diferenças percentuais - Modelo EIVC - Gasolina             |     |
| Tabela 5 - Octane Number - Determinação da Rc adequada para o etanol   |     |
| Tabela 6 - Diferenças percentuais - Modelo Ciclo Miller - Etanol       | 114 |
| Tabela 7 - Diferenças percentuais - Modelo Ciclo Miller - Gasolina     |     |
| Tabela 8 - Resultados experimentais - Etanol                           |     |
| Tabela 9 - Resultados experimentais - Gasolina                         |     |
| Tabela 10 - Resultados Modelo de Validação - Etanol                    |     |
| Tabela 11 - Resultados Modelo de Validação - Gasolina                  |     |
| Tabela 12 - Resultados Modelo EIVC - Etanol                            |     |
| Tabela 13 - Resultados Modelo EIVC - Gasolina                          | 210 |
| Tabela 14 - Resultados Modelo de Ciclo Miller com Rc 14,5;1 - Etanol   | 211 |
| Tabela 15 - Resultados Modelo de Ciclo Miller com Rc 14,5;1 - Gasolina |     |

## LISTA DE SÍMBOLOS

| а                 | raio do virabrequim [m];                     |
|-------------------|----------------------------------------------|
| r                 | comprimento da biela [m];                    |
| В                 | diâmetro do cilindro [m];                    |
| S                 | curso do pistão[m];                          |
| S                 | posição do pistão [m];                       |
| V <sub>t</sub>    | volume máximo do cilindro [m <sup>3</sup> ]; |
| Vc                | volume da câmara de combustão [m³];          |
| V <sub>d</sub>    | volume deslocado [m <sup>3</sup> ];          |
| α                 | ângulo do virabrequim [°];                   |
| $\overline{S_p}$  | velocidade média do pistão [m/s];            |
| N                 | frequência de giro do motor [rev/min];       |
| R <sub>bs</sub>   | razão de diâmetro por curso [-];             |
| R <sub>c</sub>    | razão volumétrica de compressão [-];         |
| W                 | trabalho [J];                                |
| р                 | pressão no cilindro [Pa];                    |
| V                 | Volume [m <sup>3</sup> ];                    |
| m                 | massa [kg];                                  |
| v                 | volume específico [m³/kg];                   |
| W                 | trabalho específico [J/kg];                  |
| F                 | força [N];                                   |
| b                 | distância [b];                               |
| Т                 | torque [N.m];                                |
| Р                 | potência [W];                                |
| P <sub>eixo</sub> | potência no eixo [W];                        |
| P <sub>i</sub>    | potência indicada [W];                       |
| W <sub>i</sub>    | trabalho indicado [J];                       |
| n <sub>r</sub>    | número de revoluções por ciclo [-];          |
| P <sub>f</sub>    | potência de atrito [W];                      |
| $\eta_m$          | eficiência mecânica [-];                     |
| A/F               | razão ar-combustível [-];                    |
| m <sub>a</sub>    | massa de ar [g];                             |

| m <sub>f</sub>          | massa de combustível [g];                                        |
|-------------------------|------------------------------------------------------------------|
| m <sub>a</sub>          | vazão mássica de ar [g/s];                                       |
| $\dot{m_f}$             | vazão mássica de combustível [g/s];                              |
| (A/F) <sub>stoich</sub> | razão ar-combustível estequiométrica [-];                        |
| λ                       | razão de equivalência [-];                                       |
| η <sub>cc</sub>         | eficiência de conversão de combustível [-];                      |
| Q <sub>in</sub>         | calor introduzido no sistema [kJ];                               |
| γ                       | coeficiente politrópico [-];                                     |
| c <sub>p</sub>          | calor específico a pressão constante [J/kg.K];                   |
| C <sub>v</sub>          | calor específico a volume constante [J/kg.K];                    |
| $\eta_v$                | eficiência volumétrica [-];                                      |
| ρ                       | densidade [kg/m <sup>3</sup> ];                                  |
| $\eta_{th}$             | eficiência térmica [-];                                          |
| γ                       | coeficiente politrópico [-];                                     |
| c <sub>p</sub>          | calor específico a pressão constante [J/kg.K];                   |
| C <sub>v</sub>          | calor específico a volume constante [J/kg.K];                    |
| R <sub>e</sub>          | razão volumétrica de expansão [-];                               |
| u                       | energia interna específica [J/kg];                               |
| h                       | entalpia específica [J/kg];                                      |
| q <sub>ev</sub>         | calor específico de evaporação do combustível [J/kg];            |
| f                       | fração do calor de evaporação da massa de gases no cilindro [-]; |
| x <sub>b</sub>          | fração da massa queimada [-];                                    |
| ON                      | octane number [-];                                               |
| Т                       | temperatura [K].                                                 |

#### LISTA DE ABREVIATURAS

- APMI antes do ponto morto inferior;
- APMS antes do ponto morto superior;
- AVA abertura da válvula de admissão;
- AVE abertura da válvula de escape;
- CEC consumo específico de combustível;
- CVI closed valve injection;
- CVVL continuous variable valve lift;
- CVVT continuous variable valve timing;
- DPMI depois do ponto morto inferior;
- DPMS depois do ponto morto superior;
- EIVC fechamento antecipado da válvula de admissão (early intake valve closing);
- FVA fechamento da válvula de admissão;
- FVE fechamento da válvula de escape;
- KLCR knock-limited compression ratio;
- IAD índice antidetonante;
- LIVC fechamento tardio da válvula de admissão (*late intake valve closing*);
- LIVO abertura tardia da válvula de admissão (late intake valve opening);
- LDI limite de detonação inferior;
- MBT ponto ótimo de ignição (maximum brake torque);
- MFB fração de massa queimada (mass fraction burned);
- MON motor octane number;
- OVI open valve injection;
- pci poder calorífico inferior;
- PMB pressão média de bombeamento;
- PME pressão média efetiva (no eixo);
- pmi pressão média indicada;
- PMI ponto morto inferior;
- PMS ponto morto superior;
- RON research octane number;
- VVT variador de fase de válvula (variable valve timing);
- WOT borboleta totalmente aberta (*wide open throttle*).

|                                                                                                                                                                                         | 35                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1.1 Objetivo Geral                                                                                                                                                                      | 37                                                             |
| 1.2 Objetivos Específicos                                                                                                                                                               | 37                                                             |
| 1.3 Justificativa                                                                                                                                                                       |                                                                |
| 2 FUNDAMENTAÇÃO TEÓRICA                                                                                                                                                                 | 41                                                             |
| 2.1 Características geométricas                                                                                                                                                         | 41                                                             |
| 2.2 Parâmetros de desempenho                                                                                                                                                            | 44                                                             |
| 2.2.1 Trabalho                                                                                                                                                                          | 44                                                             |
| 2.2.2 Torque e potência no eixo                                                                                                                                                         | 46                                                             |
| 2.2.3 Pressão média efetiva                                                                                                                                                             | 48                                                             |
| 2.2.4 Eficiência mecânica                                                                                                                                                               | 48                                                             |
| 2.2.5 Razão ar/combustível                                                                                                                                                              | 49                                                             |
| 2.2.6 Consumo específico de combustível                                                                                                                                                 | 49                                                             |
| 2.2.7 Eficiência de conversão de combustível                                                                                                                                            | 50                                                             |
| 2.2.8 Eficiência volumétrica                                                                                                                                                            | 50                                                             |
| 2.3 Ciclos aplicados a motores de combustão interna                                                                                                                                     | 51                                                             |
| 2.3.1 Ciclo padrão de ar Otto                                                                                                                                                           | 51                                                             |
| 2.3.2 Ciclo Otto                                                                                                                                                                        | 53                                                             |
| 2.3.3 Ciclo Atkinson                                                                                                                                                                    | 55                                                             |
| 234 Ciclo Miller                                                                                                                                                                        | 56                                                             |
|                                                                                                                                                                                         | 57                                                             |
| 2.4 Combustão em motores de ignição por centelha                                                                                                                                        |                                                                |
| 2.4 Combustão em motores de ignição por centelha         2.4.1 Detonação                                                                                                                | 57                                                             |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li> <li>2.4.1 Detonação</li> <li>2.5 Octanagem</li> </ul>                                                                    | 57<br>58<br>59                                                 |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li> <li>2.4.1 Detonação</li> <li>2.5 Octanagem</li> <li>2.6 Variador de fase de válvulas</li> </ul>                          | 57<br>58<br>59<br>60                                           |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li> <li>2.4.1 Detonação</li> <li>2.5 Octanagem</li> <li>2.6 Variador de fase de válvulas</li> <li>2.6.1 MultiAir®</li> </ul> | 57<br>58<br>59<br>60<br>61                                     |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     | 57<br>58<br>59<br>60<br>61<br>63                               |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     | 57<br>58<br>60<br>61<br>63<br>63                               |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     |                                                                |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     |                                                                |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     | 57<br>58<br>59<br>60<br>61<br>63<br>63<br>65<br>65<br>66       |
| <ul> <li>2.4 Combustão em motores de ignição por centelha</li></ul>                                                                                                                     | 57<br>58<br>59<br>60<br>61<br>63<br>63<br>65<br>65<br>67<br>67 |

# SUMÁRIO
| 3.3 Ciclo Miller                                                           | 74  |
|----------------------------------------------------------------------------|-----|
| 3.4 Resumo da Revisão Bibliográfica                                        | 78  |
| 4 METODOLOGIA                                                              | 81  |
| 4.1 Materiais                                                              | 81  |
| 4.1.1 AVL Boost®                                                           | 81  |
| <u>4.1.1.1 Modelo de motor</u>                                             | 81  |
| 4.1.1.2 Representação das espécies                                         | 82  |
| 4.1.1.3 Seleção dos componentes do combustível                             | 82  |
| 4.1.1.4 Modelo de combustão Vibe de duas zonas                             | 83  |
| 4.1.1.4.1 Knock Model                                                      | 85  |
| 4.1.1.5 Pós-processamento                                                  | 86  |
| 4.2 Procedimento                                                           | 86  |
| 4.2.1 Modelos de validação                                                 | 88  |
| 4.2.2 Modelos EIVC                                                         | 92  |
| 4.2.3 Modelos Ciclo Miller                                                 | 93  |
| 5 RESULTADOS E DISCUSSÃO                                                   | 95  |
| 5.1 Simulações do modelo de validação etanol                               | 95  |
| 5.2 Simulações do modelo de validação gasolina                             | 97  |
| 5.3 Simulações do modelo EIVC etanol                                       | 99  |
| 5.4 Simulações do modelo EIVC gasolina                                     | 104 |
| 5.5 Determinação da razão volumétrica de compressão adequada para o etanol | 108 |
| 5.6 Simulações do modelo Ciclo Miller etanol                               | 110 |
| 5.7 Simulações do modelo Ciclo Miller gasolina                             | 116 |
| 6 CONCLUSÃO                                                                | 123 |
| 6.1 Trabalhos futuros                                                      | 125 |
| REFERÊNCIAS                                                                | 127 |
| APÊNDICE A - Dados de entrada AVL Boost®                                   | 135 |
| APÊNDICE B - Case Sets                                                     | 149 |
| APÊNDICE C - Diagramas de válvula                                          | 165 |
| APÊNDICE D – RESULTADOS PARÂMETROS                                         | 205 |

# 1 INTRODUÇÃO

Com a crescente ponderação do impacto das atividades humanas no meio ambiente, como poluição do ar, aquecimento global e esgotamento de fontes de energia, o desenvolvimento de veículos tem exigido o aperfeiçoamento e implementação de tecnologias que visam amenizar os efeitos negativos do uso de automóveis. Apesar do aprimoramento de propulsores elétricos e híbridos, ainda há uma forte demanda por veículos equipados com motores de combustão interna. (MITO et al., 2012). O uso de energia sustentável e a preservação ambiental são razões contínuas para inovações em propulsores veiculares. Dessa forma, o desafio da indústria automotiva passou a ser o desenvolvimento de motores com maior eficiência de consumo de combustível e que apresentem menores índices de emissão de poluentes. Motores modernos que atendem essas exigências usualmente combinam uma ampla variedade de tecnologias em seus conceitos. (WURZENBERGER et al., 2013) (CHAN et al., 2013).

Estudos experimentais são regularmente utilizados para identificação de parâmetros operacionais de funcionamento de motores assim como a sua viabilidade. Entretanto, tais estudos exigem alto investimento em manutenção e operação de equipamentos, instalações e especialistas, sem mencionar o risco de, por exemplo, perda de material ou avaria de equipamento. O uso de modelos matemáticos para representação de funcionamento de motores permite estudos detalhados e extensos, além de permitir a otimização de parâmetros e configuração de variáveis operacionais com a maior parte do investimento relacionada à aquisição de equipamentos e licença de uso de software. (FARIA et al., 2017).

Legislações mais restritas de emissão de poluentes, em conjunto com preocupação da influência da atividade humana no meio ambiente, contribuem para o desenvolvimento e uso de tecnologias que visam melhorar a eficiência de motores. A Figura 1 ilustra algumas ações que estão sendo tomadas em diversas regiões do mundo. A União Europeia oferece incentivos para montadoras que equipam veículos novos com tecnologias inovadoras que reduzem a emissão de gases poluentes. (CHIARA, DEFLORIO e EID, 2019). O carro elétrico está sendo inserido em mercados como União Europeia, Estados Unidos, Japão e China. Além disso, o conceito 100% elétrico vem direcionando as novas estratégias de negócios das montadoras e mudando seus portfólios. (REIS, 2019). Ainda na Europa, países como Noruega, Holanda, Reino Unido e França tomam iniciativas que visam banir vendas de veículos que utilizam apenas combustíveis fósseis ainda na primeira metade do século XXI. Nos Estados Unidos, o estado da Califórnia já está se estruturando para oferecer uma infraestrutura capaz de atender

veículos elétricos a fim de reduzir o número de veículos movidos a combustíveis fósseis das ruas do estado. (MUOIO, 2017).



Figura 1 - Ações relacionadas à indústria automotiva

Fonte: Elaborada pelo autor

No Brasil, há incentivos por parte do governo como os programas Inovar Auto e, mais recente, o Rota 2030, sendo que o incentivo de uma maior eficiência energética de automóveis está atrelado a incentivos fiscais. (GUTIERREZ, 2018). Considerando o uso de combustíveis líquidos, o Brasil possui uma matriz energética renovável e sustentável devido ao etanol. Além disso, o etanol oriundo da cana-de-açúcar tem o potencial de reduzir a emissão de gases poluentes em até 80% quando comparado com a gasolina (SOUZA et al., 2018). As perspectivas para a ampliação do uso do etanol são promissoras, dado o esforço de produtores do combustível e das fabricantes de veículos. Pelo lado dos produtores, há condições de produzir combustíveis de modo mais eficiente e com oferta estável e previsível. Do lado da indústria de veículos, também há um empenho para aumentar a eficiência energética da combustão do etanol com o objetivo de atender as regulamentações de emissões, como é o caso do Rota 2030. (REIS, 2019). Ainda em território nacional, estudos visando o desenvolvimento da tecnologia *flex fuel* aliada a veículos híbridos (POLI USP, 2017) contribuíram para o desenvolvimento do primeiro veículo com propulsão híbrida flex do mundo, com a perspectiva de ser o automóvel movido a etanol mais eficiente do Brasil e o híbrido mais limpo do mundo. (TOYOTA, 2019). Também em território nacional, está sendo concebido um motor para uso otimizado do etanol com o objetivo de atingir alta eficiência energética e baixo impacto ambiental. (FCA, 2019).

Não obstante, o etanol apresenta características importantes que podem contribuir para o aumento do rendimento do motor e sua consequente redução no consumo. O calor latente de vaporização, que é a energia necessária para que uma substância em estado líquido se evapore, é consideravelmente maior para o etanol. Associando essa característica à maior quantidade de combustível injetada por ciclo, pode-se reduzir consideravelmente a temperatura da massa de ar mais combustível que entra na câmara de combustão. Ao se reduzir a temperatura da massa admitida, antes da compressão, a temperatura em todo o ciclo também se reduz, diminuindo sensivelmente a propensão à detonação. Ao se evitar a detonação, o avanço de ignição pode ser calibrado para o ponto de maior eficiência, aproveitando-se ao máximo a energia disponível. (BAÊTA et al., 2006)

### 1.1 Objetivo Geral

O objetivo geral do trabalho foi estudar os efeitos no desempenho da aplicação do Ciclo Miller combinado com uma razão volumétrica de compressão adequada para o uso do etanol, tanto para o uso de etanol quanto gasolina como combustível. Os experimentos foram realizados através de modelos de simulação que representam o funcionamento de um motor de combustão interna desenvolvidos através do software AVL Boost®. A aplicação do Ciclo Miller foi representada através da mudança do tempo de fechamento da válvula de admissão, modificando o tempo de fechamento para controle da massa aspirada pelo motor e contenção da detonação.

# **1.2 Objetivos Específicos**

A fim de atingir o objetivo geral do trabalho, os seguintes objetivos específicos foram determinados:

- a) Desenvolver um modelo de simulação, com auxílio do software AVL Boost®, que represente o funcionamento de um motor de combustão interna em condições de operação similares de um teste em bancada;
- b) Comparar o resultado das simulações com o resultado experimental e validar o modelo de simulação;

- c) Determinar uma metodologia que represente a alteração do tempo de fechamento da válvula de admissão;
- d) Elaborar um modelo de simulação que represente a mudança do tempo de fechamento da válvula de admissão para controle de massa aspirada;
- e) Comparar os resultados do modelo de validação com o modelo EIVC;
- f) Determinar a razão volumétrica de compressão adequada para o uso do etanol através do modelo de validação sem alteração do diagrama da válvula de admissão;
- g) Elaborar um modelo de simulação que combine a razão volumétrica de compressão adequada para o uso do etanol com Ciclo Miller para controle da massa aspirada pelo motor e contenção da detonação;
- h) Comparar os resultados da simulação do modelo de Ciclo Miller os resultados do modelo de simulação com características originais do motor base.

### 1.3 Justificativa

A justificativa do estudo é a busca de um motor de combustão interna *flex fuel* adequado para o uso do etanol. O emprego do etanol na propulsão é uma vantagem comparativa do Brasil, pois conta com tecnologia e condições climáticas para a produção competitiva do etanol a partir da cana-de-açúcar, além de possuir estrutura eficiente de distribuição do combustível. Por ser um combustível renovável, o uso do etanol está alinhado aos esforços da comunidade mundial na busca de alternativas menos nocivas ao meio ambiente. Dessa forma, o motor pode se apresentar como uma alternativa ao uso de motores *flex fuel* convencionais e até mesmo ser utilizado em sistemas híbridos. O aspecto inovador do estudo é combinar o uso adequado de um combustível renovável (etanol) com a aplicação de um ciclo eficiente (Ciclo Miller). Além disso, o método convencional de controle de massa aspirada pelo motor é comparado com um método que não exige o uso da válvula borboleta para controle da massa aspirada pelo motor.

Devido ao maior número de octanas, o etanol apresenta maior resistência à detonação, se comparado com a gasolina, possibilitando operações com razão volumétrica de compressão mais elevadas. Entretanto, tais operações com o uso de gasolina podem causar o fenômeno da detonação, devido às condições de alta pressão e temperatura, prejudicando a combustão e, consequentemente, a eficiência do ciclo. A aplicação do Ciclo Miller, através do fechamento antecipado da válvula de admissão, permite tanto o controle da massa aspirada pelo motor – substituindo a válvula borboleta – quanto para a contenção da detonação – reduzindo a razão

volumétrica de compressão efetiva. A manipulação da válvula de admissão é uma técnica já introduzida nos motores de combustão interna e no caso do Brasil, a aplicação dessa tecnologia pode melhorar a eficiência dos motores *flex fuel* adequando-os para o uso do etanol, uma vez que o combustível suporta uma maior razão volumétrica de compressão. Entretanto, espera-se uma redução do desempenho com o uso da gasolina devido à alta razão volumétrica de compressão. Por isso a importância de um trabalho com o objetivo de se estudar o comportamento de um motor com essas características para que, então, haja dados para análises futuras do desempenho.

# 2 FUNDAMENTAÇÃO TEÓRICA

A função de um motor de combustão interna é fornecer energia mecânica a partir da energia química de um combustível. Essa energia química é transformada em energia térmica através da combustão dos gases no interior do motor. Os reagentes e produtos da combustão são considerados fluidos de trabalho. A transferência de energia é feita diretamente entre os fluidos de trabalho e os componentes do motor. (HEYWOOD, 1988).

Com o intuito de facilitar a compreensão do funcionamento e características de motores, alguns conceitos são revisados nesse capítulo.

#### 2.1 Características geométricas

O desempenho dos motores tem relação direta com algumas características geométricas do motor. Para a identificação dessas propriedades no motor e compreender seus efeitos no desempenho, toma-se como base a Figura 2.

A Figura 2 mostra o esquema da geometria do cilindro de um motor de combustão interna alternativo. O motor possui um raio do virabrequim a, comprimento da biela r, diâmetro do cilindro B e curso S. Outras características desse motor são a posição s do pistão, ponto motor inferior (PMI) que é a posição do pistão em que o volume do cilindro é a maior possível, ponto morto superior (PMS) que é a posição do pistão em que o volume do cilindro é a maior possível, o volume total V<sub>t</sub> (volume do cilindro quando o pistão atinge o PMI), o volume da câmara de combustão V<sub>c</sub> (volume do cilindro quando o pistão atinge o PMS), e o volume deslocado pelo movimento do pistão V<sub>d</sub>. (PULKRABEK, 2003).

Tendo como referência um motor como mostrado na Figura 2, têm-se as seguintes relações:

$$S = 2 \cdot a \tag{1}$$

Sendo que: S = curso [m];

a = raio do virabrequim [m].



Figura 2 - Geometria básica de um motor alternativo de combustão interna

Fonte: Adaptado de (HEYWOOD, 1988)

A distância entre o eixo do virabrequim e o pino que prende a cabeça do pistão à biela é dada pela equação a seguir:

$$s = a \cdot \cos \alpha + \sqrt{r^2 - a^2 \cdot \sin^2 \alpha}$$
<sup>(2)</sup>

Sendo que: s = distância entre o eixo do virabrequim e o pino que prende a cabeça do pistão à biela [m];

a = raio do virabrequim [m];

r = comprimento da biela [m];

 $\alpha$  = ângulo do virabrequim [°].

A velocidade média do pistão será:

$$\overline{S_p} = \frac{2 \cdot S \cdot N}{60} \tag{3}$$

Sendo que:  $\overline{S_p}$  = velocidade média do pistão [m/s];

S = curso [m];

N = frequência de giro do motor [rev/min].

A velocidade média do pistão é limitada pela resistência do material dos componentes do motor e pelo fluxo de gás dentro do motor. Cada pistão é acelerado do repouso para a velocidade máxima e retornando ao repouso duas vezes por revolução. Dessa forma, se o pistão trabalhar a velocidades superiores, haveria risco de falha do material do pistão ou mesmo da biela, uma vez que o pistão é acelerado e desacelerado a cada ciclo. Em relação aos gases, a velocidade do pistão determina o fluxo instantâneo da mistura ar-combustível para dentro do cilindro, durante a admissão, e para fora do cilindro, durante a exaustão. Se o pistão trabalhasse a velocidades superiores, seriam necessárias válvulas maiores para suprir a alta vazão de mistura ar-combustível. A maioria dos motores já usam válvulas em seu tamanho máximo além de não haver espaço para ampliá-las. Geralmente, a velocidade média do pistão fica entre 5 e 15 m/s. Grandes motores a diesel desenvolvem velocidades mais baixas, enquanto motores de alto desempenho desenvolvem velocidades mais altas. (PULKRABEK, 2003).

A razão de diâmetro por curso é dada por:

$$R_{bs} = \frac{B}{s}$$
(4)

Sendo que:  $R_{bs}$  = razão de diâmetro por curso [-]; B = diâmetro do cilindro [m]; S = curso [m].

Geralmente, motores grandes possuem o curso maior que o diâmetro do cilindro, enquanto motores pequenos possuem essa razão entre 0,8 e 1,2. (HEYWOOD, 1988).

A razão volumétrica de compressão  $R_c$  significa a razão em que a mistura é comprimida dentro do cilindro e é dada por:

$$R_{c} = \frac{V_{t}}{V_{c}} = \frac{V_{d} + V_{c}}{V_{c}}$$
(5)

Sendo que: R<sub>c</sub> = razão volumétrica de compressão [-];

 $V_t$  = volume total do cilindro [m<sup>3</sup>];

V<sub>c</sub> = volume da câmara de combustão [m<sup>3</sup>];

 $V_d$  = volume deslocado pelo pistão [m<sup>3</sup>];

Uma vez que  $V_d$  refere ao volume deslocado pelo movimento do pistão, é possível calculá-lo quando os valores do diâmetro do cilindro e do curso são conhecidos:

$$V_{\rm d} = \frac{\pi \cdot B^2 \cdot S}{4} \tag{6}$$

Sendo que:  $V_d$  = volume deslocado pelo pistão [m<sup>3</sup>];

B = diâmetro do cilindro [m];

S = curso [m].

Para um mesmo volume deslocado, um curso mais longo e um diâmetro menor resultarão em uma menor área na câmara de combustão. Isso significa uma menor perda de calor, aumentando a eficiência térmica. Porém, maior curso resulta em uma velocidade maior e maior perda por atrito, reduzindo a potência entregue no eixo. Encurtando-se o curso, o diâmetro deve ser aumentado. Dessa forma, a perda por atrito será menor, mas a perda de calor será maior. A razão diâmetro/curso é definida de acordo com os objetivos de projeto e com a filosofia do fabricante. (PULKRABEK, 2003).

#### 2.2 Parâmetros de desempenho

Para se avaliar o desempenho dos motores a combustão interna, alguns parâmetros devem ser definidos para que sejam feitas comparações entre os modelos de motores. Os parâmetros mais utilizados serão abordados a seguir.

# 2.2.1 Trabalho

Realizar trabalho é a função de qualquer motor e, no caso de motores de combustão interna, o trabalho é realizado graças à combustão da mistura ar-combustível presente no cilindro. A pressão dos gases aplica uma força no pistão, movimentando-o e, dessa forma, realizando trabalho. (PULKRABEK, 2003).

$$\mathbf{W} = \oint \mathbf{p} \cdot \mathbf{dV} \tag{7}$$

Sendo que: W = trabalho [J];

p = pressão dos gases no cilindro [Pa];

V = volume do cilindro [m<sup>3</sup>].

Como a maior parte dos motores são multicilindros, é conveniente analisar os motores com base na massa de gás m dentro do cilindro. Para isso, basta substituir o volume V e o trabalho W por volume específico v e trabalho específico w , respectivamente. (PULKRABEK, 2003).

$$\mathbf{v} = \mathbf{V}/\mathbf{m} \quad \mathbf{w} = \mathbf{W}/\mathbf{m} \tag{8}$$

$$\mathbf{w} = \oint \mathbf{p} \cdot \mathbf{d}\mathbf{v} \tag{9}$$

Sendo que: v = volume específico do cilindro [m<sup>3</sup>/kg];

V = volume do cilindro [m<sup>3</sup>];

W = trabalho [J];

w = trabalho específico [J/kg];

m = massa dos gases no cilindro [kg];

p = pressão dos gases no cilindro [Pa].

Em outras palavras, o trabalho realizado pelos gases em combustão (trabalho indicado) pode ser considerado a área de um gráfico pressão versus volume (diagrama PxV) (PULKRABEK, 2003). A Figura 3 mostra o diagrama PxV para um ciclo Otto real de um motor de combustão interna quatro tempos.

Figura 3 - Diagrama PxV de um Ciclo Otto real



Fonte: Adaptado de Arnold (2013)

Observando o diagrama PxV, é fácil identificar os processos do ciclo Otto em um motor de combustão interna quatro tempos:

- a) 1-2 Admissão;
- b) 2-3 Compressão;
- c) 3-4 Combustão;
- d) 4-5 Expansão;
- e) 5-1 Escape;

O trabalho no eixo é menor que o trabalho indicado devido a perdas por atrito e por outros componentes como bomba de óleo, compressor do ar-condicionado e alternador. (PULKRABEK, 2003).

Nos motores naturalmente aspirados, entre o final do tempo de escape e o início do tempo de admissão, a pressão no cilindro é maior do que a pressão no coletor de admissão. Por isso, o pistão deve criar uma queda de pressão no cilindro para admitir a mistura do coletor de admissão. Nessa fase, o trabalho é transferido do pistão para os gases. Esse trabalho realizado pelo pistão é chamado de trabalho de bombeamento. Em motores equipados com turbocompressor ou compressor volumétrico (tipos *supercharger*), a pressão do coletor de admissão é maior do que no cilindro. (HEYWOOD, 1988).

### 2.2.2 Torque e potência no eixo

Um dos indicadores da capacidade de um motor em realizar trabalho é o torque. Para calcular o torque de um motor, basta conectar o eixo do motor em um dinamômetro. Com o motor em funcionamento, o dinamômetro (Figura 4) medirá a força necessária para fazer com que o eixo pare de girar. Em outras palavras, sabendo a força F e a distância b entre o ponto de aplicação e o eixo, o torque T exercido pelo motor é obtido através do produto dessa força e da distância.



Fonte: Adaptado de (HEYWOOD, 1988)

$$\mathbf{T} = \mathbf{F} \cdot \mathbf{b} \tag{10}$$

Sendo que: T = torque [N.m];

F = força mensurada pelo dinamômetro [N];

b = distância entre o ponto de aplicação da força e o eixo [m].

A potência P pode ser calculada através do produto do torque e da velocidade angular.

$$P = \frac{2 \cdot \pi \cdot N \cdot T}{60} \tag{11}$$

Sendo que: P = potência [W];

N = frequência de giro do motor [rev/min];

T = torque [N.m].

A potência calculada através do torque no eixo é a potência entregue no eixo  $P_{eixo}$ . A potência disponibilizada pela combustão é chamada de potência indicada  $P_i$  e é a soma da potência no eixo e da potência perdida devido ao atrito e componentes do motor.

$$P_{i} = \frac{W_{i} \cdot N}{60 \cdot n_{r}}$$
(12)

$$P_i = P_{eixo} + P_f \tag{13}$$

Sendo que:  $P_i = potência indicada [W];$ 

 $W_i = trabalho indicado [J];$ 

N = frequência de giro do motor [rev/min];

 $n_r = n$ úmero de revoluções por ciclo;

 $P_{eixo}$  = potência no eixo [W];  $P_{f}$  = potência perdida por atrito e componentes [W].

# 2.2.3 Pressão média efetiva

Enquanto torque é um bom parâmetro para avaliar a capacidade de realizar trabalho de um motor específico, esse parâmetro está relacionado ao volume deslocado. Um parâmetro mais útil e que seja relacionado ao desempenho de motores é obtido através da razão do trabalho pelo volume deslocado. Tal parâmetro possui unidade de força por unidade de área e é definido como pressão média efetiva. (HEYWOOD, 1988).

$$PME = \frac{W}{V_d} = \frac{P \cdot n_r \cdot 60}{V_d \cdot N} = \frac{2 \cdot \pi \cdot n_r \cdot T}{V_d}$$
(14)

Sendo que: PME = pressão média efetiva [Pa]; W = trabalho [J];  $V_d = volume deslocado [m<sup>3</sup>];$  P = potência [W];  $n_r = número de revoluções por ciclo;$  N = frequência de giro do motor [rev/min];T = torque [N.m]

### 2.2.4 Eficiência mecânica

Nem toda potência gerada pela combustão ( $P_i$ ) é entregue ao eixo ( $P_{eixo}$ ). Uma parte é utilizada para mover componentes do motor ou perdida por atrito ( $P_f$ ). Dessa forma, a eficiência mecânica é a proporção da potência gerada pela combustão que é entregue no eixo. (PULKRABEK, 2003).

$$\eta_{\rm m} = \frac{P_{\rm eixo}}{P_{\rm i}} = 1 - \frac{P_{\rm f}}{P_{\rm i}} \tag{15}$$

Sendo que:  $\eta_m$  = eficiência mecânica [-];  $P_{eixo}$  = potência no eixo [W];  $P_i$  = potência indicada [W];  $P_f$  = potência de atrito [W]. Em testes de motores, a vazão de ar e combustível são medidas, uma vez que a energia vem da combustão do combustível. Para que ocorra a combustão, ar é utilizado como fonte de oxigênio para o consumo do combustível. Por isso, deve haver uma proporção de ar e combustível no cilindro para que ocorra a reação química. (PULKRABEK, 2003).

$$A/F = \frac{m_a}{m_f} = \frac{\dot{m}_a}{\dot{m}_f}$$
(16)

Sendo que: A/F = razão ar/combustível [-];

$$\begin{split} m_a &= \text{massa de ar [g];} \\ \dot{m}_a &= \text{vazão mássica de ar [g/s];} \\ m_f &= \text{massa de combustível [g];} \\ \dot{m}_f &= \text{vazão mássica de combustível [g/s].} \end{split}$$

A razão estequiométrica  $(A/F)_{stoich}$  é a referência de mistura ar/combustível em que todo o oxigêncio contido no ar e todo o combustível são consumidos na combustão. A razão de equivalência  $\lambda$  é utilizada para comparar as razões ar/combustível real e estequiométrica.

$$\lambda = \frac{(A/F)_{real}}{(A/F)_{stoich}}$$
(17)

Sendo que:  $\lambda = razão de equivalência [-];$ 

 $(A/F)_{real} = razão ar/combustível real [-];$ 

 $(A/F)_{stoich} = razão ar/combustível estequiométrica [-].$ 

Uma mistura rica ( $\lambda < 1$ ) significa que há mais combustível que na mistura estequiométrica, enquanto uma mistura pobre ( $\lambda > 1$ ) significa uma presença de ar maior que na mistura estequiométrica.

### 2.2.6 Consumo específico de combustível

Em testes de motores, o consumo de combustível é medido através da vazão de combustível  $\dot{m}_f$ . O parâmetro que avalia o quão eficiente é o motor no consumo de combustível e entrega de potência, entre motores que utilizam o mesmo combustível, é o consumo específico de combustível. (HEYWOOD, 1988).

$$CEC = \frac{m_f}{P}$$
(18)

Sendo que: CEC = consumo específico de combustível [mg/J];

 $\dot{m}_{f}$  = vazão de combustível [g/s];

P = potência [kW].

Quanto menor o consumo específico de combustível, maior a sua eficiência global. Isso significa que o motor precisaria de menos combustível para entregar a mesma potência.

### 2.2.7 Eficiência de conversão de combustível

A eficiência de conversão de combustível é a razão entre o trabalho produzido por ciclo e da energia fornecida através do combustível. A quantidade de energia que a combustão gera depende da quantidade de combustível e de seu poder calorífico inferior (pci). A eficiência de conversão de combustível é calculada por:

$$\eta_{cc} = \frac{W_i}{Q_{in}} = \frac{W_i}{m_f \cdot pci} = \frac{P_i}{\dot{m}_f \cdot pci} = \frac{1}{(CEC) \cdot pci}$$
(19)

Sendo que:  $\eta_{cc}$  = eficiência de conversão de combustível [-];  $W_i$  = trabalho indicado [kJ];  $Q_{in}$  = calor introduzido no sistema [kJ];  $m_f$  = massa de combustível [g]; pci = poder calorífico inferior do combustível [MJ/kg];  $\dot{m}_f$  = vazão mássica de combustível [g/s];  $P_i$  = potência indicada [kW]; CEC = consumo específico [mg/J].

### 2.2.8 Eficiência volumétrica

Quanto maior a massa de ar dentro do cilindro, mais combustível poderá ser consumido, gerando mais potência. O ideal é que o ar inserido no cilindro tenha as mesmas propriedades do ar ambiente. Porém, restrições como válvula borboleta, filtro de ar, coletor de admissão e válvulas fazem com que o ar perca pressão, se tornando menos denso, reduzindo a massa de ar inserida no cilindro. (PULKRABEK, 2003). A eficiência volumétrica é calculada através da equação a seguir:

$$\eta_{\rm v} = \frac{\mathrm{m}_{\rm a}}{\rho_{\rm a} \mathrm{v}_{\rm d}} = \frac{2 \mathrm{\dot{m}}_{\rm a} 60}{\rho_{\rm a} \mathrm{v}_{\rm d} \mathrm{N}} \tag{20}$$

Sendo que:  $\eta_v = eficiência volumétrica [-];$ 

m<sub>a</sub> = massa de ar dentro do cilindro por ciclo [kg];

 $\rho_a$  = densidade do ar [kg/m<sup>3</sup>];

 $V_d$  = volume deslocado [m<sup>3</sup>];

 $\dot{m}_a = vazão mássica de ar [kg/s];$ 

N = frequência de giro do motor [rev/min].

A densidade do ar pode ser medida através do ar no ambiente ou do ar no coletor de admissão. Caso seja utilizada a densidade do ar no ambiente, se avalia a eficiência de todo o sistema de admissão. Se for utilizada a densidade no coletor de admissão, se avalia apenas a eficiência do coletor de admissão e das válvulas. (HEYWOOD, 1988).

# 2.3 Ciclos aplicados a motores de combustão interna

Nesta seção, são discutidos teoria, características, funcionamento e aplicação dos ciclos de motores de combustão interna com ignição por centelha.

# 2.3.1 Ciclo padrão de ar Otto

O ciclo de energia dentro do cilindro é complexo devido a constante mudança da composição. Uma nova mistura de ar-combustível é inserida junto aos gases residuais do ciclo anterior. Essa mistura é comprimida e entra em combustão, alterando a composição dos gases para  $CO_2$ ,  $H_2O$ ,  $N_2$  e vários outros componentes em proporções muito pequenas. No fim do processo, após a expansão dos gases, a mistura de gases é liberada para a vizinhança. (PULKRABEK, 2003). A fim de facilitar a análise de ciclos em motores, o ciclo real é aproximado a um ciclo padrão de ar.



Figura 5 - Diagrama PxV de um Ciclo de ar-padrão Otto ideal

Fonte: Adaptado de (BUTT, 2003)

A Figura 5 mostra o diagrama PxV de um ciclo padrão de ar Otto e é possível notar que:

- a) A mistura de gases dentro do cilindro é tratada apenas como ar durante todo o ciclo. O ar é considerado como um gás ideal;
- b) O ciclo aberto real é transformado em um ciclo fechado ao assumir que os gases resultantes do ciclo são reinseridos no sistema de admissão, uma vez que tanto os gases de admissão e o de escape são ar, fechando o ciclo e facilitando a análise;
- c) Uma vez que o ar não sofre combustão, um processo de adição de calor substitui o processo de combustão dos ciclos reais;
- d) O processo de escape, que retira uma grande quantidade de entalpia, é substituído por um processo de rejeição de calor de igual energia;
- e) Os tempos de admissão e escape são considerados como processos isobáricos;
- f) Os tempos de compressão e expansão são considerados como processos isoentrópicos (adiabáticos e reversíveis);
- g) A introdução de calor é considerada como um processo isovolumétrico;
- h) A queda de pressão (blowdown) é considerada como um processo isovolumétrico;
- i) Todos os processos são considerados reversíveis. (PULKRABEK, 2003).

O Ciclo padrão de ar Otto é ciclo termodinâmico ideal e sua eficiência térmica é calculada pela equação:

$$\eta_{\rm th} = 1 - \frac{1}{R_{\rm c}^{(\gamma - 1)}} \tag{21}$$

Sendo que:  $\eta_{th}$  = eficiência térmica [-];  $R_c$  = razão volumétrica de compressão;  $\gamma$  = coeficiente politrópico.

$$\gamma = \frac{c_{\rm p}}{c_{\rm v}} \tag{22}$$

Sendo que:  $c_p = calor específico a pressão constante [J/kg.K];$ 

 $c_v = \text{calor específico a volume constante } [J/kg.K].$ 

Em outras palavras, de acordo com a Equação 21, quanto maior a razão volumétrica de compressão, maior o rendimento térmico.

#### 2.3.2 Ciclo Otto

O Ciclo Otto é o ciclo mais comum entre os motores de combustão interna quatro tempos e ignição por centelha. Para ser analisado, o Ciclo Otto é aproximado a um ciclo padrão de ar. Além disso, é mais conveniente trabalhar com propriedades específicas. (PULKRABEK, 2003). Apesar das aproximações, o ciclo real apresenta perdas durante todo o ciclo que influenciam em sua eficiência.

A troca de gases é realizada através da abertura de válvulas. Para garantir que o fluxo da mistura permaneça alto mesmo em altas frequências de giro do motor, a válvula de admissão inicia sua abertura antes do PMS e fecha após o PMI, fazendo com que a mistura arcombustível (em estado gasoso) seja aspirada para dentro do cilindro devido à depressão causada pelo movimento do pistão. Após o fechamento da válvula de admissão, os gases são comprimidos, fazendo com que a pressão e temperatura aumentem conforme o pistão reduz o volume do cilindro. Uma parte da energia é perdida na forma de transferência de calor para as paredes do cilindro, mas os efeitos dessa perda de calor nas propriedades dos gases são modestos. Ao final da compressão, uma centelha inicia o processo de combustão, criando uma frente de chama que se propaga através dos gases e se extingue ao atingir as paredes do cilindro. Com a combustão dos gases, a pressão no interior do cilindro atinge seu pico e os gases se expandem. No momento que a válvula de escape abre, a pressão no cilindro é maior do que a pressão nas redondezas, fazendo com que os gases queimados fluam de dentro do cilindro para as redondezas através da válvula de escape. Esse processo é chamado de *blowdown* e ele perdura até que as pressões entrem em equilíbrio. Após o *blowdown*, o pistão expulsa os gases queimados para fora do cilindro durante a descarga. A válvula de escape abre antes do final do tempo de expansão, para garantir que o *blowdown* não afete a descarga, e permanece aberta até momentos após o PMS. O período de abertura das válvulas de admissão e escape se sobrepõem para garantir a abertura máxima das válvulas mesmo em altas frequências de giro do motor. (HEYWOOD, 1988).



Figura 6 - Eventos em um motor quatro tempos ignição por centelha

Fonte: Adaptado de (HEYWOOD, 1988)

O gráfico superior da Figura 6 mostra a diferença da curva de pressão no cilindro em um ciclo com a combustão (linha contínua) comparado ao ciclo sem a combustão, ou em arrasto (linha tracejada). Ainda na Figura 6, o gráfico inferior apresenta a razão de volume no cilindro e volume máximo, além de mostrar a fração de massa de combustível consumida na combustão ( $x_b$ ). Ambos estão em função do ângulo do virabrequim. É possível, também, analisar o momento de abertura da válvula de admissão (AVA) e seu fechamento (FVA) assim como o momento de abertura da válvula de escape (AVE) e fechamento da mesma (FVE).

### 2.3.3 Ciclo Atkinson

No Ciclo Otto, no momento em que a válvula de escape é aberta próximo ao fim do tempo de expansão, a pressão no cilindro ainda está superior à pressão atmosférica. Portanto, um potencial trabalho que os gases poderiam realizar sobre o pistão é perdido devido à queda de pressão no momento de abertura da válvula de escape, reduzindo a eficiência térmica do ciclo. Caso as válvulas permanecessem fechadas permitindo, assim, que o gás no cilindro se expandisse até atingir a pressão atmosférica, uma maior quantidade de trabalho seria obtida no tempo de expansão, o que levaria a uma melhor eficiência térmica do motor. (PULKRABEK, 2003). Essa é a ideia do Ciclo Atkinson, cujo diagrama PxV está representado na Figura 7.



Figura 7 - Diagrama PxV de um Ciclo Atkinson

Fonte: Adaptado de (PULKRABEK, 2003)

Observando a Figura 7, o motor operando no Ciclo Atkinson é representado pelo caminho 6-1-2-3-4-5-6, apresentando uma relação de expansão  $(V_4/V_3)$  maior do que a razão volumétrica de compressão  $(V_1/V_3)$ . Se o mesmo motor operasse no Ciclo Otto, seguiria o traço 6-1-2-3-4a-5a-6. Inúmeros mecanismos foram criados na tentativa de atingir o Ciclo Atkinson. Entretanto, não houve muitos motores comercializados com esse mecanismo. (PULKRABEK, 2003).

# 2.3.4 Ciclo Miller

O Ciclo Miller é uma modificação do Ciclo Atkinson e compartilham do princípio de ter uma razão volumétrica de expansão maior do que a razão volumétrica de compressão. O que difere o Ciclo Miller do Ciclo Atkinson é a aplicação desse princípio. Enquanto no Ciclo Atkinson é preciso um sistema mecânico complexo que permita uma maior expansão dos gases dentro do cilindro, o Ciclo Miller utiliza das variações do tempo de válvula para possibilitar tal diferença entre as razões de expansão e compressão. (PULKRABEK, 2003). A Figura 8 mostra o diagrama PxV de um Ciclo Miller:

Figura 8 - Diagrama PxV de um Ciclo Miller



Fonte: Adaptado de (PULKRABEK, 2003)

No Ciclo Miller, a válvula de admissão pode fechar antes ou depois que o pistão atinja o PMI. No caso em que o fechamento da válvula seja durante a descida do pistão, o ciclo é 6-7-1-7-2-3-4-5-7-6. Já no caso em que a válvula fecha durante a subida do pistão, o ciclo é 6-7-2-3-4-5-7-6. (PULKRABEK, 2003). Em ambos os casos, a razão volumétrica de compressão ( $R_c$ ) e a relação volumétrica de expansão ( $R_e$ ) são dados por:

$$R_{c} = \frac{V_{7}}{V_{2}}$$
  $R_{e} = \frac{V_{4}}{V_{3}}$  (23)

A combinação de um menor tempo de compressão (que absorve trabalho) e um maior tempo de expansão (que produz trabalho) resulta em um maior trabalho realizado por ciclo. A eficiência mecânica do Ciclo Miller é muito próxima à eficiência mecânica do Ciclo Otto, uma vez que utilizam sistemas mecânicos muito similares. (PULKRABEK, 2003).

O ponto ideal para o fechamento da válvula de admissão varia de acordo com a velocidade do motor e/ou com a carga. Esse controle só foi possível após o desenvolvimento dos variadores contínuos de fase de válvula, permitindo o total controle do diagrama de válvulas. (PULKRABEK, 2003).

# 2.4 Combustão em motores de ignição por centelha

Em motores de ignição por centelha convencionais, a combustão é iniciada ao final do tempo de compressão devido a uma descarga elétrica provocada por uma vela. Dessa forma, uma frente de chama turbulenta é gerada e se propaga através da mistura ar-combustível presente na câmara de combustão até ao encontro com as paredes do cilindro, extinguindo-se. Obviamente, a formação e propagação dessa frente de chama variam de ciclo a ciclo. (HEYWOOD, 1988).

A combustão começa antes do final do tempo de compressão e perdura até a porção inicial do tempo de expansão, passando por um momento em que ocorre o pico de pressão no cilindro. Caso o início da combustão seja bastante avançado (em relação ao PMS), o trabalho realizado pela compressão – que é o trabalho realizado pelo pistão nos gases – aumenta. Caso aconteça um retardo do início da combustão, o momento de pico de pressão no cilindro também é retardado e de menor magnitude. Ambas as situações reduzem o trabalho realizado pelos gases no pistão durante o tempo de expansão, minimizando a eficiência do ciclo. O ajuste em que essas duas tendências se compensam é chamado de *maximum brake torque* (MBT). Uma vez que o início da combustão em motores de ignição por centelha está diretamente ligado ao momento da descarga elétrica provocada pela vela (avanço de ignição), o ajuste do avanço de ignição é relacionado ao MBT e depende das condições de operação e das propriedades da mistura ar-combustível. (HEYWOOD, 1988).

O ajuste do avanço de ignição deve visar o menor ângulo de avanço para atingir o MBT. Caso aconteça detonação com ângulos de avanço de ignição menores que o MBT, o ângulo de avanço de ignição deve ser limitado pelo limite de detonação inferior (LDI). (AMORIM, 2005).

# 2.4.1 Detonação

Detonação é o fenômeno de combustão anormal mais importante em motores de ignição por centelha. Com a propagação da frente de chama pela câmara de combustão, a mistura não queimada é comprimida, elevando sua pressão, temperatura e densidade. Uma parte dessa massa não consumida pode sofrer reações químicas antes da combustão normal. Os produtos dessas reações podem, então, causar uma ignição espontânea, liberando rapidamente uma parte da sua energia química, ou mesmo sua totalidade. Quando isso acontece, a massa não queimada é consumida rapidamente, liberada sua energia em uma razão muito mais alta em comparação à combustão normal, causando oscilações de alta frequência na pressão no cilindro, causando um ruído característico. A detonação não acontecerá se a frente de chama consumir a massa não queimada antes que reações tenham tempo suficiente para provocar a autoignição. (HEYWOOD, 1988). A Figura 9 mostra imagens do interior de um cilindro de um motor de ignição por centelha operando em condições que induzem à autoignição da massa não queimada. É possível observar uma autoignição na região não queimada durante o processo de combustão provocado pela centelha.

É importante destacar que se a razão volumétrica de compressão de um motor para um determinado tipo de combustível for elevada, a calibração será feita com avanços de ignição bem atrasados, distantes do MBT, reduzindo, assim, a eficiência térmica do ciclo de combustão. (HEYWOOD, 1988) (AMORIM, 2005) (VAN BASSHUYSEN e SCHÄFER, 2004). Alguns fatores que propiciam a ocorrência de detonação são:

- a) Temperaturas muito elevadas no cilindro;
- b) Avanço de ignição excessivo;
- c) Uso de combustíveis de baixa octanagem;
- d) Mistura pobre de combustível;
- e) Sobrecarga do motor;
- f) Acúmulo de carbono na câmara de combustão;
- g) Alta temperatura do ar de admissão;
- h) Alta razão volumétrica de compressão;
- i) Redução do tamanho da câmara de combustão;
- j) Uso de combustíveis adulterados.



Figura 9 - Autoignição durante combustão em motor de ignição por centelha

Fonte: Adaptado de (IIJIMA, et al., 2013)

### 2.5 Octanagem

A octanagem, ou número de octanas, é um índice que relaciona o combustível com sua capacidade de suportar altas temperaturas e pressões sem que ocorra autoignição. Dessa forma, a octanagem de um combustível está diretamente ligada à ocorrência de detonação. Quanto maior a octanagem de um combustível, maior a sua resistência à altas temperaturas e pressões, tornando a ocorrência de detonação menos provável. É importante ressaltar que a octanagem não está ligada a qualidade do combustível utilizado, mas a estrutura da molécula.

Os valores de octanagem podem ser medidos utilizando-se dois métodos distintos: Motor Octane Number (MON) ou Research Octane Number (RON). Geralmente no Brasil, o valor apresentado é um valor médio, chamado de Índice Antidetonante (IAD), calculado por: (HEYWOOD, 1988).

$$IAD = \frac{(MON + RON)}{2}$$
(24)

### 2.6 Variador de fase de válvulas

Em um eixo comando de válvulas convencional, o momento em que as válvulas se abrem e se fecham não pode ser alterado. Ou seja, a configuração dada ao eixo comando de válvulas é otimizada para somente uma pequena faixa de frequência de giro do motor. (HEYWOOD, 1988).

O variador de fase, popularmente conhecido como VVT (do inglês *Variable Valve Timing*), foi criado para que se pudesse alterar o momento em que as válvulas se abririam. Nos primeiros sistemas, somente o momento em que a válvula se abriria poderia ser alterado, mantendo constante o intervalo angular em que a válvula se manteria aberta e o levantamento da válvula. Essa variação é pequena, porém já é suficiente para trazer um grande benefício em termos de eficiência volumétrica e lavagem da câmara de combustão, o que pode significar uma redução de consumo da ordem de 5%. (ROBERT BOSCH GMBH, 2007).

A nova geração de variador de fase é conhecida como variador de fase contínuo, (do inglês *fully* ou *continuous* VVT) e permite o controle completo do diagrama de válvulas, sendo possível controlar o momento em que a válvulas se abrem, se fecham, o intervalo angular em que as válvulas permanecem abertas, o levantamento máximo da válvula e até mesmo o perfil do levantamento. A Figura 10 mostra um exemplo da atuação de um VVT continuo em um diagrama de válvulas. Nesse caso, a válvula de admissão sofre alteração na duração do tempo em que permanece aberta e no levantamento da válvula, enquanto a válvula de escape permanece inalterada. Esse controle total permite que o motor trabalhe com o diagrama de válvulas ideal para cada frequência de giro e carga do motor a fim de se obter os melhores desempenho e consumo. Ademais, uma vez que se pode eliminar a válvula borboleta do sistema de aspiração e, consequentemente, a perda de carga desse mecanismo, e controlar a massa aspirada somente através da variação do diagrama de válvulas de admissão, se reduz em até 12% no consumo específico pela redução das perdas de bombeamento no ciclo motor. (ROBERT BOSCH GMBH, 2007) (RILEY e FIDDES, 2005).



Figura 10 - VVT e as diversas possibilidades de mapeamento de válvula

Fonte: Adaptado de (RILEY e FIDDES, 2005)

# 2.6.1 MultiAir®

A tecnologia MultiAir® é um sistema eletro-hidráulico que tem como finalidade o controle da fase de abertura e fechamento das válvulas. A Figura 11 mostra uma esquematização dos componentes do sistema MultiAir® que funciona da seguinte maneira: o came mecânico move um pistão que é conectado à válvula por meio de uma câmara hidráulica que é controlada por uma válvula solenoide normalmente aberta. Quando a válvula solenoide é fechada, o óleo presente na câmara hidráulica se comporta como um corpo sólido, transmitindo o movimento imposto pelo perfil do came para a válvula. Quando a válvula solenoide é aberta, o óleo escorre de volta para o motor, fazendo com que a válvula não siga o perfil do came. Nessa condição, a válvula é fechada pela ação da mola. A parte final do fechamento da válvula é controlada por um freio hidráulico, garantindo um assento suave e regular independente das condições de operação do motor (ALVARENGA et al., 2012).



Figura 11 - Esquematização dos componentes do sistema MultiAir®

Fonte: Adaptado de (ALVARENGA, et al., 2012)

Na ausência de energia elétrica, a válvula solenoide encontra-se normalmente aberta e, consequentemente, a válvula do motor permanece fechada. Um acumulador de pressão armazena energia hidráulica para garantir um rápido enchimento para o acionamento da válvula do motor. O sistema também conta com um sensor de temperatura do óleo, permitindo que correções sejam feitas, caso necessárias. (TREVAS, 2017). Controlando o momento de abertura e fechamento da válvula solenoide, é possível definir diversos ajustes para o diagrama das válvulas, como mostrado na Figura 12.

Quando a válvula solenoide permanece fechada por todo o ciclo, a válvula segue o perfil do came por completo – esse é o modo *full lift (camshaft profile)*. Se a válvula solenoide for aberta durante o ciclo, o movimento da válvula é desacoplado, retornando mais cedo à posição fechada – modo *early intake valve closing* (EIVC). Retardando a atuação da válvula solenoide, a válvula de admissão segue o perfil do came por um menor período – modo *late intake valve opening* (LIVO). O sistema permite, também, inúmeras combinações entre os modos EIVC e LIVO – modo *multi lift*. (TREVAS, 2017).



Figura 12 - Ajustes de diagrama das válvulas MultiAir®

Fonte: Adaptado de Nagyszokolyai (2013)

#### 2.7 Modelagem de motores

Modelagem de processos se tornou um meio de utilizar premissas e equações que permitem avaliações de características críticas do processo possam ser analisadas. No caso de motores de combustão interna, o uso de modelos podem contribuir de diversas maneiras para a compreensão e otimização de processos como, por exemplo, na identificação de parâmetros de controle chave que venham a reduzir o custo e tempo na realização de testes experimentais. A modelagem de motores permite, também, prever o comportamento de motores em diversas condições de operação e, caso o modelo seja preciso o suficiente, otimizar o gerenciamento eletrônico, além de fornecer uma base para inovação tecnológica e de operação. (HEYWOOD, 1988).

Os modelos podem representar os fenômenos de termodinâmica, fluidodinâmica, transferência de calor, combustão e formação de poluentes. Dessa forma, os fundamentos podem ser combinados em vários níveis de sofisticação e complexidade de modo a prever os processos de combustão e emissões de um motor de combustão interna e, assim, as características de operação. Devido à complexidade dos ciclos de motores, relações empíricas e aproximações são normalmente utilizadas para o entendimento de fenômenos críticos. (HEYWOOD, 1988).

### 2.7.1 Equações de conservação no cilindro

Em geral, a região do motor é aproximada a um sistema termodinâmico aberto. Esse modelo é apropriado em situações que o gás pode ser assumido como uniforme em sua composição e estado em cada ponto do tempo, e quando composição e estado variam com o tempo devido à transferência de calor, trabalho realizado, fluxo de massa através da fronteira e deslocamento da fronteira. (HEYWOOD, 1988). A Figura 13 mostra um exemplo de um sistema aberto.



Figura 13 - Balanço de energia no cilindro

Fonte: Adaptado de (AVL LIST GMBH, 2011)

O balanço de energia é feito através da aplicação da Primeira Lei da Termodinâmica no sistema aberto da Figura 13. Dessa forma, temos que a variação da energia interna é igual à soma do trabalho realizado pelo pistão, do calor liberado pelo combustível, da perda de calor com as paredes do cilindro e da energia de gases que passam pelo pistão e atingem o cárter (*blow-by*): (AVL LIST GMBH, 2011).

$$\frac{d(m_{c}u)}{d\alpha} = -p_{c}\frac{dV}{d\alpha} + \frac{dQ_{F}}{d\alpha} - \sum \frac{dQ_{w}}{d\alpha} - h_{BB}\frac{dm_{BB}}{d\alpha} + \sum \frac{dm_{i}}{d\alpha}h_{i} - \sum \frac{dm_{e}}{d\alpha}h_{e} - q_{ev}f\frac{dm_{ev}}{d\alpha}$$
(25)

O balanço de massa no cilindro pode ser calculado através da soma das vazões mássicas de admissão e de escape:

$$\frac{\mathrm{dm}_{\mathrm{c}}}{\mathrm{d}\alpha} = \sum \frac{\mathrm{dm}_{\mathrm{i}}}{\mathrm{d}\alpha} - \sum \frac{\mathrm{dm}_{\mathrm{e}}}{\mathrm{d}\alpha} - \frac{\mathrm{dm}_{\mathrm{BB}}}{\mathrm{d}\alpha} + \frac{\mathrm{dm}_{\mathrm{ev}}}{\mathrm{d}\alpha}$$
(26)

Sendo que:  $m_c = massa dos gases no cilindro [kg];$ u = energia interna específica dos gases no cilindro [J/kg]; p<sub>c</sub> = pressão dos gases no cilindro [Pa]; V = volume do cilindro [m<sup>3</sup>];  $Q_F$  = calor do combustível [J];  $Q_w$  = perda de calor para as paredes do cilindro [J]; h<sub>BB</sub> = entalpia específica dos gases do *blow-by* [J/kg];  $m_{BB}$  = massa dos gases do *blow-by* [kg]; m<sub>i</sub> = massa em admissão no cilindro [kg]; h<sub>i</sub> = entalpia específica da massa em admissão [J/kg]; m<sub>e</sub> = massa em escape do cilindro [kg]; h<sub>e</sub> = entalpia da massa em escape [J/kg]; q<sub>ev</sub> = calor específico de evaporação do combustível [J/kg]; f = fração do calor de evaporação da massa de gases no cilindro [-]; m<sub>ev</sub> = massa do combustível em evaporação [kg];  $\propto$  = ângulo do virabrequim [°]. (AVL LIST GMBH, 2011).

#### 2.7.2 Simulação de ciclo do motor

Sabendo a massa aspirada, a massa liberada pelo escape, a perda de calor através das superfícies do cilindro e do pistão, e a taxa de liberação de calor (do combustível), então as equações de conservação de energia e da massa permitem o cálculo da pressão no cilindro e do trabalho realizado sobre o pistão. Modelos de motores foram desenvolvidos e amplamente utilizados para prever características de operação – como potência indicada e consumo específico de combustível – e para definir o estado dos gases para cálculos de emissões. Esses modelos representam as mudanças químicas e termodinâmicas do fluido de trabalho durante os processos de admissão, compressão, combustão, expansão e escape. Tais modelos são chamados de simulações de ciclo do motor. (HEYWOOD, 1988).

Ao fim do ciclo, o fluido de trabalho deve estar no mesmo estado do começo do ciclo. Para os primeiros cálculos, os valores definidos como "estado inicial do fluido" são utilizados. Caso os valores das propriedades ao final do ciclo sejam diferentes dos valores do início do ciclo, então o ciclo é recalculado utilizando os valores do fim do ciclo anterior como valores iniciais do novo ciclo até que a discrepância seja suficientemente pequena. Dessa forma, o estado do fluido de trabalho é definido por todo o ciclo e o trabalho pode ser calculado (Equação 7). Com os dados de trabalho, massa de ar e combustível e frequência de giro do motor, todos os parâmetros indicados de desempenho podem ser calculados (potência indicada, pmi, eficiência de conversão de combustível), assim como eficiência volumétrica, transferência de calor e etc. Com um modelo de atrito (*friction model*), os valores indicados podem ser indicados para valores de eixo (potência no eixo, torque, pme). (HEYWOOD, 1988).

### 2.7.2.1 Modelo de combustão

Para o modelo de combustão, algumas características do processo de combustão em motores de ignição por centelha permitem simplificações para a modelagem termodinâmicas. Combustível, ar e gás residual estão uniformemente misturados; o volume ocupado pela zona de reação – onde ocorre a reação de oxidação da mistura ar-combustível – é pequeno em comparação com o volume da câmara de combustão; para a análise termodinâmica, a câmara de combustão pode ser dividida em duas zonas: zona queimada (ou consumida) e zona não queimada.

Algumas análises utilizando simulações de ciclo de motores foram realizadas utilizando o perfil de combustão como um cálculo de entrada, sendo que o perfil de MFB (curva que tem o formato em S) é normalmente representado pela função Vibe:

$$x_{b} = \int \frac{dx_{b}}{d\alpha} \cdot d\alpha = 1 - e^{-a \cdot y^{(m+1)}}$$
(27)

$$dx_b = \frac{dQ}{Q} \quad y = \frac{\alpha - \alpha_0}{\Delta \alpha_c}$$
 (28)

Sendo que:  $x_b = fração da massa queimada [-];$ 

Q = calor liberado pelo combustível [J];  $\alpha = \hat{a}ngulo \text{ do virabrequim [°]};$   $\alpha_0 = \text{início da combustão [°]};$   $\Delta\alpha_c = \text{duração da combustão [°]};$  m = parâmetro de forma [-];a = parâmetro [-].

# **3 REVISÃO BIBLIOGRÁFICA**

A apresentação de pesquisas relacionadas ao tema do trabalho é dividida em três campos: etanol e aumento da razão volumétrica de compressão, comando de válvulas e Ciclo Miller.

#### 3.1 Etanol e aumento da razão volumétrica de compressão

Nasir (2018) realizou experimentos com o objetivo de investigar as consequências do uso de misturas etanol-gasolina (E0, E10, E20, E40 e E50) no desempenho e emissões de gases em um motor monocilíndrico de ignição por centelha operando em rotações entre 1500 e 3000 rpm. De acordo com o autor, os experimentos mostraram que o aumento da proporção de etanol na mistura melhorou a eficiência térmica, resultando em maiores potências e menor consumo específico de combustível. Em relação à emissão de gases, maiores concentrações de etanol apresentaram menores concentrações de CO, HC e  $CO_2$ .

Nwufo et al. (2018) analisaram o desempenho, as emissões e as características da combustão em um motor monocilíndrico de ignição por centelha operando em plena carga em diversas rotações (entre 1500 e 4000 rpm) utilizando diversas misturas de etanol-gasolina (E0, E10, E20, E30, E40, E60 e bioetanol). De acordo com os autores, as misturas de etanol-gasolina reduziram significativamente as emissões de CO e HC. Além disso, emissões de CO<sub>2</sub> foram mais altas quando utilizado maiores concentrações de etanol, representando maior eficiência da combustão. Os autores observaram, também, que a utilização de etanol como aditivo para a gasolina melhorou as características da combustão e reduziu significativamente as emissões do motor, observado pela maior pressão no cilindro em baixas rotações, maior eficiência térmica e menores índices de CO e HC.

Saikrishnan, Karthikeyan e Jayaprabakar (2018) investigaram os efeitos da mistura etanol-gasolina no desempenho e nas emissões de um motor três cilindros de ignição por centelha. Comparando três proporções de mistura de etanol-gasolina (E5, E10 e E15) com gasolina pura (E0), operando o motor com frequência de giro de 2000 rpm e variando a carga, os autores identificaram que o aumento da proporção de etanol na mistura levou a um maior consumo de combustível – devido ao menor poder calorífico do etanol comparado à gasolina – e uma melhora na eficiência térmica. Referente à emissão de gases, a adição de etanol mostrou um aumento da emissão de CO<sub>2</sub> e menores índices de emissão de CO, HC e NO<sub>x</sub>. De acordo com os autores, tais alterações das emissões de CO<sub>2</sub>, CO e HC estão relacionadas à

melhora da combustão, em razão da maior concentração de oxigênio e menor concentração de átomos de carbono na mistura ar-combustível. E, por fim, a redução de emissão de  $NO_x$  está relacionada ao menor pico de temperatura proporcionado pela adição de etanol.

Kim, Cho e Min (2015) analisaram a influência do etanol em um motor com injeção direta de gasolina e injeção indireta de etanol em duas razões volumétricas de compressão distintas (9,5:1 e 13,3:1), operando na frequência de giro de 1000 rpm em plena carga. O tempo de injeção da gasolina não variou, enquanto que a injeção de etanol foi feita tanto com a válvula de admissão fechada (closed valve injection - CVI) quanto aberta (open valve injection – OVI) para observar o efeito do tempo de injeção de etanol na combustão e nas emissões. Primeiramente, o avanço de ignição foi calibrado para o uso de gasolina de modo que não ocorresse detonação. Posteriormente, etanol foi adicionado até a contenção da detonação e calibração do avanço de ignição em MBT. Para operações com R<sub>c</sub> de 9,5:1, a adição de etanol não apresentou mudanças aparentes nas emissões de HC. Os autores acreditam que as maiores pressões no cilindro, em decorrência do maior avanço de ignição, potencializou o efeito de fresta (crevice effect) - onde uma parte da mistura aspirada fica presa entre os anéis de vedação durante a combustão e sai do cilindro durante o escape atenuando o efeito de oxidação da mistura proporcionada pelo etanol. A adição de etanol apresentou maiores índices de emissão de NO<sub>x</sub> proporcionado pela maior temperatura da combustão devido ao maior avanço de combustão, e reduziu a emissão de CO que é atribuído à oxidação da mistura devido à adição de etanol. De acordo com os autores, operações em OVI apresentaram menor frequência de detonação devido à menor temperatura da massa aspirada pelo motor. Em operações com R<sub>c</sub> de 13,3:1, não foi possível calibrar o motor para uso de gasolina devido à alta frequência de detonação. A adição de etanol em operações com R<sub>c</sub> de 13,3:1 reduziu as emissões de HC e CO, em comparação com os resultados para o uso de gasolina em operações com R<sub>c</sub> de 9,5:1. De acordo com os autores, isso aconteceu devido à maior quantidade de etanol adicionado à mistura, que potencializou o efeito de oxidação da mistura.

Balki e Sayin (2014) desenvolveram um estudo em que os efeitos da razão volumétrica de compressão no desempenho, combustão e emissões de um motor de ignição por centelha foram analisados experimentalmente. Os experimentos foram realizados em um motor monocilíndrico utilizando etanol, metanol e gasolina como combustíveis e usando quatro razões volumétricas de compressão distintas (8,0:1, 8,5:1, 9,0:1 e 9,5:1), operando em frequência de giro constante de 2400 rpm e a plena carga. Comparado à gasolina, o uso de etanol ou metanol aumentou a pressão média efetiva, a eficiência térmica e a eficiência
volumétrica, embora tenha aumentado o consumo específico de combustível. Entretanto, o aumento da razão volumétrica de compressão diminuiu o consumo específico de combustível de todos os combustíveis. De modo geral, o uso de etanol e metanol apresentaram menores índices de emissões de HC,  $NO_x$  e CO quando comparado com o uso de gasolina, para todas as razões volumétricas de compressão utilizadas.

Siddegowda e Venkatesh (2013) realizaram experimentos em um motor de ignição por centelha para estudar o desempenho e emissões utilizando misturas de etanol e gasolina (E0, E10, E20 e E30) como combustível. De acordo com os autores, a mistura que apresentou os melhores resultados foi E20 em que houve uma melhora da eficiência térmica e um aumento sensível do consumo quando comparado com o uso de gasolina. Os índices de emissões de CO e HC apresentaram quedas significativas, enquanto o índice de emissão de  $CO_2$  foi maior, evidenciando uma melhora na combustão.

Utilizando um motor monocilíndrico com injeção indireta e gasolina e injeção direta de etanol, Zhuang e Hong (2013) realizaram experimentos com o motor operando em duas cargas (baixa e média carga) com frequência de giro variando entre 3500 e 5000 rpm. Os resultados mostraram que a injeção direta de etanol contribui para o aumento da potência do motor quando a energia oriunda do etanol é equivalente à energia da gasolina substituída (por etanol), apesar do aumento do consumo específico de combustível com o aumento da concentração de etanol (devido ao menor poder calorífico do etanol). Foi observado, também, que a injeção de etanol reduziu a temperatura no interior do cilindro, levando à redução do nível de emissões de  $NO_x$ . Entretanto, essa menor temperatura no interior do cilindro pode ter prejudicado a combustão, aumentando as emissões de CO e HC devido à combustão incompleta.

Costa e Sodré (2011) analisaram as consequências do aumento da razão volumétrica de compressão (10,0:1, 11,0:1 e 12,0:1) em um motor quatro cilindros abastecido com etanol hidratado (E100) e mistura etanol-gasolina (E22). O motor operou em plena carga com rotações entre 1500 e 6500 rpm. Foi observado que razões volumétricas de compressão mais altas resultaram em pressões mais altas no cilindro, aumentando o trabalho de expansão dos gases e, consequentemente, gerando maior torque e pressão média efetiva. O aumento da razão volumétrica de compressão não exigiu mudanças significativas no avanço de ignição para o uso do etanol, permitindo calibrações em MBT. Para o uso da mistura de gasolina e etanol, o aumento da razão volumétrica de compressão exigiu menores avanços de ignição a fim de evitar a detonação, resultando em torque e pressão média efetiva menores. Contudo, o

aumento da razão volumétrica de compressão resultou em uma melhora da eficiência térmica e menor consumo específico, para ambos os combustíveis.

Em outro estudo, Costa e Sodré (2010) compararam o desempenho e as emissões de um motor quatro cilindros ( $R_c$  de 12,0:1) abastecido com etanol hidratado (E100) e mistura etanol-gasolina (E22), operando em plena carga com rotações entre 1500 e 6500 rpm. Os resultados mostraram que, em faixas de velocidades mais altas, o uso de etanol propiciou maior potência, enquanto para faixas de velocidades mais baixas, ambos os combustíveis atingiram potências similares. Foi observado, também, que o uso de etanol apresentou menores índices de emissões de CO e maiores índices de emissões de CO<sub>2</sub>, em comparação com a mistura etanol-gasolina, em toda a faixa de frequência de giro utilizada nos experimentos. De acordo com os autores, isso aconteceu devido à concentração de oxigênio nas moléculas de etanol, que favoreceram a conversão de CO para CO<sub>2</sub>. As emissões de HC foram menores para o uso de etanol apresentou maior emissão de NO<sub>x</sub>, comparado com uso da mistura etanol-gasolina. Isso se deve às maiores pressões e temperaturas no cilindro consequentes da maior velocidade de chama e ao maior avanço de ignição proporcionados pelo uso do etanol.

Cooney, Worm e Naber (2009) realizaram um estudo com o objetivo de examinar os efeitos de misturas etanol-gasolina através de análises da fração de massa queimada (*mass fraction burned* – MFB). Os experimentos foram realizados em um motor monocilíndrico operando em carga constante de 300 kPa (PME) e frequência de giro constante de 900 rpm, utilizando cinco misturas etanol-gasolina (E0, E20, E40, E50 e E84) e cinco razões volumétricas de compressão (8,0:1, 10,0:1, 12,0:1, 14,0:1 e 16,0:1). Analisando as curvas de MFB, os resultados mostraram que o uso de E0 apresentou maior duração de combustão (0-100% MFB), enquanto que a mistura E84 apresentou a menor duração. Outra observação foi de que o aumento da razão volumétrica de compressão apresentou tendência de retardamento do ponto 50% MFB. De acordo com os autores, isso se deve à maior razão superfície/volume, que eleva as perdas de calor para o sistema de arrefecimento, fazendo com que a combustão seja mais lenta. Por fim, os autores concluíram que, adicionando etanol à gasolina, ocorre um aumento da razão volumétrica de compressão limite para detonação (*knock limited compression ratio* – KLCR), sendo que, para as condições de velocidade e carga analisadas, gasolina com 91 de RON (E0) atingiu um KLCR de 8:1 enquanto E84 atingiu KLCR de 16:1.

Hsieh et al. (2002) realizaram um experimento para investigar o desempenho e as emissões de um motor comercial de ignição por centelha utilizando misturas de etanolgasolina (E0, E5, E10, E20 e E30). O motor utilizando foi um 4 cilindros com  $R_c$  de 9,5:1 operando em rotações entre 1000 e 4000 rpm, com aberturas da válvula borboleta em 0%, 20%, 40%, 60%, 80% e 100%. De acordo com os autores, o aumento da proporção de etanol reduz o poder calorífico e aumenta a octanagem da mistura. Além disso, o etanol aumentou sensivelmente o torque e o consumo de combustível. Os autores concluíram, também, que misturas de etanol-gasolina reduzem a emissão de CO (entre 10% e 90%) e HC (entre 20% e 80%), enquanto a emissão de CO<sub>2</sub> é maior (entre 5% e 25%). Por fim, os autores concluíram que a emissão de NO<sub>x</sub> possui maior relação com as condições de operação do que com a proporção de etanol na mistura.

### 3.2 Comando de válvulas

Utilizando o software AVL Boost® para realizar simulações 1D, Bapiri e Sorusbay (2019) estudaram os efeitos do tempo de fechamento das válvulas (admissão e escape) no desempenho e no consumo de combustível de um motor de ignição por centelha. Foram avaliados tempos diferentes de abertura e fechamento das válvulas de admissão e escape assim como a combinação de estratégias de ambas as válvulas, tanto para um motor de aspiração natural quanto sobrealimentado. De acordo com os autores, foi observado que, em motores aspirados, alterações no tempo de fechamento da válvula de admissão apresentaram maiores efeitos em torque e potência, assim como a abertura da válvula de escape – principalmente em configurações de abertura tardia da válvula de escape. Em motores sobrealimentados, os resultados mostram efeitos significativos no consumo específico de combustível, principalmente em configurações que reduzem o cruzamento de válvulas.

Li et al. (2018) comparou as perdas de bombeamento de um sistema VVT e CVVL (*Continuous Variable Valve Lift*) com base em testes em bancada e simulações numéricas. Os autores concluíram que a pressão média indicada foi aproximadamente proporcional à pressão no cilindro no PMI, tanto para o controle de massa no modo convencional (válvula borboleta), quanto em configurações EIVC. A pressão no cilindro no processo de escape foi similar entre o sistema CVVL e VVT. Entretanto, a pressão no cilindro durante o processo de aspiração foi muito diferente entre os dois sistemas, levando à diferentes perdas de bombeamento. O sistema CVVL apresentou maior potencial para reduzir as perdas de bombeamentos em condições de baixa e média carga, reduzindo o consumo específico de combustível em mais de 20% na frequência de giro de 2000 rpm.

Osorio e Rivera-Alvarez (2018) utilizam um sistema de variação contínua do tempo de válvula (*Continuous Variable Valve Timing* – CVVT) para controle da carga em um motor de ignição por centelha e o compara com o controle convencional (válvula borboleta) através de modelos para ambos os ciclos. Inicialmente, os autores desenvolveram modelos para processos ideais em operações de cargas parciais e, posteriormente, irreversibilidades foram consideradas de forma a aproximar de operações mais realistas. Tais irreversibilidades são relacionadas à efeitos de diluição da carga e perda de calor durante a compressão e expansão dos gases. De acordo com os autores, o uso do CVVT apresentou maior eficiência devido à ausência da válvula borboleta, uma vez que o uso da válvula borboleta gera um maior consumo de energia por causa do maior atrito durante a admissão.

Teodosio et al. (2018) realizaram um estudo numérico com o objetivo de avaliar a influência da estratégia da válvula de admissão no desempenho de um motor de ignição por centelha. O modelo validado permitiu gerar parâmetros de análises de diferentes ângulos de fechamento da válvula de admissão, sendo avaliados dois pontos de operação representativos em plena carga e carga parcial. De acordo com os autores, ambas as estratégias EIVC e LIVC (*Late Intake Vale Closing*) apresentaram melhor consumo específico de combustível, sendo que o modo EIVC se mostrou mais efetivo do que o modo LIVC. Em condição de carga parcial, o modo LIVC apresentou uma melhora de 4,9% do consumo específico de combustível, enquanto o modo EIVC atingiu uma melhora de 5,6%. Tal melhora do EIVC se deve ao menor trabalho de bombeamento, embora o processo de combustão seja mais lento devido à menor intensidade de turbulência no cilindro. Em condição de plena carga, o modo LIVC apresentou uma melhora de 1,9% no consumo específico da combustível frente à melhora de 2,4% do modo EIVC. Tais melhoras se devem à contenção da detonação, permitindo maiores avanço de ignição e um menor enriquecimento da mistura.

Zmudka, Postrzednik e Przybyla (2016) realizaram uma pesquisa teórica para avaliar um sistema independente de fechamento antecipado da válvula de admissão (EIVC) para controle de carga em um motor de ignição por centelha. Os autores consideraram ciclo ideal e utilizaram o ciclo teórico Seiliger-Sabathe como referência para avaliação dos benefícios do sistema EIVC. De acordo com os autores, o sistema EIVC permite a retirada da válvula borboleta para o controle da carga, reduzindo o trabalho de bombeamento e, consequentemente, aumentando a eficiência do ciclo. Em decorrência de uma maior eficiência, o sistema EIVC apresentou melhoras de até 4% no consumo de combustível, principalmente em condição de carga parcial. Millo et al. (2014) analisou os efeitos da geometria do cabeçote nas características da combustão em um motor equipado com o sistema MultiAir®. De acordo com o autor, o modo EIVC apresenta baixos níveis de turbulência no cilindro em condições de baixa carga e, a fim de amenizar o problema, foi estudado duas modificações no cabeçote: uma para amplificar o movimento *tumble* e outra para criar um vortex *swirl*, ambas com o objetivo de atingir uma velocidade de propagação de chama apropriada. O estudo concluiu que a "solução *tumble*" obteve efeitos positivos na redução do tempo de combustão, especialmente em baixa carga. Entretanto, a modificação reduziu a intensidade do *tumble* em condições de plena carga, tornando o processo de combustão mais lento. A "solução *swirl*" também apresentou melhoras em condições de baixa carga.

Em estudo desenvolvido por Alvarenga et al. (2012), as perdas de bombeamento e por atrito foram mensuradas através da análise da pressão no cilindro em um motor equipado com o sistema MultiAir®. Os resultados do estudo mostram que as perdas por atrito e bombeamento estão diretamente relacionadas à velocidade do motor – o aumento da velocidade do motor resulta em maiores perdas por atrito e bombeamento. A aplicação do modo EIVC apresentou menores perdas se comparado ao modo *Full Lift*, uma vez que – para uma mesma eficiência volumétrica – o modo EIVC permite maiores ângulos de abertura da válvula borboleta e, portanto, maiores pressões no coletor de admissão. Além disso, o modo EIVC apresentou valores de eficiência volumétrica mais altas em baixas e médias velocidades em condições de plena carga.

Moore, Foster e Hoyer (2011) apresentaram resultados de um motor *flex fuel* capaz de operar com misturas de etanol-gasolina com concentrações de etanol de até 85% (E85). De acordo com os autores, a mudança do ponto de fechamento da válvula de admissão modifica a razão volumétrica de compressão efetiva da mistura, assim como o volume deslocado. A desativação de uma das válvulas de admissão levou ao aumento significativo do *swirl* e do *tumble*, minimizando os problemas relacionados à baixa energia cinética da mistura nas aplicações do EIVC e LIVC. Em baixas velocidades, misturas com maiores concentrações de etanol apresentaram maior torque. Já em condições de baixas cargas, o controle da carga pode ser gerenciado pela estratégia EIVC, levando a uma melhor economia de combustível e um melhor desempenho em conjunto com a desativação de uma das válvulas de admissão. Misturas com concentrações próximas ao do E20 podem gerar boa parte dos benefícios ligados ao uso do E85 e permitem estratégias que compensem a sua menor queda energéticas.

Utilizando simulações computacionais, Hoyer, Moore e Keith (2010) realizaram um estudo com o objetivo de identificar possíveis modificações a fim de melhorar o consumo de combustível de um motor para o uso de misturas de etanol-gasolina com concentrações de até 85% de etanol (E85). Os resultados permitem diversas conclusões a respeito das modificações analisadas. A utilização de um variador de fase no eixo das válvulas de admissão mostrou ser mais eficiente do que o controle de carga na válvula borboleta, além de permitir flexibilidade de operação devido ao combustível utilizado, controle dos gases residuais e prevenção da detonação. O uso de um eixo 2-step – eixo de válvulas que apresenta dois perfis distintos no mesmo came – permitiu um amplo controle da carga sem a complexidade e custo de um sistema de atuação variável na válvula. A seleção do perfil de acionamento da válvula de admissão é feita de acordo com a velocidade, carga e combustível. A utilização de um turbo-compressor para aumentar a pressão no coletor de admissão permite a extensão do controle da carga do motor, sendo que a sobrepressão depende do diagrama da válvula e do combustível a uma dada condição de velocidade e carga.

Utilizando um motor monocilíndrico de ignição por centelha, Çinar e Akgün (2007) analisaram o efeito do tempo de fechamento da válvula de admissão no desempenho e nas emissões. O mecanismo de controle consiste na variação do tempo de fechamento da válvula de admissão através do movimento axial do eixo de comando das válvulas permitindo, assim, mudanças de perfis do came da válvula de admissão. Foram utilizados 5 pontos de fechamento da válvula de admissão equidistantes em 10°. De acordo com os autores, esse mecanismo foi responsável por uma melhora de 5,1% e 4,6% do torque em baixas e altas rotações, respectivamente, assim como uma melhora de 5,3% e 2,9% do consumo específico de combustível em baixas e altas rotações, respectivamente. Além disso, as emissões de CO e HC foram reduzidas em altas rotações.

## 3.3 Ciclo Miller

Chen et al. (2019) desenvolveram um estudo para analisar a aplicação do Ciclo Miller em um ciclo sobrealimentado com o objetivo de melhorar a eficiência térmica sem que ocorra perda de potência. A combinação do Ciclo Miller – com fechamento antecipado da válvula de admissão – e um compressor elétrico permitiu o aumento da razão volumétrica de compressão, resultando em uma melhora de até 5,44% de eficiência térmica.

Wei et al. (2018) investigaram os efeitos do Ciclo Miller na potência e na contenção da detonação utilizando um motor monocilíndrico sobrealimentado com injeção direta de

gasolina. Os resultados apresentaram melhoras na eficiência térmica e no torque do motor além de uma redução da tendência à detonação. Entretanto, a aspiração natural apresentou melhores resultados referentes à contenção da detonação, embora apresentara uma redução do torque devido à ausência da sobrealimentação.

Utilizando um modelo *quasi-dimensional* para simular o funcionamento de um motor operando no Ciclo Miller, Wang et al. (2016) investigou os efeitos da razão volumétrica de compressão, do tempo de fechamento da válvula de admissão e da velocidade do motor no consumo de combustível e na potência do motor. Os resultados mostraram uma relação do momento de fechamento da válvula de admissão com a eficiência volumétrica além de uma correlação dos processos de combustão e de admissão. O estudo concluiu que a aplicação do Ciclo Miller diminuiu a probabilidade de ocorrência da detonação e melhorou o consumo de combustível. Entretanto, tais benefícios se deram ao custo da potência devido ao efeito negativo do fechamento da válvula de admissão na eficiência volumétrica.

Luisi et al. (2015) examinaram estratégias do Ciclo Miller para reduzir a ocorrência de detonação em um motor equipado com um turbo-compressor e sistema MultiAir® e analisar as influências que a mudança da operação implicaria nos parâmetros do motor. Em uma investigação experimental preliminar, a estratégia LIVC permitiu um maior avanço de ignição e um menor enriquecimento da mistura ar-combustível, se comparado com a estratégia EIVC. Dessa forma, a estratégia LIVC foi escolhida para os experimentos posteriores. Os autores concluíram que o menor tempo de compressão efetiva resultou em menores temperaturas da mistura no cilindro, gerando condições menos favoráveis para a ocorrência da detonação permitindo, assim, um maior avanço de ignição e um menor enriquecimento da mistura, melhorando a eficiência da conversão do combustível. A eficiência foi melhorada em até 20% em velocidades médias e altas cargas, pois nessas condições o turbo-compressor compensa a menor eficiência volumétrica da estratégia LIVC, tornando possível um melhor aproveitamento da capacidade de contenção da detonação. Essa melhora ocorreu muito por conta da possibilidade de operação com mistura estequiométrica, enquanto normalmente tal condição exigiria um enriquecimento da mistura com o intuito de evitar a ocorrência da detonação. Em operações com baixa velocidade do motor, os ganhos foram menores devido à menor capacidade do turbo-compressor de compensar a menor eficiência volumétrica, limitando a redução do tempo de compressão da mistura. Por fim, em altas velocidades, a detonação é naturalmente contida pela velocidade do motor. Ainda assim, ganhos de até 7% foram atingidos devido à redução do enriquecimento da mistura permitido pela adoção da estratégia LIVC.

Di Sanctis e Gallo (2015) realizaram um estudo com foco no controle de carga através do fechamento da válvula de admissão – fechamento antecipado (*early intake valve closing* – EIVC) ou fechamento tardio (*late intake valve closing* – LIVC). Foram utilizadas simulações termodinâmicas de um motor de ignição por centelha para representar o funcionamento de um motor em duas velocidades distintas. Os resultados do estudo mostraram um aumento de 7% da eficiência térmica em baixas velocidades e um aumento de 9% da eficiência térmica em altas velocidades utilizando o EIVC. O modo LIVC também apresentou melhoras na eficiência térmica, porém foram menores quando comparadas com o EIVC. Outra observação do estudo foi um menor pico de pressão para ambos os controles da válvula de admissão, quando comparado com o controle através da válvula borboleta.

Martins e Lanzanova (2015) utilizaram simulação 1D para representar diversas configurações de um motor operando no Ciclo Miller a plena carga utilizando etanol como combustível. O objetivo do estudo foi investigar os efeitos do tempo de fechamento da válvula de admissão, assim como a duração da combustão, temperaturas no cilindro e diluição da carga - utilizando EGR. Os autores concluíram que as melhores eficiências foram atingidas com aplicação do EIVC através de válvulas atuadas por solenoide. Foi concluído também que, caso a duração da combustão possa ser mantida em níveis aceitáveis, o uso do EGR, assim como operações com misturas pobres, reduz a ocorrência de detonação e melhora as propriedades termodinâmicas da carga. Os resultados do estudo mostram as vantagens em relação ao Ciclo Otto não apenas em relação à eficiência, mas devido ao efeito de resfriamento da carga que o etanol proporciona. Por fim, a aplicação do conceito do Ciclo Miller sem tecnologias para o controle variável das válvulas estaria comprometido entre eficiência e o desempenho desejado. Entretanto, caso o motor operando em Ciclo Miller seja utilizado para geração de energia elétrica, até mesmo a mínima melhoria de eficiência seria altamente benéfico, enquanto o uso do etanol ajuda na redução de emissão de carbono dos combustíveis fósseis.

Li et al. (2014) compararam os efeitos do aumento da razão volumétrica de compressão e do momento de fechamento da válvula de admissão no consumo de combustível – tanto no caso de fechamento antes do PMI (EIVC) quanto fechamento depois do PMI (LIVC). Foi concluído que o aumento da razão volumétrica de compressão melhora o consumo de combustíveis em condições de baixa carga. Em contra partida, em condições de cargas elevadas, o aumento da razão volumétrica de compressão criou condições mais favoráveis à ocorrência de detonação. Ambas as estratégias (EIVC e LIVC) se mostraram eficientes na contenção da detonação, sendo que EIVC apresentou menor trabalho de

bombeamento e menor taxa de liberação de calor quando comparado com LIVC. De acordo com os autores, isso se deve à menor pressão e temperatura no fim do tempo de compressão.

Wan e Du (2013) utilizaram modelos computacionais através de simulações no GT Power® para representar ciclos de um motor de ignição de centelha e analisar potenciais benefícios da combinação de alta razão volumétrica de compressão com ciclo expandido – utilizado EIVC para condições de carga parcial e LIVC para condições de plena carga. De acordo com os autores, a aplicação do EIVC em cargas parciais apresentou melhoras na admissão e reduziu o trabalho de bombeamento, reduzindo o consumo de combustível em até 11%. Para condições de plena carga, a aplicação do LIVC reduziu as pressões e temperaturas no cilindro, reduzindo a ocorrência de detonação, e ampliou a região de operação em MBT, reduzindo em até 5,7% o consumo de combustível.

Visando determinar a razão volumétrica de compressão limite para o uso de misturas de etanol-gasolina, Szybist et al. (2010) desenvolveu um estudo utilizando gasolina regular, gasolina de alta octanagem e misturas com 10% (E10), 50% (E50) e 85% (E85) de etanol, além de investigar os efeitos do etanol, da razão volumétrica de compressão e das estratégias EIVC e LIVC na ocorrência da detonação. O estudo concluiu que a eficiência térmica e a pressão média indicada (pmi) aumentam conforme a razão volumétrica de compressão é aumentada contanto que o avanço de ignição não seja ajustado com o objetivo de conter a detonação - sendo que apenas os combustíveis com maior concentração de etanol não exigiram ajuste no avanço de ignição. Devido ao efeito de resfriamento da carga e a maior quantidade de energia por unidade de massa de ar na mistura estequiométrica, maiores concentrações de etanol resultaram em um aumento da potência e da eficiência térmica do ciclo. Uma alternativa para evitar detonação com menores ajustes no avanço de ignição foi a aplicação das estratégias EIVC ou LIVC que, embora tenham reduzido a potência do motor, apresentaram quedas menores da eficiência. Tais estratégias reduzem a razão volumétrica de compressão efetiva reduzindo, assim, a probabilidade da ocorrência de detonação. Comparado com um menor avanço de ignição, as estratégias EIVC e LIVC permitem uma maior compatibilidade de combustíveis propensos à detonação em altas razões de compressão sem que haja uma queda substancial da eficiência. A duração da combustão aumenta com a aplicação da estratégia EIVC devido à menor turbulência no interior do cilindro. Mesmo com uso de válvulas assimétricas para induzir uma maior turbulência, a duração da combustão continua mais longa do que em casos que é utilizada a estratégia LIVC ou controle de carga na válvula borboleta.

França Júnior (2009) desenvolveu um estudo utilizando simulações no software GT Power (Gamma Technologies) para comparar e analisar a eficiência de um motor através de três meios de controle de carga: EIVC, LIVC e válvula borboleta. Os resultados mostraram o potencial do Ciclo Miller – EIVC e LIVC – na melhora do consumo de combustível devido à menor perda de bombeamento e melhores características da combustão. Entretanto, os ganhos em eficiência são limitados pela redução da razão volumétrica de compressão efetiva devido à aplicação do Ciclo Miller.

Wang et al. (2008) fizeram uma análise experimental da aplicação do Ciclo Miller para reduzir a emissão de  $NO_x$ . Os resultados mostraram que o Ciclo Miller – com fechamento tardio da válvula de admissão – leva a menores pressões e temperaturas ao fim da compressão, dessa forma, a combustão atinge temperaturas mais baixas, se comparado com o Ciclo Otto. As menores temperaturas dos gases no Ciclo Miller reduziram os índices de emissões de  $NO_x$  em até 46%. Entretanto, a aplicação do Ciclo Miller reduziu a potência em até 13% devido à menor massa de combustível aspirada.

### 3.4 Resumo da Revisão Bibliográfica

Com base nos estudos citados nessa seção, algumas observações podem ser destacadas quanto ao uso do etanol como combustível, aumento da razão volumétrica de compressão e aplicação do Ciclo Miller. Por característica do combustível, o etanol - em comparação com a gasolina - apresenta menor poder calorífico e menor razão estequiométrica (Saikrishnan, Karthikeyan e Jayaprabakar (2018)), o que acaba elevando o consumo de combustível e o consumo específico de combustível (Balki e Sayin (2014), Zhuang e Hong (2013)). Entretanto, o uso de etanol como combustível apresenta maiores valores de potência e torque, além de ter uma maior capacidade de resfriamento da massa aspirada pelo motor. Devido à maior octanagem em comparação com a gasolina, o uso do etanol possibilita operações utilizando razões volumétricas de compressão mais altas (Costa e Sodré (2011), Cooney, Worm e Naber (2009)). Como consequência, as pressões no cilindro são mais altas, potencializando o ganho em potência e torque e, consequentemente, reduzindo o consumo específico de combustível. Referente à emissões, os estudos mostraram resultados complexos quanto ao uso do etanol (Nasir (2018), Saikrishnan, Karthikeyan e Jayaprabakar (2018), Kim, Cho e Min (2015), Zhuang e Hong (2013)). Apesar disso, algumas observações frequentes podem ser destacadas, como as menores emissões de CO e HC devido à maior concentração de oxigênio na mistura oriundo do etanol. Em consequência de maiores avanços de ignição, o uso de etanol elevou as temperaturas no cilindro, causando o aumento dos índices de emissões de NO<sub>x</sub>.

O uso de sistemas que permitem a manipulação das válvulas se mostra bastante eficaz na aplicação do Ciclo Miller em motores de combustão interna. Tais sistemas permitem a alteração do tempo de fechamento da válvula de admissão, por exemplo, permitindo o uso de estratégias EIVC e LIVC (Zmudka, Postrzednik e Przybyla (2016), Alvarenga et al. (2012)). O uso das estratégias EIVC ou LIVC permite operações com maiores aberturas da válvula borboleta, ou mesmo a retirada do dispositivo, reduzindo as perdas durante a admissão (Wan e Du (2013)). Outra consequência da aplicação do Ciclo Miller é a redução da temperatura no cilindro, consequência da menor razão volumétrica de compressão efetiva. Isso permite operações com misturas mais próximas à estequiometria, melhorando o consumo específico além de conter a detonação (Teodosio et al. (2018)). Apesar disso, em algumas operações, o ganho em eficiência do Ciclo Miller se dá ao custo da potência devido à menor quantidade de massa aspirada pelo motor, principalmente em motores de aspiração natural (Wang et al. (2016), Martins e Lanzanova (2015)). Outra característica do Ciclo Miller é uma redução da energia de turbulência da mistura dentro cilindro, o que acaba fazendo com que a combustão fique mais lenta (Millo et al. (2014)). Entretanto, algumas soluções amenizam esse efeito negativo como, por exemplo, a desativação de uma das válvulas de admissão (Moore, Foster e Hoyer (2011)).

## **4 METODOLOGIA**

Nesta seção e etapas e procedimentos do desenvolvimento do trabalho são descritos. Os materiais utilizados para elaborar os modelos de simulação são mencionados, assim como as características do motor base e, por fim, as descrições de cada modelo desenvolvido.

### 4.1 Materiais

O computador utilizado para realizar as simulações foi um Intel Core i5-6500 3.20 GHz 8 GB de memória RAM. Computador, softwares e licenças de uso foram fornecidos pela PUC-MG sendo que, assim como a criação dos modelos, as simulações foram realizadas nas dependências da PUC-MG.

### 4.1.1 AVL Boost®

O AVL Boost® 2017 é um programa computacional específico para a simulação de motores de combustão interna com modelos avançados a fim de prever, com alta precisão, o desempenho, a acústica e a eficácia do tratamento de gases. Dessa forma, o software auxilia no desenvolvimento de veículos, uma vez que é possível prever o torque e potência produzidos, assim como as emissões, consumo de combustível e emissão de ruídos. (AVL LIST GMBH, 2015). Para melhor entendimento dos fundamentos teóricos e das equações básicas de todos os componentes que não são apresentados nesse estudo, é recomendada a consulta à documentação própria do software AVL Boost® 2017.

### 4.1.1.1 Modelo de motor

A ferramenta de pré-processamento do software apresenta um editor e um guia para os dados de entrada. O modelo de cálculo do motor é feito através da construção de um modelo composto por blocos que representa os componentes do motor. O usuário monta um diagrama de blocos, representando os componentes do motor, e conecta os componentes através de tubulações. Dessa maneira, até mesmo os sistemas mais complexos podem ser simulados facilmente, uma vez que o software fornece uma grande variedade de elementos. (AVL LIST GMBH, 2011). Uma vez que o modelo de blocos é finalizado, é necessário inserir informações em cada um dos elementos do modelo, sendo que cada elemento exige informações específicas.

O AVL Boost® permite a criação de parâmetros que podem ser atribuídos de qualquer campo de qualquer elemento do modelo. Com um ou mais parâmetros, é possível criar *Cases* e *Case Sets* que permitam a variação dos parâmetros dentro do modelo de simulação. (AVL LIST GMBH, 2011).

## 4.1.1.2 Representação das espécies

O AVL Boost® calcula as propriedades dos gases em cada componente e a cada passo de cálculo, sendo que as propriedades dos gases dependem da temperatura, pressão e composição dos gases. A composição dos gases pode ser descrita com um base em um número arbitrário de espécies definido pelo usuário, sendo um mínimo de sete espécies: combustível,  $O_2$ ,  $N_2$ ,  $CO_2$ ,  $H_2O$ ,  $CO \in H_2$ . Para cada espécie, uma equação de conservação é aplicada em cada um dos elementos do modelo. (AVL LIST GMBH, 2011).

## 4.1.1.3 Seleção dos componentes do combustível

O AVL Boost® permite que o usuário determine um combustível padrão ou a composição de uma mistura. Os componentes dessa mistura são selecionados pelo usuário em uma lista de espécies. O usuário deve definir a proporção mássica ou volumétrica de cada componente em relação ao total. A seleção do combustível, ou composição da mistura, é feita acessando o menu *Simulation/Control*. Na janela seguinte, as propriedades do combustível estão na opção *Classic Species Setup*. Após a composição da mistura, o software calcula todas as propriedades com base nos elementos da mistura e suas proporções. A composição, em proporção volumétrica, assim como as características dos combustíveis utilizados para a simulação estão descritas no Quadro 1:

| Etanol<br>Gasolina | Etanol: 94%   |
|--------------------|---------------|
|                    | Água: 6%      |
|                    | RON: 118      |
|                    | MON: 100      |
|                    | IAD: 109      |
|                    | Gasolina: 75% |
|                    | Etanol: 25%   |
|                    | RON: 91       |
|                    | MON: 83       |
|                    | IAD: 87       |

Quadro 1 - Composição e características dos combustíveis simulados

Fonte: (WIBOWO et al., 2018) (PETROBRAS, 2019)

# 4.1.1.4 Modelo de combustão Vibe de duas zonas

Para modelar o processo de combustão, foi escolhida a função Vibe de duas zonas. Nesse modelo, as equações de conservação (seção 2.7.1) são aplicadas tanto na zona queimada (Equação 29) quanto na zona não queimada (Equação 30):

$$\frac{\mathrm{dm}_{\mathrm{b}}\mathbf{u}_{\mathrm{b}}}{\mathrm{d}\alpha} = -p_{\mathrm{c}}\frac{\mathrm{d}V_{\mathrm{b}}}{\mathrm{d}\alpha} + \frac{\mathrm{d}Q_{\mathrm{F}}}{\mathrm{d}\alpha} - \sum \frac{\mathrm{d}Q_{\mathrm{Wb}}}{\mathrm{d}\alpha} + h_{\mathrm{u}}\frac{\mathrm{d}m_{\mathrm{b}}}{\mathrm{d}\alpha} - h_{\mathrm{BB,b}}\frac{\mathrm{d}m_{\mathrm{BB,b}}}{\mathrm{d}\alpha}$$
(29)

$$\frac{\mathrm{d}m_{u}u_{u}}{\mathrm{d}\alpha} = -p_{c}\frac{\mathrm{d}V_{u}}{\mathrm{d}\alpha} - \sum \frac{\mathrm{d}Q_{Wu}}{\mathrm{d}\alpha} - h_{u}\frac{\mathrm{d}m_{b}}{\mathrm{d}\alpha} - h_{BB,u}\frac{\mathrm{d}m_{BB,u}}{\mathrm{d}\alpha}$$
(30)

Sendo que: m = massa dos gases [kg];

u = energia interna específica dos gases no cilindro [J/kg];

p<sub>c</sub> = pressão dos gases no cilindro [Pa];

V = volume dos gases [m<sup>3</sup>];

 $Q_F$  = calor do combustível [J];

Q<sub>w</sub> = perda de calor para as paredes do cilindro [J];

h = entalpia específica dos gases [J/kg];

indicador b = referente à zona queimada (*burned*);

O termo  $h_u \frac{dm_b}{d\alpha}$  considera o fluxo de entalpia da zona não queimada para a zona queimada devido à conversão da mistura ar-combustível em produtos da combustão. O fluxo de calor entre as duas zonas são desconsiderados. (AVL LIST GMBH, 2011). Os detalhes do processo de combustão – nesse caso, as variáveis da função Vibe (seção 2.7.2.1) – são dados de entrada fornecidos pelo usuário.

$$\frac{\mathrm{dx}_{\mathrm{b}}}{\mathrm{d}\alpha} = \frac{\mathrm{a}}{\Delta\alpha_{\mathrm{c}}}(\mathrm{m}+1)\mathrm{y}^{\mathrm{m}}\mathrm{e}^{-\mathrm{a}\mathrm{y}^{(\mathrm{m}+1)}} \tag{31}$$

$$dx_{b} = \frac{dQ}{Q} \quad y = \frac{\alpha - \alpha_{0}}{\Delta \alpha_{c}}$$
(32)

Sendo que:  $x_b = \text{fração da massa queimada [-];}$  Q = calor liberado pelo combustível [J];  $\alpha = \hat{a}ngulo do virabrequim [°];$   $\alpha_0 = \text{início da combustão [°];}$   $\Delta \alpha_c = \text{duração da combustão [°];}$  m = parâmetro de forma [-];a = parâmetro [-].

Os valores para o parâmetro m da função Vibe foram definidos como 1,50 para o uso de gasolina e 1,22 para o uso de etanol. (YASHWANTH, VENUGOPAL e RAMESH, 2014). Já para o parâmetro a foi determinado o valor 6,9. Esse valor foi escolhido com base na documentação do software AVL Boost® uma vez que esse valor representa combustão completa. Os valores para os parâmetros de início da combustão  $\alpha_0$  e duração da combustão  $\Delta\alpha_c$  foram ajustados de acordo com as condições de operação simuladas.

Em relação aos volumes, a soma das variações de volume das zonas queimadas e não queimadas devem igualar à variação de volume do cilindro, assim como a soma dos volumes (zonas queimadas e não queimadas) deve igualar ao volume do cilindro. (AVL LIST GMBH, 2011).

$$\frac{\mathrm{d}V_{\mathrm{b}}}{\mathrm{d}\alpha} + \frac{\mathrm{d}V_{\mathrm{u}}}{\mathrm{d}\alpha} = \frac{\mathrm{d}V}{\mathrm{d}\alpha} \tag{33}$$

$$V_{\rm b} + V_{\rm u} = V \tag{34}$$

### 4.1.1.4.1 Knock Model

No AVL Boost®, a escolha da função Vibe Duas Zonas permite a utilização do *Knock Model* para calcular o *Octane number* (ON). O *Octane number* é um número calculado pelo AVL Boost® que representa a octanagem mínima para que não aconteça detonação nas condições simuladas. Dessa forma, caso o ON calculado pelo AVL Boost® seja menor do que o IAD do combustível simulado, a operação simulada não apresenta detonação. O modelo, derivado da equação de Arrhenius, é apresentado pela equação:

$$ON = 100 \cdot \left(\frac{1}{A} \cdot \int_{t_{soc}}^{t_{85\%MFB}} p^n \cdot e^{\frac{-B}{T_{UBZ}}} \cdot dt\right)^{\frac{1}{a}}$$
(35)

Sendo que: ON = *octane number* [-];

p = pressão da mistura não consumida [atm];

T = temperatura da mistura não consumida [K];

A, a, n, B = constantes.

Os valores das constantes do *Knock Model* para as operações utilizando gasolina são os valores encontrados por Heywood (1988) enquanto que para operações utilizando etanol foram utilizados os valores encontrados por Elmqvist et al. (2013), conforme apresentado no Quadro 2:

|                 | Etanol | Gasolina |
|-----------------|--------|----------|
| Exponent a [-]  | 3,402  | 3,402    |
| Exponent n [-]  | 1,7    | 1,7      |
| Constant A [ms] | 21     | 17,68    |
| Constant B [K]  | 3800   | 3800     |

Quadro 2 - Valores das constantes Knock Model

Fonte: (HEYWOOD, 1988) (ELMQVIST ET AL., 2003)

## 4.1.1.5 Pós-processamento

Para o pós-processamento, foi utilizada a ferramenta AVL Impress® 2017 para interpretar os resultados do cálculo computacional, assim como para plotar gráficos das variáveis médias obtidas no desenvolver do trabalho e das variáveis instantâneas, calculadas em relação ao ângulo do virabrequim. Além disso, os dados dos gráficos plotados no AVL Impress® foram exportados para registro e elaboração de gráficos no Microsoft Excel®.

### 4.2 Procedimento

Em resumo, o trabalho consistiu em utilizar um teste em bancada como fonte de dados de entrada e referência para comparação de um modelo de representação do funcionamento de um motor de combustão interna, em três condições de carga, utilizando etanol e gasolina. A validação se deu comparando o resultado da simulação com o correspondente resultado do motor base em bancada, sendo que o teste em bancada não foi realizado pelo autor e nem foi objeto de estudo. Com um modelo validado, foram feitas alterações nos elementos do modelo para aplicação do Ciclo Miller, possibilitando fazer o controle da carga através da válvula de admissão. Dessa forma, os resultados da simulação do Ciclo Miller foram comparados com os resultados da simulação em características originais. A razão volumétrica de compressão adequada para o etanol foi determinada através da simulação utilizando o etanol com o diagrama da válvula de admissão original. A razão volumétrica de compressão adequada para o etanol foi determinada como 14,5:1 pois foi a maior razão volumétrica de compressão que não apresentou detonação em qualquer das rotações simuladas na condição de plena carga utilizando o diagrama da válvula de admissão original. Os procedimentos que resultaram nesse valor são detalhados mais adiante. Por fim, foi simulada a razão volumétrica de compressão de 14,5:1 combinada com o Ciclo Miller para controle de carga e contenção da detonação utilizando etanol e gasolina, comparando os resultados dessas simulações com os resultados das simulações com características originais. O Quadro 3 mostra as condições de operação simuladas de cada modelo desenvolvido nesse estudo assim como a referência para comparação de resultados. A Figura 14 mostra um fluxograma geral do estudo realizado:

|                                    | Modelo de Validação                                                       | Modelo EIVC                                      | Modelo Ciclo Miller                                                       |  |
|------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|--|
| Frequências de                     | 2000 a 6000 rpm                                                           | 2000 a 6000 rpm                                  | 2000 a 6000 rpm                                                           |  |
| giro do motor                      | Passo de 500 rpm                                                          | Passo de 500 rpm                                 | Passo de 500 rpm                                                          |  |
| Cargas                             | Plena carga (Carga A)<br>8 bar de PME (Carga B)<br>4 bar de PME (Carga C) | 8 bar de PME (Carga B)<br>4 bar de PME (Carga C) | Plena carga (Carga A)<br>8 bar de PME (Carga B)<br>4 bar de PME (Carga C) |  |
| Combustível                        | Etanol                                                                    | Etanol                                           | Etanol                                                                    |  |
| Combustivei                        | Gasolina                                                                  | Gasolina                                         | Gasolina                                                                  |  |
| Controle de massa                  | Ângulo de abertura da                                                     | Fechamento antecipado                            | Fechamento antecipado                                                     |  |
| aspirada                           | válvula borboleta                                                         | da válvula de admissão                           | da válvula de admissão                                                    |  |
| Razão volumétrica<br>de compressão | 10,5:1                                                                    | 10,5:1                                           | 14,5:1                                                                    |  |
| Comparação                         | Teste Experimental                                                        | Modelo de Validação                              | Modelo de Validação                                                       |  |

Quadro 3 - Condições de operação e referências dos modelos simulados

Fonte: Elaborado pelo autor



# Figura 14 - Fluxograma geral do estudo

Fonte: Elaborado pelo autor

Os resultados de todas as simulações realizadas que foram registrados são:

- a) Eficiência volumétrica;
- b) Consumo de combustível;
- c) Torque;
- d) Consumo específico de combustível;
- e) Octane number;
- f) Pressão e volume de um ciclo de um dos cilindros gráfico PxV.

Os dados de pressão e volume de um ciclo foram utilizados para o cálculo da pressão média de bombeamento através da seguinte equação:

$$PMB = \frac{1}{V_D} \cdot \int_A p \cdot dV$$
(36)

Sendo que: PMB = pressão média de bombeamento [bar];

 $V_D$  = volume deslocado [m<sup>3</sup>];

p = pressão no cilindro [bar];

V = volume no cilindro [m<sup>3</sup>].

A Equação 36 foi aplicada na área A correspondente ao ciclo de bombeamento, que é a porção inferior de um diagrama PxV do ciclo do motor. A Figura 3 mostra um exemplo de diagrama PxV de um ciclo do motor.

## 4.2.1 Modelos de validação

O motor base selecionado para as simulações é um motor 1.6L 16v Flex, ignição por centelha e injeção indireta de combustível. As características do motor base estão descritas no Quadro 4:

| Diâmetro         | 77 mm   | Razão volumétrica de compressão | 10,5:1  |
|------------------|---------|---------------------------------|---------|
| Curso            | 85,8 mm | Cilindros                       | 4       |
| Volume deslocado | 1,6L    | Válvulas por cilindro           | 4       |
| AVA [°]          | 2 APMS  | AVE [°]                         | 54 APMI |
| FVA [°]          | 34 DPMI | FVE [°]                         | 14 DPMS |

Quadro 4 - Características geométricas do motor base

As condições de operação simuladas estão descritas no Quadro 5:

| Rotações    | 2000 a 6000 rpm<br>Passo de 500 rpm (9 rotações)                          |
|-------------|---------------------------------------------------------------------------|
| Carga       | Plena carga (Carga A)<br>8 bar de PME (Carga B)<br>4 bar de PME (Carga C) |
| Combustível | Etanol<br>Gasolina                                                        |

| Quaulo 5 - I lano de sindiaçõe | Quadro | 5 | - Plano | de simu | lações |
|--------------------------------|--------|---|---------|---------|--------|
|--------------------------------|--------|---|---------|---------|--------|

| Fonte: | Elaborado | pelo | autor |
|--------|-----------|------|-------|
|--------|-----------|------|-------|

Os dados utilizados como entrada e referência para validação são decorrentes de teste em bancada do motor base nas mesmas condições descritas no Quadro 5. A composição, em proporção volumétrica, assim como as características dos combustíveis utilizados para a simulação estão descritas no Quadro 1.

A Figura 15 mostra o diagrama de blocos criado no AVL Boost® para representar o motor base. Os elementos utilizados foram:

a) Motor (engine) - E;

- b) Duas fronteiras de sistema (system boundary) SB;
- c) Filtro de ar (*air cleaner*) CL;
- d) Válvula borboleta (throttle) TH;
- e) Dois pontos de medição (measure point) MP;
- f) Plenum PL;
- g) Quatro injetores (injector) I;
- h) Oito restrições (restriction) R;
- i) Quatro cilindros (*cylinder*) C;
- j) Duas junções (junction) J;
- k) Catalisador (*catalyst*) CAT;
- l) Vinte e seis tubulações  $(pipe) 1 \sim 26$ ;



Figura 15 - Diagrama de blocos utilizado como modelo

Fonte: Dados da pesquisa

Para todas as simulações realizadas, as condições foram divididas em *Cases* e *Case Sets*, sendo que o *Case Set* 1 foi correspondente aos parâmetros da condição de Carga A, o *Case Set* 2 foi correspondente aos parâmetros da condição de Carga B e o *Case Set* 3 foi correspondente aos parâmetros da condição de Carga C. As informações referentes aos *Parameters*, *Case Sets* e informações específicas de cada um dos elementos estão nos Apêndices A, B e C. A Figura 16 mostra um fluxograma que representa a configuração do modelo para as simulações de validação.



Figura 16 - Fluxograma para configuração do modelo de validação

Fonte: Elaborado pelo autor

Como representado na Figura 16, o primeiro passo foi a disposição dos elementos que representam os componentes do motor, tais como válvula borboleta, cilindro, injetores e etc. Com os elementos dispostos e conectados por tubulações, os dados do motor e dos testes foram inseridos nos elementos específicos. Alguns exemplos desses dados são o diâmetro e comprimento das tubulações, razão ar-combustível, condições do ar aspirado, diagrama de válvulas e características geométricas do motor. Posteriormente, simulações foram realizadas e seus resultados comparados com os dados de teste em dinamômetro. Os parâmetros comparados para a validação foram a eficiência volumétrica, do consumo de combustível, do torque e da previsão da ocorrência de detonação. O ajuste da eficiência volumétrica foi feito através da alteração do ângulo de abertura da válvula borboleta (*throttle*), enquanto o ajuste do torque foi feito através da alteração dos parâmetros da função Vibe duas zonas – descrita na seção 4.1.1.4 – sendo que as condições simuladas não devem apresentar detonação de acordo com o *Knock Model* (seção 4.1.1.4.1).

Uma vez validados os dados das simulações que representam o teste em bancada, os dados referentes à função Vibe não foram alterados para os modelos seguintes nas condições de carga e frequência de giro correspondentes.

## 4.2.2 Modelos EIVC

Com um modelo validado, foram feitas alterações para representar o uso do Ciclo Miller para o controle da massa aspirada pelo motor. Portanto, essas alterações foram feitas para as condições de Carga B e Carga C. As alterações foram abertura da válvula borboleta (*throttle*), pressão de inicialização no *plenum* e diagrama da válvula de admissão. A válvula borboleta (*throttle*) foi configurada com abertura máxima (*wide open throttle* – WOT). Dessa forma, a representação do *throttle* é similar às condições de plena carga. A pressão de inicialização no *plenum* foi alterada de modo que a diferença entre a pressão ambiente e a pressão de inicialização no *plenum* seja similar à diferença correspondente da condição de carga A. As mudanças dos diagramas da válvula de admissão foram feitas com base no modo de operação EIVC do sistema MultiAir® (seção 2.6.1). Dessa forma, o controle da massa aspirada pelo motor se fez através do fechamento antecipado da válvula de admissão. Os dados alterados, assim como os diagramas da válvula de admissão, estão no Apêndice B e C. A Figura 17 mostra um fluxograma representando a configuração do modelo para a aplicação do Ciclo Miller.



Figura 17 - Fluxograma de configuração do modelo para aplicação do Ciclo Miller

#### Fonte: Elaborado pelo autor

O diagrama da válvula de admissão utilizado foi o que mais se aproximou do valor de eficiência volumétrica do modelo de validação para as condições correspondentes de carga e frequência de giro. Portanto, foram simulados diagramas específicos da válvula de admissão para cada condição de carga, frequência de giro e combustível. Dessa forma, foi possível comparar os resultados da representação de ambos os controles de carga – válvula borboleta (modelos de validação) e válvula de admissão (modelos EIVC) – com valores de eficiência

volumétrica similares. Os resultados das simulações que foram comparados são eficiência volumétrica, consumo de combustível, torque, consumo específico de combustível, *Octane Number* e pressão média de bombeamento (PMB) – calculada através do gráfico PxV.

# 4.2.3 Modelos Ciclo Miller

A razão volumétrica de compressão adequada para o uso do etanol foi a razão volumétrica de compressão mais alta utilizada no modelo de validação para o uso de etanol na condição de plena carga (Carga A) que não apresentou a ocorrência de detonação em nenhuma das rotações simuladas utilizando o diagrama de válvulas original do modelo. Além de alterações similares às citadas na seção anterior, o parâmetro correspondente à área do cabeçote na câmara de combustão foi alterado decorrente da mudança da razão volumétrica de compressão. Uma vez determinada a razão volumétrica de compressão adequada para o uso do etanol com o valor de 14,5:1, essa razão volumétrica de compressão foi utilizada nos modelos que representam as demais condições e carga e frequência de giro, incluindo para o uso da gasolina. Em conjunto com essa razão volumétrica de compressão de 14,5:1, foi utilizado o Ciclo Miller para controle da massa aspirada pelo motor e para contenção da detonação, visando atingir a mesma eficiência volumétrica das simulações correspondentes do modelo de validação com razão volumétrica de compressão de 10,5:1. Nas condições simuladas em que o Knock Model apresentou a ocorrência de detonação, a medida para conter a detonação foi alterar o diagrama da válvula de admissão, antecipando o fechamento da válvula de admissão de forma a reduzir a razão volumétrica de compressão efetiva. Além da alteração do parâmetro correspondente à área do cabeçote na câmara de combustão, outras modificações foram as mesmas citadas na seção 4.2.2. A Figura 18 mostra um fluxograma que representa a configuração dos modelos Ciclo Miller - em que a razão volumétrica de compressão de 14,5:1 foi combinada com o Ciclo Miller para controle de massa aspirada pelo motor e contenção da detonação.



Figura 18 - Fluxograma para configuração do modelo com Rc otimizada e Ciclo Miller

Fonte: Elaborado pelo autor

Os resultados das simulações que foram comparados com os resultados das simulações de validação correspondente são eficiência volumétrica, consumo de combustível, torque, consumo específico de combustível, *Octane Number* e pressão média de bombeamento (PMB) – calculada através do gráfico PxV. Os parâmetros inseridos nos elementos do modelo, assim como os diagramas da válvula de admissão, estão no Apêndice A, B e C.

### **5 RESULTADOS E DISCUSSÃO**

Os resultados apresentados nesta seção são provenientes das simulações que representam o funcionamento do motor 1.6L 16v Flex. Para melhor compreensão dos resultados, esta seção é divida de acordo com as etapas da simulações e os combustíveis simulados serão analisados separadamente. Os valores dos parâmetros das simulações, assim como do ensaio experimental, estão no Apêndice D.

### 5.1 Simulações do modelo de validação etanol

Nesta seção, são discutidos os resultados referentes aos modelos de validação das simulações utilizando etanol nas três condições de carga, conforme apresentado na seção 4.2.1. O Gráfico 1 mostra os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c) e *octane number* (d) das simulações do modelo de validação utilizando etanol para as três cargas simuladas, assim como os resultados correspondentes do teste em bancada utilizado como referência. Posteriormente, a Tabela 1 mostra a diferença percentual entre os resultados de simulação e o teste em bancada, sendo que diferenças positivas significam que o resultado da simulação foi maior do que o correspondente resultado do teste em bancada, enquanto diferenças negativas significam que o resultado da simulação foi menor que o correspondente resultado do teste em bancada.

Observando o Gráfico 1, é fácil observar que os resultados das simulações seguiram a mesma tendência dos resultados do teste em bancada para os três parâmetros de desempenho comparados nas três condições de carga simuladas. De acordo com a Tabela 1, a maior diferença percentual entre os resultados de simulação e teste em bancada foi de 4,0%, referente ao torque na frequência de giro de 2500 rpm e Carga A. Os resultados de *octane number* mostram que as simulações não propiciaram condições para a ocorrência de detonação, uma vez que os valores de *octane number* foram menores que o IAD do etanol. Além disso, a grande diferença entre o IAD do etanol e os valores de *octane number* indica que há margem para aumentar a razão volumétrica de compressão sem criar condições de detonação para o uso de etanol.



Gráfico 1 - Resultados Modelo de Validação Etanol

Fonte: Dados da pesquisa

| 3     |                        |         |         |         |                        |         |         |         |         |  |
|-------|------------------------|---------|---------|---------|------------------------|---------|---------|---------|---------|--|
| Rot.  | Eficiência Volumétrica |         |         | Consun  | Consumo de Combustível |         |         | Torque  |         |  |
| [rpm] | Carga A                | Carga B | Carga C | Carga A | Carga B                | Carga C | Carga A | Carga B | Carga C |  |
| 2000  | 3,8%                   | 0,2%    | 1,8%    | 3,9%    | 2,7%                   | 3,8%    | 2,1%    | -0,6%   | -1,0%   |  |
| 2500  | 1,6%                   | -1,0%   | 1,3%    | 1,3%    | 3,3%                   | 2,2%    | 4,0%    | 3,7%    | 0,2%    |  |
| 3000  | -2,0%                  | 1,0%    | 0,9%    | 0,4%    | 2,1%                   | -0,2%   | 3,6%    | 3,8%    | -2,2%   |  |
| 3500  | 1,8%                   | 1,9%    | 3,2%    | 3,1%    | 0,0%                   | 1,5%    | 3,2%    | 0,7%    | -1,3%   |  |
| 4000  | -1,5%                  | 0,3%    | -0,4%   | 3,7%    | 2,0%                   | 0,4%    | 2,2%    | 2,7%    | -1,0%   |  |
| 4500  | -0,8%                  | 0,9%    | 0,7%    | 2,3%    | 2,0%                   | -0,3%   | 1,9%    | 2,5%    | -1,7%   |  |
| 5000  | -1,1%                  | 0,9%    | 2,3%    | 0,3%    | 1,6%                   | 0,9%    | 3,1%    | 2,2%    | -1,1%   |  |
| 5500  | -1,7%                  | 2,3%    | 2,4%    | -2,5%   | 0,5%                   | -2,4%   | 1,0%    | 2,9%    | -2,1%   |  |
| 6000  | -3,7%                  | -0,8%   | 1,4%    | -2,0%   | -0,4%                  | -0,7%   | 3,4%    | 3,7%    | 2,5%    |  |

Tabela 1 - Diferenças percentuais - Modelo de Validação Etanol

## MODELO DE VALIDAÇÃO ETANOL

Fonte: Dados da pesquisa

## 5.2 Simulações do modelo de validação gasolina

Similar à seção anterior, essa seção apresenta os resultados referentes aos modelos de validação das simulações utilizando gasolina nas três condições de carga, conforme apresentado na seção 4.2.1. O Gráfico 2 mostra os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c) e *octane number* (d) das simulações de validação utilizando gasolina para as três cargas simuladas, assim como os resultados correspondentes do teste em bancada utilizado como referência. Posteriormente, a Tabela 2 mostra a diferença percentual entre os resultados de simulação e o de teste em bancada.



Gráfico 2 - Resultados Modelo de Validação Gasolina

Fonte: Dados da pesquisa

Analisando o Gráfico 2, observa-se que os resultados das simulações seguiram tendência similar dos resultados do teste em bancada nas três condições de carga utilizando gasolina. Entretanto, a diferença percentual entre os resultados das simulações e os resultados do teste em bancada atingiram valores mais altos do que as diferenças das simulações usando etanol. As maiores diferenças percentuais foram do parâmetro de torque na condição de Carga C – que apresentou diferenças percentuais de até 13,2% (5000 rpm), como mostrado na Tabela 2. Vale ressaltar, também, que a maior diferença percentual para a condição de carga A foi de 7,6% (eficiência volumétrica, 6000 rpm) enquanto a maior diferença percentual para a condição de Carga B foi de 3,7% (eficiência volumétrica, 3000 rpm), endossando que apenas as simulações na condição de Carga C atingiram diferenças maiores que 10%. Por fim, analisando os resultados de *octane number*, percebe-se a não ocorrência de detonação, uma vez que os valores de *octane number* foram menores que o IAD da gasolina. Entretanto, devido à pequena diferença entre o *octane number* e o IAD da gasolina, é possível inferir que

qualquer aumento da razão volumétrica de compressão pode causar detonação, em especial entre as rotações de 2000 e 4000 rpm na condição de Carga A.

|       | -                      |         |                        | -       |         |         | -       |         |         |
|-------|------------------------|---------|------------------------|---------|---------|---------|---------|---------|---------|
| Rot.  | Eficiência Volumétrica |         | Consumo de Combustível |         |         | Torque  |         |         |         |
| [rpm] | Carga A                | Carga B | Carga C                | Carga A | Carga B | Carga C | Carga A | Carga B | Carga C |
| 2000  | -2,0%                  | -1,3%   | 0,3%                   | 2,2%    | 1,4%    | 2,8%    | -2,3%   | -0,7%   | -9,4%   |
| 2500  | -6,0%                  | -2,7%   | -1,1%                  | -2,2%   | 2,5%    | 3,0%    | -0,8%   | -2,0%   | -9,8%   |
| 3000  | -5,8%                  | -3,7%   | -3,7%                  | -1,5%   | 3,6%    | 3,4%    | -3,6%   | -0,9%   | -10,3%  |
| 3500  | -1,3%                  | -2,3%   | -3,4%                  | 2,8%    | 2,1%    | 3,6%    | 0,6%    | -2,8%   | -10,4%  |
| 4000  | -3,2%                  | -2,4%   | -3,0%                  | 0,8%    | 2,4%    | 3,3%    | 0,4%    | -0,3%   | -9,5%   |
| 4500  | -5,3%                  | -2,5%   | -3,4%                  | -1,2%   | 2,4%    | 3,4%    | -1,6%   | 1,2%    | -11,8%  |
| 5000  | -6,2%                  | -2,3%   | -1,9%                  | -2,4%   | 2,0%    | 2,7%    | -5,0%   | 1,0%    | -13,2%  |
| 5500  | -6,8%                  | -1,8%   | -0,4%                  | -2,7%   | 1,4%    | 2,6%    | -4,1%   | 0,9%    | -11,6%  |
| 6000  | -7,6%                  | -2,9%   | -1,3%                  | -3,8%   | 1,3%    | 2,8%    | -4,4%   | 3,5%    | -0,4%   |

Tabela 2 - Diferenças percentuais - Modelo de Validação Gasolina

MODELO DE VALIDAÇÃO GASOLINA

Fonte: Dados da pesquisa

### 5.3 Simulações do modelo EIVC etanol

Nesta seção, os resultados de dois diferentes métodos para controle da massa aspirada pelo motor são apresentados e discutidos. A metodologia foi abordada na seção 4.2.2 assim como as modificações em relação ao modelo de validação. Os métodos de controle de carga do motor consistem no método convencional representado pelos modelos de simulação validados discutidos na seção anterior, enquanto o controle através do fechamento antecipado da válvula de admissão (EIVC) é representado pelos modelos EIVC.

O Gráfico 3 mostra o diagrama original da válvula de admissão, utilizado no modelo de validação, assim como o diagrama da válvula de admissão com fechamento antecipado (a). Em paralelo aos diagramas da válvula de admissão, está representada a pressão no cilindro durante o processo de admissão (a). Além disso, o diagrama PxV de um ciclo completo (b), assim como o detalhamento da seção de bombeamento (c), estão representados. As

informações representadas no Gráfico 3 são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga C utilizando etanol. Os dados referentes ao modelo de validação estão representados por linhas azuis tracejadas, enquanto que os dados referentes ao modelo EIVC estão representados pela linha vermelha contínua.



Gráfico 3 - Modelo EIVC - Etanol 4000 rpm Carga C



Como mostrado nos Gráfico 3 (a) e (c), o modelo EIVC apresentou maior pressão no cilindro durante a admissão, como indicado pelas setas laranja. Essa pressão mais elevada foi consequência da posição da válvula borboleta em WOT que não causou queda de pressão na admissão. Por outro lado, a posição da válvula borboleta no modelo de validação provocou queda de pressão na admissão, reduzindo a pressão do ar durante a admissão. Como consequência do movimento para baixo do pistão com as válvulas fechadas, o modelo EIVC apresentou menor pressão no cilindro no PMI, como destacado pelo retângulo verde no Gráfico 3 (a), levando a menores pressões durante o tempo de compressão, como indicado pelas setas roxa nos Gráfico 3 (a) e (c). Entretanto, o pico de pressão no cilindro de ambos os modelos foram similares, como pode ser observado no Gráfico 3 (b). Por fim, o Gráfico 3 (c)

apresenta a seção de bombeamento do ciclo do motor de ambos os modelos de controle de massa aspirada pelo motor. Em razão da posição da borboleta em WOT combinado com o fechamento antecipado da válvula de admissão, o modelo EIVC apresentou menor área correspondente ao bombeamento no ciclo do motor. Como pode ser observado no Gráfico 3 (c) o fechamento antecipado da válvula de admissão (seta verde) do modelo EIVC foi fundamental para a redução da área correspondente ao bombeamento no ciclo motor. Simulações utilizando etanol em outras frequências de giro do motor, assim como simulações referentes à Carga B, apresentaram características similares aos dados representados no Gráfico 3.

O Gráfico 4 mostra os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c), e CEC (d) e PMB (e) das simulações do modelo de validação e do modelo EIVC utilizando etanol para as duas cargas parciais (cargas B e C). Posteriormente, a Tabela 3 mostra as diferenças percentuais entre os resultados de simulação do modelo EIVC e do modelo de validação, sendo que diferenças positivas significam que o resultado do modelo EIVC foi maior do que o correspondente resultado do modelo de validação, enquanto que diferenças negativas significam que o resultado da simulação do modelo EIVC foi menor que o correspondente resultado da simulação do modelo EIVC foi menor que o correspondente resultado da simulação do modelo EIVC foi menor que o correspondente resultado da simulação do modelo EIVC foi menor que o correspondente resultado da simulação do modelo EIVC foi menor que o correspondente resultado da simulação do modelo EIVC foi menor que o correspondente resultado do modelo de validação, o ponto de fechamento da válvula de admissão de cada ponto de operação simulado.

Observando o Gráfico 4 (a), percebe-se que os valores de eficiência volumétrica do modelo EIVC foram próximos dos valores do modelo de validação nas duas cargas simuladas, com diferenças dentro da margem de 2,2% de acordo com a Tabela 3. Também é possível observar que não houve diferenças significantes no consumo de combustível, como mostrado no Gráfico 4 (b). Entretanto, o modelo EIVC apresentou diferenças notáveis nos valores de PMB (Gráfico 4 (e)). A configuração da válvula borboleta em WOT em conjunto com fechamento antecipado da válvula de admissão para controle da massa aspirada pelo motor levou à redução dos valores de PMB em até 22,3% e 48,1%, como mostrado na Tabela 3, para as condições de Carga B e C respectivamente, em comparação com os resultados do modelo de validação – que utiliza o método convencional de controle da massa aspirada pelo motor através da posição da válvula borboleta. Tais reduções nos valores de PMB estão diretamente relacionadas à menor área de bombeamento do ciclo do motor representadas no Gráfico 3, o que significa que menos energia é gasta durante o ciclo de bombeamento. Em consequência de menos energia utilizada no bombeamento, o modelo EIVC apresentou melhoras no torque de até 2,9% e 12,1% para as condições de Carga B e C, respectivamente, em comparação com os respectivos resultados do modelo de validação (Gráfico 4 (c)), como mostrado na Tabela 3. Em razão da melhora de torque e sem mudanças significativas no consumo de combustível, o modelo EIVC apresentou reduções no CEC de até 2,5% e 9,4% para as condições de Carga B e C, respectivamente, em comparação com o modelo de validação de acordo com a Tabela 3. Essas reduções de CEC estão relacionadas à melhora da eficiência do ciclo propiciada pela aplicação do Ciclo Miller.



Gráfico 4 - Resultados Modelo EIVC - Etanol

Fonte: Dados da pesquisa

|       | 1                |         |         |         |             |         |
|-------|------------------|---------|---------|---------|-------------|---------|
| Rot.  | Fech. Válv. Adm. |         | Efic. V | olum.   | Cons. Comb. |         |
| [rpm] | Carga B          | Carga C | Carga B | Carga C | Carga B     | Carga C |
| 2000  | 50 APMI          | 94 APMI | 0,0%    | -0,9%   | -0,1%       | -0,4%   |
| 2500  | 50 APMI          | 88 APMI | 0,5%    | 0,1%    | 0,6%        | -0,5%   |
| 3000  | 54 APMI          | 88 APMI | -0,8%   | -1,6%   | -0,9%       | -1,6%   |
| 3500  | 48 APMI          | 76 APMI | 0,0%    | 2,2%    | 0,0%        | 2,1%    |
| 4000  | 36 APMI          | 68 APMI | 0,1%    | 1,0%    | 0,0%        | 1,2%    |
| 4500  | 26 APMI          | 60 APMI | -0,2%   | 1,0%    | -0,3%       | 0,9%    |
| 5000  | 20 APMI          | 56 APMI | 0,3%    | -2,0%   | 0,3%        | -2,0%   |
| 5500  | 8 APMI           | 52 APMI | -0,3%   | 1,4%    | -0,4%       | 1,2%    |
| 6000  | 14 DPMI          | 36 APMI | 0,2%    | 1,0%    | 0,3%        | 1,2%    |

Tabela 3 - Diferenças percentuais - Modelo EIVC - Etanol

**MODELO EIVC – ETANOL** 

| Rot.  | Torque  |         | Cl      | EC      | PMB     |         |
|-------|---------|---------|---------|---------|---------|---------|
| [rpm] | Carga B | Carga C | Carga B | Carga C | Carga B | Carga C |
| 2000  | 1,8%    | 7,1%    | -1,9%   | -7,0%   | -22,3%  | -48,1%  |
| 2500  | 2,6%    | 7,2%    | -2,0%   | -7,2%   | -22,0%  | -45,3%  |
| 3000  | 0,2%    | 4,3%    | -1,1%   | -5,7%   | -13,6%  | -39,8%  |
| 3500  | 2,3%    | 12,1%   | -2,3%   | -9,0%   | -19,7%  | -43,8%  |
| 4000  | 2,6%    | 11,1%   | -2,5%   | -9,0%   | -20,7%  | -43,9%  |
| 4500  | 1,9%    | 9,7%    | -2,1%   | -8,1%   | -17,5%  | -35,7%  |
| 5000  | 2,9%    | 6,4%    | -2,5%   | -7,9%   | -18,2%  | -43,7%  |
| 5500  | 0,8%    | 11,7%   | -1,2%   | -9,4%   | -8,0%   | -37,6%  |
| 6000  | 0,5%    | 5,9%    | -0,2%   | -4,4%   | -1,3%   | -16,7%  |

Fonte: Dados da pesquisa

## 5.4 Simulações do modelo EIVC gasolina

De modo análogo à seção anterior, o Gráfico 5 mostra informações referentes a ambos os modelos, sendo que os dados referentes ao modelo de validação são representados por linhas azuis tracejadas, enquanto que os dados referentes ao modelo EIVC estão representados pela linha contínua vermelha. Os dados são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga C utilizando gasolina. No Gráfico 5 (a), estão representados o diagrama original da válvula de admissão, utilizado no modelo de validação, assim como o diagrama da válvula de admissão com fechamento antecipado. Em paralelo, a pressão no cilindro durante o processo de admissão de ambos os modelos também estão representadas no Gráfico 5 (a). Além disso, o diagrama PxV de um ciclo completo (b), assim como o detalhamento da seção de bombeamento (c), estão representados.







Observando o Gráfico 5, é possível observar que o modelo EIVC apresentou, para o uso da gasolina, características similares àquelas observadas para o uso do etanol – discutidas
na seção anterior. Em consequência da configuração da válvula borboleta em WOT, o modelo EIVC apresentou maior pressão no cilindro durante a admissão – indicada pelas setas laranja nos Gráfico 5 (a) e (c). O fechamento antecipado da válvula de admissão no modelo EIVC levou a menor pressão no PMI (retângulo verde no Gráfico 5 (a)) e, consequentemente, a pressão durante o tempo de compressão também foi menor, em comparação com o modelo de validação, como indicado pelas setas roxa nos Gráfico 5 (a) e (c). Entretanto, como pode ser observado no Gráfico 5 (b), o pico de pressão de ambos os modelos não apresentaram diferenças significativas. Por fim, o modelo EIVC – que combina o fechamento antecipado da válvula de admissão com o posicionamento da válvula borboleta em WOT – levou à redução da área correspondente ao ciclo de bombeamento no ciclo do motor (Gráfico 5 (c)). O fechamento antecipado da válvula de admissão, indicado pela seta verde no Gráfico 5 (c), se mostrou fundamental para a redução da área correspondente ao ciclo de bombeamento. Simulações utilizando gasolina em outras rotações, assim como simulações referentes à Carga B, apresentaram características similares aos dados representados no Gráfico 5.

Os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c), e CEC (d) e PMB (e) das simulações de ambos os modelos (validação e EIVC) utilizando gasolina para as duas cargas parciais (cargas B e C) estão representados no Gráfico 6. Posteriormente, as diferenças percentuais entre os resultados de simulação do modelo EIVC e do modelo de validação estão indicadas na Tabela 4, assim como o ponto de fechamento da válvula de admissão de cada ponto de operação simulado.

Observando o Gráfico 6 (a), percebe-se que a proximidade dos valores de eficiência volumétrica de ambos os modelos, com diferenças abaixo de 2,1% – como mostrado na Tabela 4. Os resultados de consumo de combustível de ambos os modelos também foram próximos, como mostrado no Gráfico 6 (b), com diferenças dentro da margem de 2,1%, de acordo com a Tabela 4. Assim como no uso de etanol, o modelo EIVC também apresentou diferenças notáveis nos valores de PMB para o uso de gasolina (Gráfico 6 (e)), com reduções de até 19,8% e 46,9% – como mostra a Tabela 4 – para as condições de Carga B e C respectivamente, em comparação com os resultados do modelo de validação. Mais uma vez, essas reduções nos valores de PMB estão diretamente relacionadas à menor área de bombeamento do ciclo do motor representada no Gráfico 5, que significa menor quantidade de energia utilizada para o ciclo de bombeamento. Uma vez que menos energia foi utilizada para o bombeamento, os valores de torque do modelo EIVC foram até 3,3% e 14,5 maiores que os correspondentes valores de torque do modelo de validação nas condições de Carga B e C, respectivamente, como mostrado no Gráfico 6 (c) e na Tabela 4. Em razão da melhora de

torque e sem mudanças significativas no consumo de combustível, o modelo EIVC apresentou reduções no CEC de até 2,5% e 11,1% para as condições de Carga B e C, respectivamente, em comparação com o modelo de validação – como mostra a Tabela 4. Novamente, as reduções de CEC estão relacionadas à melhora do ciclo do motor em consequência da aplicação do Ciclo Miller.



Fonte: Dados da pesquisa

| Dot   | Fech. Vá | lv. Adm. | Efic. V | olum.   | Cons.   | Comb.   |
|-------|----------|----------|---------|---------|---------|---------|
| KUL.  |          |          |         |         |         |         |
| [rpm] | Carga B  | Carga C  | Carga B | Carga C | Carga B | Carga C |
| 2000  | 36 APMI  | 90 APMI  | 0,4%    | 1,3%    | 0,7%    | 2,1%    |
| 2500  | 38 APMI  | 86 APMI  | 0,1%    | 0,8%    | 0,0%    | 0,7%    |
| 3000  | 50 APMI  | 86 APMI  | -0,4%   | 0,9%    | 0,0%    | 0,1%    |
| 3500  | 42 APMI  | 76 APMI  | 0,1%    | 2,0%    | 0,2%    | 1,0%    |
| 4000  | 34 APMI  | 70 APMI  | -0,4%   | -0,4%   | -0,5%   | -0,2%   |
| 4500  | 24 APMI  | 64 APMI  | 0,1%    | 2,1%    | 0,1%    | 1,8%    |
| 5000  | 18 APMI  | 58 APMI  | 0,8%    | -0,6%   | 0,7%    | -0,8%   |
| 5500  | 14 APMI  | 58 APMI  | -0,1%   | -1,9%   | -0,4%   | -1,5%   |
| 6000  | 14 DPMI  | 30 APMI  | 0,4%    | 0,3%    | 0,4%    | 0,0%    |

Tabela 4 - Diferenças percentuais - Modelo EIVC - Gasolina

**MODELO EIVC - GASOLINA** 

| Rot.  | Tor     | que     | CI      | EC      | РМВ     |         |
|-------|---------|---------|---------|---------|---------|---------|
| [rpm] | Carga B | Carga C | Carga B | Carga C | Carga B | Carga C |
| 2000  | 1,8%    | 11,3%   | -1,1%   | -8,3%   | -12,6%  | -46,9%  |
| 2500  | 1,6%    | 9,5%    | -1,6%   | -8,1%   | -17,6%  | -45,1%  |
| 3000  | 0,8%    | 8,3%    | -0,8%   | -7,6%   | -10,5%  | -38,8%  |
| 3500  | 1,9%    | 12,5%   | -1,7%   | -10,3%  | -15,3%  | -44,0%  |
| 4000  | 1,8%    | 10,9%   | -2,3%   | -9,9%   | -19,8%  | -45,6%  |
| 4500  | 2,2%    | 14,5%   | -2,1%   | -11,1%  | -16,7%  | -37,6%  |
| 5000  | 3,3%    | 11,0%   | -2,5%   | -10,6%  | -17,1%  | -44,9%  |
| 5500  | 1,5%    | 9,4%    | -1,9%   | -10,0%  | -11,1%  | -42,7%  |
| 6000  | 0,6%    | 3,3%    | -0,2%   | -3,1%   | -1,0%   | -13,6%  |

Fonte: Dados da pesquisa

Os resultados referentes à dois modelos que representam métodos diferentes para controle de carga do motor foram apresentados e discutidos nas seções 5.3 e 5.4. Em resumo,

os resultados mostram que, comparando o modelo de validação e o modelo EIVC com a mesma razão de compressão, o modelo EIVC apresentou características similares tanto para o uso do etanol quanto para gasolina. A configuração da válvula borboleta na posição WOT fez com que a pressão durante a admissão do modelo EIVC fosse maior do que a pressão do modelo de validação. O fechamento antecipado da válvula de admissão fez com que a pressão no cilindro no PMI do modelo EIVC fosse menor do que a do modelo de validação, fazendo com que o modelo EIVC apresentasse menores pressões no cilindro durante o tempo de compressão. Outra característica do modelo EIVC foi a redução da área correspondente ao ciclo de bombeamento no ciclo do motor propiciado pela menor perda de pressão na admissão (em razão da configuração da válvula borboleta em WOT) e ao fechamento antecipado da válvula de admissão. Em relação aos parâmetros de desempenho, os valores de eficiência volumétrica do modelo EIVC apresentaram diferenças de até 2,2% em relação aos correspondentes valores de eficiência volumétrica do modelo de validação. O consumo de combustível apresentou comportamento semelhante, com diferenças de até 2,1%. O parâmetro PMB, que representa a área referente ao ciclo de bombeamento do ciclo do motor, apresentou reduções de até 22,3% e 48,1% nas condições de Carga B e C, respectivamente. O modelo EIVC apresentou ganhos de torque de até 3,3% e 14,5% nas condições de Carga B e C. Por fim, em consequência dos ganhos de torque sem alteração significativa no consumo de combustível, o modelo EIVC apresentou reduções no CEC de até 2,5% e 11,1% nas condições de Carga B e C em relação aos correspondentes valores de CEC do modelo de validação.

## 5.5 Determinação da razão volumétrica de compressão adequada para o etanol

Utilizando o modelo de validação para condição de Carga A usando etanol, a razão volumétrica de compressão foi aumentada sem alterar o diagrama da válvula de admissão até valores em que os resultados do *octane number* representassem a ocorrência de detonação em qualquer frequência de giro simulada. O Gráfico 7 e a Tabela 5 mostram os valores do *octane number* para razões de compressão de 14,5:1 e 15,0:1 em comparação com o IAD do etanol.



Gráfico 7 - Octane Number - Determinação da Rc adequada para o etanol

Fonte: Dados da pesquisa

Tabela 5 - Octane Number - Determinação da Rc adequada para o etanol

|            | ,          |         | •      |
|------------|------------|---------|--------|
| Rot. [rpm] | IAD Etanol | Rc 14,5 | Rc 15  |
| 2000       | 109,00     | 105,01  | 107,51 |
| 2500       | 109,00     | 106,64  | 109,34 |
| 3000       | 109,00     | 105,79  | 108,56 |
| 3500       | 109,00     | 105,97  | 108,62 |
| 4000       | 109,00     | 106,69  | 109,42 |
| 4500       | 109,00     | 106,24  | 108,98 |
| 5000       | 109,00     | 106,34  | 109,04 |
| 5500       | 109,00     | 105,33  | 108,03 |
| 6000       | 109,00     | 100,14  | 102,79 |

Octane Number – Determinação da Rc otimizada para o etanol

Fonte: Dados da pesquisa

Analisando o Gráfico 7 e a Tabela 5, percebe-se que o modelo utilizando razão volumétrica de compressão de 15,0:1 representou a ocorrência de detonação nas rotações de 2500, 4000 e 5000 rpm, pois o valor de *octane number* calculado pelo *knock model* foi maior do que o IAD do etanol. Uma vez que os parâmetros da função Vibe dos modelos de validação deveriam ser mantidos, a razão volumétrica de compressão adequada para o etanol foi determinada em 14,5:1 pois, para essa razão volumétrica de compressão, os resultados de

*octane number* não representaram a ocorrência de detonação em nenhuma das rotações simuladas para o uso de etanol na condição Carga A.

#### 5.6 Simulações do modelo Ciclo Miller etanol

Uma vez determinada a razão volumétrica de compressão adequada para o etanol de 14,5:1, esse valor foi utilizado em todos os modelos de simulação subsequentes, incluindo os modelos que utilizam gasolina. Nesta seção, são analisados os resultados dos modelos que utilizam a razão volumétrica de compressão de 14,5:1 combinada ao uso do Ciclo Miller – através de EIVC – para controle da massa aspirada pelo motor e contenção da detonação. Os resultados desses modelos foram comparados com os resultados correspondentes dos modelos de validação. As modificações feitas nesses modelos estão citadas na seção 4.2.3.

O Gráfico 8 mostra os diagramas da válvula de admissão utilizados no modelo de validação e no modelo Ciclo Miller em paralelo às representações da pressão no cilindro durante o processo de admissão de ambos os modelos (a). Além disso, o diagrama PxV de um ciclo completo (b), assim como o detalhamento da seção de bombeamento (c), de ambos os modelos estão representados. As informações representadas no Gráfico 8 são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga A utilizando etanol. Os dados referentes ao modelo de validação estão representados por linhas azuis tracejadas, enquanto que os dados referentes ao modelo Ciclo Miller estão representados pela linha vermelha contínua.

Uma vez que o modelo na condição de Carga A foi utilizado para determinar a razão volumétrica de compressão adequada para o etanol, o diagrama da válvula de admissão não foi alterado. Portanto, ambos os modelos utilizaram o mesmo diagrama da válvula de admissão na condição de Carga A. Dessa forma, a pressão no cilindro durante a admissão de ambos os modelos foram similares, como indicado pelas setas laranja nos Gráfico 8 (a) e (c). Consequentemente, não houve diferenças significativas na pressão no cilindro no PMI (retângulo verde no Gráfico 8 (a)) assim como durante o tempo de compressão (setas roxa nos Gráfico 8 (a) e (c)). Entretanto, como consequência do aumento da razão volumétrica de compressão, o pico de pressão do modelo Ciclo Miller foi significativamente mais alto em comparação com o modelo de validação, conforme mostrado no Gráfico 8 (b). Outra consequência do aumento da razão volumétrica de compressão, o modelo Ciclo Miller foi ser observada no Gráfico 8 (c) indicada pela seta verde. Entre os tempos de escape e admissão, o modelo Ciclo Miller apresentou valores de pressão no cilindro ligeiramente maiores que os valores do modelo de

validação. Essa mudança aumentou sensivelmente a área correspondente ao ciclo de bombeamento do ciclo do motor.



Gráfico 8 - Modelo Ciclo Miller - Etanol 4000 rpm Carga A

Fonte: Dados da pesquisa

O Gráfico 9, de maneira análoga ao Gráfico 8, mostra o diagrama da válvula de admissão em paralelo à pressão no cilindro durante a admissão (a), assim como o diagrama PxV de um ciclo completo (b) e o detalhamento da seção correspondente ao ciclo de bombeamento (c) de ambos os modelos de validação e Ciclo Miller. Entretanto, as informações representadas no Gráfico 9 são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga C utilizando etanol.



Gráfico 9 - Modelo Ciclo Miller - Etanol 4000 rpm Carga C

Fonte: Dados da pesquisa

Analisando o Gráfico 9, é possível observar que o modelo Ciclo Miller apresentou maior pressão no cilindro durante a admissão (setas laranja nos Gráfico 9 (a) e (c)), consequência do ajuste da válvula borboleta em WOT. É possível observar que o fechamento antecipado da válvula de admissão no modelo Ciclo Miller levou a menores valores de pressão no cilindro no PMI, indicado pelo retângulo verde no Gráfico 9 (a). Consequentemente, a pressão no cilindro durante o tempo de compressão foi menor para o modelo Ciclo Miller, indicado pelas setas roxa nos Gráfico 9 (a) e (c). Entretanto, o pico de pressão do modelo Ciclo Miller foi significativamente maior que o apresentado pelo modelo de validação (Gráfico 9 (b)). Esse maior pico de pressão está diretamente ligado ao aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1. Por fim, é possível observar que o modelo Ciclo Miller apresentou menor área referente ao ciclo de bombeamento (Gráfico 9 (c)). O fechamento antecipado da válvula de admissão, indicado pela seta verde no Gráfico 9 (c), foi essencial para redução da área correspondente ao bombeamento do ciclo do motor. As

simulações utilizando etanol na condição de Carga B apresentaram características similares aos dados representados no Gráfico 9.

Os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c), *octane number* (d), CEC (e) e PMB (f) das simulações do modelo de validação e do modelo Ciclo Miller estão representados no Gráfico 10. Posteriormente, a Tabela 6 mostra as diferenças percentuais entre os resultados de simulação do modelo Ciclo Miller e do modelo de validação, sendo que diferenças positivas significam que o modelo Ciclo Miller apresentou resultados maiores do que o correspondente resultado do modelo de validação, enquanto que diferenças negativas significam que o resultado da simulação do modelo Ciclo Miller foi menor que o correspondente resultado do modelo de validação, a também, o ponto de fechamento da válvula de admissão de cada ponto de operação simulado.



Gráfico 10 - Resultados Modelo Ciclo Miller - Etanol

Fonte: Dados da pesquisa

| Rot.  | Fechame  | ento Válv. A | Admissão | Eficiê  | ncia Volun | nétrica | Consun  | no de Com | bustível |
|-------|----------|--------------|----------|---------|------------|---------|---------|-----------|----------|
| [rpm] | Carga A  | Carga B      | Carga C  | Carga A | Carga B    | Carga C | Carga A | Carga B   | Carga C  |
| 2000  | Original | 52 APMI      | 94 APMI  | 0,5%    | 0,3%       | 1,9%    | 0,5%    | 0,1%      | 2,1%     |
| 2500  | Original | 52 APMI      | 90 APMI  | 1,6%    | -0,2%      | -0,3%   | 1,6%    | -0,1%     | -0,4%    |
| 3000  | Original | 54 APMI      | 90 APMI  | 1,6%    | 1,3%       | -1,0%   | 1,7%    | 1,1%      | -1,3%    |
| 3500  | Original | 50 APMI      | 80 APMI  | 0,2%    | -0,1%      | -1,8%   | 0,2%    | -0,3%     | -2,0%    |
| 4000  | Original | 38 APMI      | 72 APMI  | 0,0%    | 0,4%       | -1,6%   | -0,1%   | 0,4%      | -1,5%    |
| 4500  | Original | 30 APMI      | 64 APMI  | 0,8%    | -1,0%      | -0,2%   | 0,7%    | -1,0%     | -0,3%    |
| 5000  | Original | 24 APMI      | 58 APMI  | 1,0%    | -0,4%      | 0,2%    | 0,9%    | -0,5%     | 0,1%     |
| 5500  | Original | 12 APMI      | 56 APMI  | 2,3%    | 0,5%       | 0,9%    | 2,3%    | 0,4%      | 0,9%     |
| 6000  | Original | 6 DPMI       | 42 APMI  | 3,4%    | 0,5%       | -0,2%   | 3,5%    | 0,4%      | 0,1%     |

# Tabela 6 - Diferenças percentuais - Modelo Ciclo Miller - Etanol

#### MODELO DE CICLO MILLER COM RC 14,5:1 - ETANOL

| Rot.  |         | Torque  |         |         | CEC     |         |         | PMB     |         |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| [rpm] | Carga A | Carga B | Carga C | Carga A | Carga B | Carga C | Carga A | Carga B | Carga C |
| 2000  | 7,1%    | 9,4%    | 19,6%   | -6,2%   | -8,5%   | -14,7%  | 1,2%    | -21,4%  | -46,9%  |
| 2500  | 8,7%    | 9,4%    | 15,6%   | -6,6%   | -8,6%   | -13,9%  | 1,6%    | -21,8%  | -44,9%  |
| 3000  | 8,0%    | 9,9%    | 14,6%   | -5,9%   | -8,0%   | -13,9%  | 1,5%    | -12,2%  | -39,8%  |
| 3500  | 6,9%    | 9,7%    | 15,7%   | -6,3%   | -9,2%   | -15,4%  | 0,5%    | -19,7%  | -44,7%  |
| 4000  | 5,6%    | 10,9%   | 17,2%   | -5,4%   | -9,4%   | -15,9%  | 0,3%    | -19,8%  | -44,1%  |
| 4500  | 7,0%    | 8,8%    | 19,0%   | -5,9%   | -9,0%   | -16,2%  | 2,3%    | -16,5%  | -35,2%  |
| 5000  | 9,3%    | 11,4%   | 21,2%   | -7,7%   | -10,7%  | -17,4%  | 2,1%    | -17,6%  | -41,2%  |
| 5500  | 11,5%   | 11,1%   | 23,1%   | -8,2%   | -9,6%   | -18,1%  | 2,7%    | -6,7%   | -36,9%  |
| 6000  | 11,6%   | 7,7%    | 14,1%   | -7,3%   | -6,8%   | -12,2%  | 4,5%    | 1,9%    | -16,5%  |

Fonte: Dados da pesquisa

O Gráfico 10 (a) mostra que os valores de eficiência volumétrica do modelo Ciclo Miller seguiram a mesma tendência dos valores do modelo de validação, com diferenças de

115

Tabela 6. O mesmo pode ser observado para o parâmetro de consumo de combustível (Gráfico 10 (b)), com diferenças dentro da margem de 3,5%, 1,1% e 2,1% nas condições de Carga A, B e C, respectivamente, de acordo com a Tabela 6. Analisando os Gráfico 10 (a) e (d), é possível inferir que, para o uso do etanol, o Ciclo Miller - através do fechamento antecipado da válvula de admissão - foi aplicado apenas com a finalidade de controle da carga do motor, uma vez que o diagrama da válvula de admissão não foi alterado (em relação ao modelo de validação – Gráfico 8) na condição de Carga A, sinalizando que não houve necessidade de contenção da detonação. Enquanto que nas condições de Carga B e C, os valores de octane number menores que o IAD do etanol em conjunto com diferenças de até 1,9% nos valores de eficiência volumétrica mostram que o Ciclo Miller foi aplicado com a finalidade de controle da massa aspirada pelo motor. Como mostrado no Gráfico 10 (f) e na Tabela 6, o modelo Ciclo Miller apresentou valores de PMB até 21,8% e 48,9% menores que os valores do modelo de validação nas condições de Carga B e C, respectivamente. Tais reduções no PMB estão diretamente ligadas aos efeitos da aplicação do Ciclo Miller no ciclo de bombeamento, conforme indicado no Gráfico 9. Entretanto, os valores de PMB na condição de Carga A do modelo Ciclo Miller foram até 4,5% mais altos em comparação com os respectivos valores do modelo de validação, como mostra a Tabela 6. Os aumentos do PMB na condição de Carga A estão relacionados à maior pressão entre os tempos de escape e admissão devido ao aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1, conforme indicado no Gráfico 8. O modelo Ciclo Miller apresentou valores de torque maiores que os correspondentes valores do modelo de validação em todas as frequências de giro do motor simuladas das três condições de carga, sendo que as diferenças foram de até 11,6%, 11,4% e 23,1% nas condições de Carga A, B e C, respectivamente, conforme mostra o Gráfico 10 (c) e a Tabela 6. É possível afirmar que a maior razão volumétrica de compressão foi a principal causa para o aumento de torque na condição de Carga A, enquanto que para as condições de Carga B e C, a redução da energia gasta no ciclo de bombeamento (consequência das alterações realizadas para a aplicação do Ciclo Miller) também contribuiu para o aumento do torque. Por fim, o modelo Ciclo Miller apresentou reduções no CEC de até 8,2%, 10,7% e 18,1% nas condições de Carga A, B e C, respectivamente (Gráfico 10 (c) e Tabela 6), em consequência do aumento expressivo do torque sem alteração significativa do consumo de combustível. Essas reduções no CEC endossam a melhora do ciclo do motor devido à aplicação do Ciclo Miller e ao aumento da razão de compressão.

### 5.7 Simulações do modelo Ciclo Miller gasolina

De modo análogo ao modelo Ciclo Miller utilizando etanol, o Gráfico 11 mostra informações referentes a ambos os modelos, sendo que os dados referentes ao modelo de validação são representados por linhas azuis tracejadas, enquanto que os dados referentes ao modelo de Ciclo Miller estão representados pela linha contínua vermelha. Os dados são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga A utilizando gasolina. No Gráfico 11 (a), está representado o diagrama original da válvula de admissão, utilizado no modelo de validação, assim como o diagrama da válvula de admissão com fechamento antecipado – utilizado no modelo Ciclo Miller. Em paralelo, a pressão no cilindro durante o processo de admissão de ambos os modelos também estão representadas no Gráfico 11 (a). Além disso, o diagrama PxV de um ciclo completo (b), assim como o detalhamento da seção de bombeamento (c), estão representados.

Analisando o Gráfico 11, é possível observar que, durante o tempo de admissão, o modelo Ciclo Miller apresentou pressões no cilindro similares às pressões do modelo de validação, como indicado pelas setas laranja nos Gráfico 11 (a) e (c). Entretanto, a válvula de admissão foi fechada antecipadamente (EIVC) no modelo Ciclo Miller, levando a menores pressões no PMI (retângulo verde no Gráfico 11 (a)) e, consequentemente, menores pressões durante o tempo de compressão, indicado pelas setas roxa nos Gráfico 11 (a) e (c). Apesar do aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1, o modelo Ciclo Miller apresentou pico de pressão menor do que o do modelo de validação (Gráfico 11 (b)). A menor razão volumétrica de compressão efetiva em decorrência do fechamento antecipado da válvula de admissão levou à redução do pico de pressão no cilindro. Entretanto, o fechamento antecipado da válvula de admissão reduziu a área correspondente ao ciclo de bombeamento no ciclo do motor, conforme indicado pela seta verde no Gráfico 11 (c).



Gráfico 11 - Modelo Ciclo Miller - Gasolina 4000 rpm Carga A

Fonte: Dados da pesquisa

O Gráfico 12, de maneira análoga ao Gráfico 11, mostra o diagrama da válvula de admissão em paralelo à pressão no cilindro durante a admissão (a), assim como o diagrama PxV de um ciclo completo (b) e o detalhamento da seção correspondente ao ciclo de bombeamento (c) de ambos os modelos de validação e Ciclo Miller. Entretanto, as informações representadas no Gráfico 12 são referentes às simulações na frequência de giro de 4000 rpm na condição de Carga C utilizando gasolina.

Analisando o Gráfico 12, é possível observar que, comparando os dois modelos, o modelo Ciclo Miller apresentou maior pressão no cilindro durante o tempo de admissão, como indicado pelas setas laranja nos Gráfico 12 (a) e (c). As pressões mais altas no cilindro durante a admissão foi consequência do ajuste da válvula borboleta em WOT, que reduziu significativamente a queda de pressão na tubulação, resultando em maiores pressões no coletor de admissão e, consequentemente, no cilindro durante o tempo de admissão. Além disso, o fechamento antecipado da válvula de admissão no modelo de Ciclo Miller proporcionou menor pressão no PMI (retângulo verde no Gráfico 12 (a)) fazendo com que a

pressão durante a compressão também fosse menor que a pressão correspondente do modelo de validação. Entretanto, devido ao aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1, o modelo Ciclo Miller apresentou pico de pressão significativamente maior do que o modelo de validação – conforme indicado pelo Gráfico 12 (b). Por fim, é possível que o fechamento antecipado da válvula de admissão reduziu a área correspondente ao ciclo de bombeamento no ciclo do motor, como indicado pela seta verde no Gráfico 12 (c).



Gráfico 12 - Modelo Ciclo Miller - Gasolina 4000 rpm Carga C

Fonte: Dados da pesquisa

Os resultados de eficiência volumétrica (a), consumo de combustível (b), torque (c), e CEC (d) e PMB (e) das simulações do modelo de validação e do modelo Ciclo Miller estão representados no Gráfico 13. Posteriormente, as diferenças percentuais entre os resultados de simulação do modelo Ciclo Miller e do modelo de validação estão indicadas na Tabela 7, assim como o ponto de fechamento da válvula de admissão de cada ponto de operação simulado.



Gráfico 13 - Resultados Modelo Ciclo Miller - Gasolina

#### Fonte: Dados da pesquisa

O Gráfico 13 (a) mostra que o modelo Ciclo Miller atingiu os valores de eficiência volumétrica do modelo de validação apenas na condição de Carga C. A diferença dos valores de eficiência volumétrica entre os modelos foram de até 30,6%, 21,0% e 1,9% para as condições de Carga A, B e C, respectivamente, como mostra a Tabela 7. Comportamento similar foi observado para o parâmetro de consumo de combustível (Gráfico 13 (b)) uma vez que as diferenças entre os valores de consumo de combustível ficaram dentro da margem de 30,3%, 20,6% e 1,5% para as condições de Carga A, B e C, respectivamente, conforme a Tabela 7. Para aumentar os valores de eficiência volumétrica do modelo Ciclo Miller nas condições de Carga A e B, a válvula de admissão deveria permanecer aberta por mais tempo, fazendo com que o fechamento da válvula de admissão fosse mais próximo ao PMI. Entretanto, fechamento da válvula de admissão mais próximo do PMI aumentaria a razão volumétrica de compressão efetiva que levaria a maiores pressões no cilindro durante a combustão. Como consequência das maiores pressões no cilindro, os valores de *octane* 

number seriam mais altos que os mostrados no Gráfico 13 (d) e que o IAD da gasolina, caracterizando a ocorrência de detonação. Somando essas observações a respeito da eficiência volumétrica ao fato de que os valores de octane number referentes às simulações do modelo Ciclo Miller nas condições de Carga A e B foram ligeiramente menores que o IAD da gasolina (Quadro 1), é possível inferir que o fechamento antecipado da válvula de admissão teve como objetivo a contenção da detonação nas condições de Carga A e B. Entretanto, na condição de Carga C, a aplicação do Ciclo Miller através do fechamento antecipado da válvula de admissão teve a finalidade apenas de controle da massa aspirada pelo motor, uma vez que os valores de eficiência volumétrica do modelo Ciclo Miller ficaram dentro da margem de 1,9% dos valores do modelo de validação e os valores de octane number foram significativamente menores que o IAD da gasolina. Contudo, o fechamento antecipado da válvula de admissão reduziu o PMB em todas as rotações simuladas nas três condições de cargas, como mostra o Gráfico 13 (f). De acordo com a Tabela 7, o modelo Ciclo Miller apresentou reduções nos valores de PMB de até 23,8%, 28,6% e 47,3% nas condições de Carga A, B e C, respectivamente. Porém, as reduções de PMB não foram suficientes a ponto de compensar a perda de massa aspirada nas condições de Carga A e B, como mostra os valores de torque no Gráfico 13 (c) e na Tabela 7. O modelo Ciclo Miller apresentou valores de torque até 30,5% e 18,1% menores que os valores de torque correspondentes do modelo de validação nas condições de Carga A e B, respectivamente. Na condição de Carga C, os valores de torque do modelo Ciclo Miller foram até 28,7% maiores que os valores de torque correspondentes do modelo de validação. Esse aumento dos valores de torque na condição de Carga C estão diretamente relacionados ao aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1 e às reduções das perdas durante o ciclo de bombeamento em razão da aplicação do Ciclo Miller, como observado no Gráfico 12. Por fim, o modelo Ciclo Miller apresentou reduções de até 5,2%, 7,2% e 21,4% nos valores de CEC nas condições de Carga A, B e C, respectivamente, como mostra o Gráfico 13 (e) e a Tabela 7. Apesar de o modelo Ciclo Miller ter apresentado reduções na eficiência volumétrica e torque nas condições de Carga A e B, o modelo apresentou redução no CEC, endossando a melhor eficiência do ciclo devido ao aumento da razão volumétrica de compressão e à aplicação do Ciclo Miller.

| Rot.  | Fechamento Válv. Admissão |         |         | Eficiê  | Eficiência Volumétrica |         |         | Consumo de Combustível |         |  |
|-------|---------------------------|---------|---------|---------|------------------------|---------|---------|------------------------|---------|--|
| [rpm] | Carga A                   | Carga B | Carga C | Carga A | Carga B                | Carga C | Carga A | Carga B                | Carga C |  |
| 2000  | 66 APMI                   | 66 APMI | 92 APMI | -25,3%  | -21,0%                 | -0,6%   | -25,5%  | -20,6%                 | -0,5%   |  |
| 2500  | 66 APMI                   | 66 APMI | 88 APMI | -29,1%  | -17,0%                 | -0,3%   | -29,1%  | -17,3%                 | -0,1%   |  |
| 3000  | 68 APMI                   | 68 APMI | 88 APMI | -26,8%  | -18,3%                 | 0,9%    | -26,8%  | -18,2%                 | 0,7%    |  |
| 3500  | 60 APMI                   | 58 APMI | 80 APMI | -30,6%  | -16,3%                 | -1,5%   | -30,3%  | -16,3%                 | -1,3%   |  |
| 4000  | 46 APMI                   | 48 APMI | 72 APMI | -27,5%  | -12,8%                 | 1,4%    | -27,4%  | -12,9%                 | 1,4%    |  |
| 4500  | 32 APMI                   | 44 APMI | 68 APMI | -24,4%  | -16,8%                 | 0,5%    | -24,6%  | -17,1%                 | 0,4%    |  |
| 5000  | 20 APMI                   | 38 APMI | 60 APMI | -16,9%  | -15,3%                 | 1,9%    | -16,9%  | -15,4%                 | 1,5%    |  |
| 5500  | 28 APMI                   | 34 APMI | 60 APMI | -22,6%  | -13,4%                 | 1,3%    | -22,7%  | -13,6%                 | 1,0%    |  |
| 6000  | 10 APMI                   | 20 APMI | 36 APMI | -13,6%  | -16,8%                 | -1,0%   | -13,4%  | -16,5%                 | -1,0%   |  |

Tabela 7 - Diferenças percentuais - Modelo Ciclo Miller - Gasolina

## MODELO DE CICLO MILLER COM RC 14,5:1 - GASOLINA

| Rot.  |         | Torque  |         |         | CEC     |         |         | PMB     |         |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| [rpm] | Carga A | Carga B | Carga C | Carga A | Carga B | Carga C | Carga A | Carga B | Carga C |
| 2000  | -24,0%  | -18,1%  | 15,4%   | -2,0%   | -3,1%   | -13,9%  | -23,8%  | -26,3%  | -47,3%  |
| 2500  | -28,3%  | -13,0%  | 16,4%   | -1,1%   | -4,9%   | -14,2%  | -23,0%  | -27,0%  | -45,0%  |
| 3000  | -26,4%  | -15,1%  | 18,5%   | -0,6%   | -3,7%   | -15,0%  | -15,6%  | -20,2%  | -39,0%  |
| 3500  | -30,5%  | -11,3%  | 17,5%   | 0,2%    | -5,6%   | -16,1%  | -21,8%  | -24,9%  | -45,0%  |
| 4000  | -26,1%  | -6,1%   | 25,1%   | -1,8%   | -7,2%   | -19,0%  | -22,1%  | -26,7%  | -43,8%  |
| 4500  | -22,5%  | -12,4%  | 23,7%   | -2,8%   | -5,3%   | -18,8%  | -14,8%  | -23,6%  | -36,6%  |
| 5000  | -12,4%  | -9,7%   | 28,0%   | -5,2%   | -6,3%   | -20,7%  | -15,5%  | -28,6%  | -42,5%  |
| 5500  | -20,5%  | -7,3%   | 28,7%   | -2,8%   | -6,8%   | -21,4%  | -19,3%  | -22,7%  | -39,9%  |
| 6000  | -9,6%   | -14,1%  | 12,1%   | -4,2%   | -2,8%   | -11,8%  | -4,1%   | -8,8%   | -13,3%  |

Fonte: Dados da pesquisa

Os resultados do modelo Ciclo Miller foram apresentados e comparados com os resultados correspondentes do modelo de validação nas seções 5.6 e 5.7. Os resultados

mostraram que os efeitos da aplicação do Ciclo Miller através do fechamento antecipado da válvula de admissão em conjunto com o aumento da razão volumétrica de compressão de 10.5:1 para 14.5:1 nos parâmetros de desempenho analisados foram diferentes para o uso do etanol e da gasolina. Uma vez que o modelo de Carga A utilizando etanol foi utilizado para determinar a razão volumétrica de compressão adequada para o uso do etanol, não foi necessário o fechamento antecipado da válvula de admissão em tais condições de carga. Dessa forma, os resultados mostram que a finalidade da aplicação do Ciclo Miller para o uso do etanol foi apenas de controle da massa aspirada pelo motor, pois os valores de eficiência volumétrica do modelo Ciclo Miller ficaram dentro da margem de 3,4% de diferenca dos valores correspondentes do modelo de validação e os valores de octane number das simulações nas condições de Carga B e C não foram próximos ao IAD do etanol. Portanto, o modelo Ciclo Miller apresentou reduções no CEC de até 8,2%, 10,7% e 18,1% nas condições de Carga A, B e C, respectivamente, em consequência do aumento do torque propiciado pelas maiores pressões no cilindro - resultado do aumento da razão volumétrica de compressão - e da maior eficiência do ciclo graças à aplicação do Ciclo Miller nas condições de Carga B e C. Para o uso da gasolina, os resultados do modelo Ciclo Miller mostraram que, para as condições de Carga A e B, a finalidade do uso do Ciclo Miller foi para conter a ocorrência de detonação, uma vez que os valores de eficiência volumétrica foram muito abaixo dos valores correspondentes do modelo de validação (diferenças de até 30,6% e 21,0% nas condições de Carga A e B, respectivamente) e os valores de octane number foram muito próximos do IAD da gasolina - mostrando que as condições simuladas foram próximas às condições de detonação. Entretanto, nas condições de Carga C, os resultados mostram que o uso do Ciclo Miller teve como finalidade apenas o controle da massa aspirada pelo motor, uma vez que o modelo de Ciclo Miller apresentou valores de eficiência volumétrica com diferenças abaixo de 1,9%, em comparação com os valores correspondentes do modelo de validação, e os valores de octane number não foram próximos ao IAD da gasolina. Apesar dos menores valores de eficiência volumétrica e, consequentemente, de consumo de combustível e de torque, os resultados mostram que o modelo de Ciclo Miller apresentou reduções no CEC de até 4,2%, 7,2% e 21,4% nas condições de Carga A, B e C, respectivamente. Tais reduções no CEC endossam a melhora da eficiência do ciclo do motor através da aplicação do Ciclo Miller.

## 6 CONCLUSÃO

O estudo realizou o desenvolvimento de um modelo de simulação que representa o funcionamento do motor base 1.6L 16v Flex utilizando etanol e gasolina como combustível. Para validar o modelo, os resultados das simulações foram comparados com os resultados de testes experimentais em condições correspondentes de carga, frequência de giro do motor e combustível. Comparando os parâmetros de eficiência volumétrica, consumo de combustível e torque, os resultados das simulações apresentaram tendência semelhante aos resultados do teste experimental, sendo que a maior diferença dos 162 parâmetros comparados (oriundos dos 54 pontos de operação simulados), a maior diferença entre os resultados das simulações e os resultados experimentais foi de 13,2%. Outro destaque é que 145 dos 162 (90%) parâmetros comparados apresentaram diferenças inferiores a 4%. De acordo com o *octane number* do *Knock Model*, nenhum ponto de operação simulado apresentou detonação. Portanto, o modelo proposto conseguiu atender os parâmetros definidos dentro da faixa de tolerância.

Posteriormente, sem modificar a razão volumétrica de compressão, a válvula borboleta foi configurada em WOT e o diagrama da válvula de admissão foi alterado de modo que a válvula tivesse o fechamento antecipado com o objetivo de obter a mesma eficiência volumétrica correspondente ao modelo de validação. Os resultados desse modelo, denominado modelo EIVC, foram comparados com os resultados do modelo de validação nas condições de Carga B e C. Com base nos resultados das simulações, concluiu-se que:

- a) O modelo EIVC conseguiu atingir as mesmas eficiências volumétricas do modelo de validação, uma vez que as diferenças dos correspondentes valores de eficiência volumétrica foram abaixo de 2,2%;
- b) Em consequência da maior pressão no cilindro durante a admissão e do fechamento antecipado da válvula de admissão, o modelo EIVC apresentou, em comparação ao modelo de validação, uma redução média da PMB de 14,7% e de 39,7% para as simulações de Carga B e C, respectivamente, considerando ambos os combustíveis;
- c) Uma vez que a energia gasta no ciclo de bombeamento foi reduzida (parâmetro PMB), o modelo EIVC apresentou, em comparação ao modelo de validação, reduções médias do CEC de 1,7% e 8,1% para as simulações de Carga B e C, respectivamente, considerando ambos os combustíveis. As reduções no CEC endossam a melhora da eficiência do ciclo do motor.

Por fim, foi determinada a razão volumétrica de compressão adequada para o etanol de 14,5:1 e um novo modelo de simulação foi proposto combinando a razão volumétrica de compressão de 14,5:1 com o uso do Ciclo Miller para controle da massa aspirada pelo motor e contenção da detonação. Posteriormente, os resultados desse modelo, denominado modelo Ciclo Miller, foram comparados com os correspondentes resultados do modelo de validação. Com base nos resultados das simulações, concluiu-se que:

- a) Para o etanol, como esperado, o uso do Ciclo Miller teve como objetivo apenas o controle da massa aspirada pelo motor, uma vez que as diferenças dos valores de eficiência volumétrica do modelo Ciclo Miller em comparação com os valores correspondentes do modelo de validação foram abaixo de 3,4%;
- b) Comparado com o modelo de validação, o modelo Ciclo Miller apresentou reduções médias de PMB de 14,9% e 38,9% nas condições de Carga B e C, respectivamente para o uso de etanol. Enquanto que na condição de Carga A, o modelo Ciclo Miller apresentou um aumento médio de 1,8% no PMB – pois não foi aplicado o fechamento antecipado da válvula de admissão.
- c) Os valores de torque do modelo Ciclo Miller foram, em média, 8,4%, 9,8% e 17,8% mais altos que os correspondentes valores do modelo de validação nas condições de Carga A, B e C, respectivamente, para o uso do etanol. Esses aumentos médios de torque são consequência do aumento da razão volumétrica de compressão e da redução do trabalho de bombeamento;
- d) Endossando a melhora da eficiência do ciclo do motor com a aplicação do Ciclo Miller, o modelo Ciclo Miller apresentou reduções médias no CEC de 6,6%, 8,9% e 15,3% em comparação aos correspondentes valores do modelo de validação nas condições de Carga A, B e C, respectivamente, para o uso do etanol;
- e) Para a gasolina, a aplicação do Ciclo Miller teve como objetivo a contenção da detonação nas condições de Carga A e B, uma vez que os resultados do modelo Ciclo Miller mostraram que os valores de eficiência volumétrica, em comparação com os correspondentes resultados do modelo de validação, apresentaram redução média de 24,1% e 16,4% nas condições de Carga A e B, respectivamente. Além disso, corroborando a aplicação do Ciclo Miller para contenção da detonação, os valores de *octane number* do modelo Ciclo Miller foram próximos ao IAD da gasolina em todas as frequências de giro do motor simuladas nas condições de Carga A e B;
- f) Para aproximar os valores de eficiência volumétrica do modelo Ciclo Miller utilizando gasolina dos correspondentes valores do modelo de validação, nas condições de Carga

A e B, as mudanças no diagrama da válvula de admissão levariam a uma maior razão volumétrica de compressão efetiva e, consequentemente, proporcionando maiores pressões no cilindro a ponto de ocorrer o fenômeno de detonação, de acordo com os valores de *octane number*;

- g) Comparado com os resultados do modelo de validação, o modelo Ciclo Miller apresentou reduções média de torque de 22,3% e 11,9% nas condições de Carga A e B, respectivamente, utilizando gasolina. Essas reduções médias de torque estão diretamente ligadas à menor quantidade de mistura aspirada;
- h) Para as condições de Carga C, a aplicação do Ciclo Miller teve como finalidade o controle da massa aspirada pelo motor, uma vez que as diferenças de eficiência volumétrica entre o modelo Ciclo Miller e o modelo de validação foram menores do que 1,9% e os valores de *octane number* do modelo Ciclo Miller foram bem menores do que o IAD da gasolina;
- i) O modelo Ciclo Miller apresentou valores de torque 20,6% maiores que os correspondentes valores do modelo de validação, em média, nas condições de Carga C utilizando gasolina. Esses ganhos em torque estão diretamente relacionados às reduções do trabalho de bombeamento e ao aumento da razão volumétrica de compressão de 10,5:1 para 14,5:1;
- j) Para o uso de gasolina, o modelo Ciclo Miller apresentou reduções médias da PMB de 17,8%, 23,2% e 39,2% nas condições de Carga A, B e C, respectivamente, em comparação com o modelo de validação. Essas reduções médias de PMB, que representam o ciclo de bombeamento, estão relacionadas às menores quedas de pressão na admissão, consequência da configuração da válvula borboleta em WOT, e do fechamento antecipado da válvula de admissão;
- k) Apesar de apresentar menores valores de eficiência volumétrica e torque nas condições de Carga A e B, o modelo Ciclo Miller apresentou reduções médias de CEC de 2,2%, 5,1% e 16,8% nas condições de Carga A, B e C, respectivamente, utilizando gasolina. Essas reduções médias de CEC endossam a melhora da eficiência do ciclo do motor.

## 6.1 Trabalhos futuros

Embora os efeitos nos parâmetros de desempenho causados pelas alterações propostas no modelo Ciclo Miller tenham sido similares a de outros estudos, são sugeridos estudos experimentais combinando razão volumétrica de compressão adequada para o etanol e aplicação do Ciclo Miller através do fechamento antecipado da válvula de admissão a fim de embasar o modelo de simulação desse estudo. Além de gerar dados de entradas que possam aprimorar os modelos de simulação, como curvas de pressão no cilindro de todas as condições de operação correspondente, estudos experimentais permitem análise de emissões de poluentes de um motor com as características propostas pelo modelo desse estudo.

Outros autores observaram que o fechamento antecipado da válvula de admissão implica efeitos na energia cinética da mistura no cilindro, tornando o processo de combustão mais lento. Uma vez que os modelos analisados nesse estudo não incluem efeitos do EIVC na intensidade da turbulência da mistura, outra sugestão são estudos que visam soluções para abrandar os efeitos negativos do EIVC na energia cinética da mistura no cilindro.

Por fim, os modelos utilizados nesse estudo podem ser utilizados como ponto de partida para outros estudos que utilizam simulações de motores. Outra sugestão de estudo é desenvolver um modelo que represente o funcionamento de um VVT combinado com o EIVC e analisar os efeitos nos parâmetros de desempenho.

# REFERÊNCIAS

ALVARENGA, L. D. et al. Friction and pumping losses estimation in flex internal combustion engines with variable valve actuation system using chamber pressure measurement. **SAE Technical Papers**, 2012-36-0363, 2012.

AMORIM, R. J. Análise do aumento da razão volumétrica de compressão de um motor flexível multicombustível visando melhoria de desempenho. Dissertação (Mestrado) - Universidade Federal de Minas Gerais. Belo Horizonte, p. 217. 2005.

ARNOLD, S. D. Variable stroke and compression ratio engine. US8511265B2, 2013. Disponivel em: <a href="http://www.google.com/patents/US8511265">http://www.google.com/patents/US8511265</a>>. Acesso em: 03 abr. 2015.

AVL LIST GMBH. AVL BOOST VERSION 2011 - Theory. 07/2011. ed. Graz: GmbH, AVL List, 2011.

AVL LIST GMBH. AVL BOOST VERSION 2011 - Users Guide. 07/2011. ed. Graz: GmbH, AVL List, 2011.

AVL LIST GMBH. AVL BOOST - Virtual Engine Simulation. **AVL GmbH**, 2015. Disponivel em: <a href="https://www.avl.com/boost">https://www.avl.com/boost</a>>. Acesso em: 05 maio 2015.

BAÊTA, J. G. C. et al. Optimization performance of multi-fuel spark ignition engine using a turbocharging system. **SAE Technical Papers**, Belo Horizonte, 2006-01-2641, 2006.

BALKI, M. K.; SAYIN, C. The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline. **Energy**, v. 71, p. 194-201, 2014.

BAPIRI, S.; SORUSBAY, C. Investigating the effects of variable valve timing on spark ignition engine performance. **Advances in Science and Technology Research Journal**, v. 13, p. 100-111, 2019.

BRINGEZU, S. et al. Towards sustainable production and use of resources: Assessing biofuels. **International Panel for Sustainable Resource Management**, p. 1-36, 2009. ISSN 978-9-280-73052-4.

BUTT, Z. Combustion cycles. **I.C. Engines**, 2003. Disponivel em: <a href="http://z4zarrar.tripod.com/report/combustioncycles.htm">http://z4zarrar.tripod.com/report/combustioncycles.htm</a>. Acesso em: 06 abr. 2015.

CHAN, K. Y. et al. Comparison Of Engine Simulation Software For Development Of Control System. **Modelling And Simulation In Engineering**, 2013.

CHEN, B. et al. A combination of electric supercharger and Miller Cycle in a gasoline engine to improve thermal efficiency without performance degradation. **Case Studies in Thermal Engineering**, v. 14, p. 100429, 2019.

CHIARA, B. D.; DEFLORIO, F.; EID, M. Analysis of real driving data to explore travelling needs in relation to hybrid-electric vehicle solutions. **Transport Policy**, v. 80, p. 97-116, 2019.

ÇINAR, C.; AKGÜN, F. Effect of intake valve closing time on engine performance and exhaust emissions in a spark ignition engine. **Journal of Polytechnic**, v. 10, p. 371-375, 2007.

COONEY, C. P.; WORM, J. J.; NABER, J. D. Combustion characterization in an internal combustion engine with ethanol-gasoline blended fuels varying compression ratios and ignition timing. **Energy and Fuels**, v. 23, p. 2319-2324, 2009.

COSTA, R. C.; SODRÉ, J. R. Hydrous ethanol vs. gasoline-ethanol blend: engine performance and emissions. **Fuel**, v. 89, p. 287-293, 2010.

COSTA, R. C.; SODRÉ, J. R. Compression ratio effects on an ethanol/gasoline fuelled engine performance. **Applied Thermal Engineering**, v. 31, p. 278-283, 2011.

DI SANCTIS, C. M.; GALLO, W. L. R. Load control in spark-ignited engines possibilities: Early or late intake valve closure. **SAE Technical Papers**, 2015-36-0477, 2015.

EASTOP, T. D.; MCCONKEY, A. **Applied thermodynamics for engineering technologists**. 5<sup>a</sup>. ed. Deli: Pearson Education, 2009. 735 p. ISBN 978-81-7758-238-3.

ELMQVIST, C. et al. Optimizing engine concepts by using a simple model for knock prediction. **SAE Technical Papers**, 2003-01-3123, 2003.

FARIA, M. M. N. et al. Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. **Energy Conversion and Management**, n. 149, p. 1096-1108, 2017.

FCA. FCA amplia para R\$ 8,5 bi investimentos em Minas Gerais e transforma complexo de Betim no maior polo de powertrain da América Latina. **FCA Press**, 2019. Disponivel em: <www.fcapress.com.br/pt/fca/verRelease/2274.do>. Acesso em: 17 Junho 2019.

FRANÇA JÚNIOR, O. M. Impact of the Miller Cycle in the efficiency of an FVVT (Fully Variable Valve Train) engine during part load operation. **SAE Technical Papers**, 2009-36-0081, 2009.

GOVERNO DO BRASIL. Governo estabelece adição de 27% de etanol na gasolina. **Governo do Brasil**, 2017. Disponivel em: <a href="http://www.brasil.gov.br/economia-e-emprego/2015/03/adicao-de-27-de-etanol-na-gasolina-e-estabelecida-pelo-governo">http://www.brasil.gov.br/economia-e-emprego/2015/03/adicao-de-27-de-etanol-na-gasolina-e-estabelecida-pelo-governo</a>>. Acesso em: 10 Outubro 2018.

GUTIERREZ, M. Moody's: Rota 2030 é positivo para crédito das montadoras no Brasil. **Valor**, 2018. Disponivel em:

<a href="https://www.valor.com.br/brasil/5649433/moody%3Fs-rota-2030-e-positivo-para-credito-das-montadoras-no-brasil">https://www.valor.com.br/brasil/5649433/moody%3Fs-rota-2030-e-positivo-para-credito-das-montadoras-no-brasil</a>. Acesso em: 22 Agosto 2018.

HEYWOOD, J. B. Internal Combustion Engine Fundamentals. 1<sup>a</sup>. ed. Nova lorque: McGraham-Hill, 1988. 930 p. ISBN 0-07-028637-X.

HOYER, K. S.; MOORE, W. R.; KEITH, C. A simulation method to guide DISI engine redesign for increased efficiency using alcohol fuel blends. **SAE Technical Papers**, 2010-01-1203, 2010.

HSIEH, W.-D. et al. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. **Atmospheric Environment**, v. 36, p. 403-410, 2002.

IIJIMA, A. et al. Visualization And Spectroscopic Measurement of KnockingCombustion Accompanied By Cyclinder Pressure Oscillations In An HCCI Engine.SAE Technical Papers, 2013-32-9166, 2013.

KIM, N.; CHO, S.; MIN, K. A study on the combustion and emission characteristics of an SI engine under full load conditions with ethanol port injection and gasoline direct injection. **Fuel**, v. 158, p. 725-732, 2015.

LI, Q. et al. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. **Applied Thermal Engineering**, v. 137, p. 710-720, 2018.

LI, T. et al. The Miller Cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. **Energy Conversion and Management**, v. 79, p. 59-65, 2014.

LUISI, S. et al. Experimental investigation on early and late intake valve closures for knock mitigation through Miller Cycle in a downsized turbocharged engine. **SAE Technical Papers**, 2015-01-0760, 2015.

MARTINS, M. E. S.; LANZANOVA, T. D. M. Full-load Miller Cycle with ethanol and EGR: Potential benefits and challenges. **Applied Thermal Engineering**, v. 90, p. 274-285, 2015.

MILLO, F. et al. Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. **Fuel**, v. 121, p. 298-310, 2014.

MITO, Y. et al. Advanced Combustion Performance For High Efficiency In New I3 1.2L Supercharged Gasoline Engine By Effective Use Of 3D Engine Simulation. **SAE Technical Papers**, 2012-01-0422, 2012.

MOORE, W.; FOSTER, M.; HOYER, K. Engine efficiency improvements enabled by ethanol fuel blends in a GDi VVA flex fuel engine. **SAE Technical Papers**, 2011-01-0900, 2011.

MUOIO, D. These countries are banning gas-powered vehicles by 2040. **Business Insider**, 2017. Disponivel em: <a href="https://www.businessinsider.com/countries-banning-gas-cars-2017-10//#norway-will-only-sell-electric-and-hybrid-vehicles-starting-in-2030-1">https://www.businessinsider.com/countries-banning-gas-cars-2017-10//#norway-will-only-sell-electric-and-hybrid-vehicles-starting-in-2030-1</a>>. Acesso em: 21 Agosto 2018.

NAGYSZOKOLYAI, I. A Fejben Van Az Ész. **Auto Technika**, 2013. Disponivel em: <a href="https://autotechnika.hu/cikkek/motor-eroatvitel/10347/a-fejben-van-az-esz">https://autotechnika.hu/cikkek/motor-eroatvitel/10347/a-fejben-van-az-esz</a>. Acesso em: 14 Outubro 2018.

NASIR, K. F. Experimental investigation of using ethanol-gasoline in spark ignition engine. **Al-Nahrain Journal for Engineering Sciences**, v. 21, p. 368-373, 2018.

NWUFO, O. C. et al. Performance, emission and combustion characteristics of a single cylinder spark ignition engine using ethanol-petrol-blended fuels. **International Journal of Ambient Energy**, v. 39, p. 792-801, 2018.

OSORIO, J. D.; RIVERA-ALVAREZ, A. Efficiency enhancement of spark-ignition engines using a continuous variable valve timing system for load control. **Energy**, v. 161, p. 649-662, 2018.

PETROBRAS. Gasolina. **Petrobras**, 2019. Disponivel em: <http://www.petrobras.com.br/pt/produtos-eservicos/produtos/automotivos/gasolina/>. Acesso em: 29 Junho 2019.

POLI USP. RCGI busca parceiros para criar o primeiro carro híbrido flex do mundo. Escola Politécnica Universidade de São Paulo, 2017. Disponivel em: <http://www.poli.usp.br/pt/comunicacao/noticias/2314-rcgi-busca-parceiros-paracriar-o-primeiro-carro-hibrido-flex-do-mundo.html>. Acesso em: 22 Agosto 2018.

PULKRABEK, W. W. Engineering Fundamentals of the Internal Combustion Engine. 2<sup>a</sup>. ed. Upper Saddle River: Prentice Hall, 2003. 478 p. ISBN 0-13-140570-5.

REIS, S. Indústria defende rota tecnológica do etanol para o futuro da mobilidade no Brasil. **Automotive Business**, 2019. Disponivel em: <http://www.automotivebusiness.com.br/noticia/29442/industria-defende-rotatecnologica-do-etanol-para-o-futuro-da-mobilidade-no-brasil>. Acesso em: 17 Junho 2019.

RILEY, M. B.; FIDDES, D. W. A fully variable mechanical valvetrain with a simple moving pivot. **SAE Technical Papers**, 2005-01-0770, 2005.

ROBERT BOSCH GMBH. **Automotive Handbook**. 7<sup>a</sup> Edição. ed. Plochingen: SAE Society of Automotive Engineers, 2007.

SAIKRISHNAN, V.; KARTHIKEYAN, A.; JAYAPRABAKAR, J. Analysis of ethanol blends on spark ignition engines. **International Journal of Ambient Energy**, v. 39, p. 103-107, 2018.

SIDDEGOWDA, K. B.; VENKATESH, J. Performance and emission characteristics of MPFI engine by using gasoline-ethanol blends. **International Journal of Innovative Research in Science, Engineering and Technology**, v. 2, p. 4891-4897, 2013.

SOUZA, L. L. P. et al. Comparative environmental life cycle assessment of convencional vehicle with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. **Journal of Cleaner Production**, v. 203, p. 444-468, 2018.

SZYBIST, J. et al. Investigation of knock limited compression ratio of ethanol gasoline blends. **SAE Technical Papers**, 2010-01-0619, 2010.

TEODOSIO, L. et al. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. **Applied Energy**, v. 216, p. 91-104, 2018.

TOYOTA. Novo Corolla feito no Brasil será o primeiro veículo híbrido flex do mundo. **Toyota | Sala de Imprensa**, 2019. Disponivel em:

<www.toyotaimprensa.com.br/releases/release.php?id=10516&/novo\_corolla\_feito\_n
o\_brasil\_sera\_o\_primeiro\_veiculo\_hibrido\_flex\_do\_mundo>. Acesso em: 17 Junho
2019.

TREVAS, I. C. Análise De Desempenho Em Um Motor Flex Operando Em Ciclo Miller A Partir Da Variação Da Posição Angular Do Comando De Válvulas De Aspiração E Do Seu Curso De Abertura. Dissertação (Mestrado) - Universidade Federal de Minas Gerais. Belo Horizonte, p. 188. 2017.

VAN BASSHUYSEN, R.; SCHÄFER, F. Internal combustion engine handbook: Basics, components, systems and perspectives. Warrendale: SAE International, 2004. 811 p. ISBN 978-0-768-01139-5.

WAN, Y.; DU, A. Reducing part load pumping loss and improving thermal efficiency through high compression ratio over-expanded cycle. **SAE Technical Papers**, 2013-01-1744, 2013.

WANG, Y. et al. Application of the Miller Cycle to reduce NOx emissions from petrol engine. **Applied Energy**, v. 85, p. 463-474, 2008.

WANG, Y. et al. Performance analysis of a Miller Cycle engine by an indirect analysis method with sparking and knock in consideration. **Energy Conversion and Management**, v. 119, p. 316-326, 2016.

WEI, H. et al. Effects of applying a Miller Cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. **Fuel**, v. 214, p. 98-107, 2018.

WIBOWO, C. S. et al. The effect of gasoline-bioethanol blends on the value of fuel's octane number. **E3S Web Conferences**, v. 67, p. 4-6, 2018.

WURZENBERGER, J. C. et al. A Comprehensive Study On Different System Level Engine Simulation Models. **SAE Technical Papers**, 2013-01-1116, 2013.

YASHWANTH, M. S.; VENUGOPAL, T.; RAMESH, A. Experimental and simulation studies to determine the effective octane number in an engine fuelled with ethanol and gasoline. **International Journal of Automotive and Mechanical Engineering**, v. 10, p. 2057-2069, 2014.

ZHUANG, Y.; HONG, G. Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. **Fuel**, v. 105, p. 425-431, 2013.

ZMUDKA, Z.; POSTRZEDNIK, S.; PRZYBYLA, G. Throttleless Control of SI Engine Load by Fully Flexible Inlet Valve Actuation System. **Combustion Engines**, v. 164, p. 44-48, 2016.

# APÊNDICE A - Dados de entrada AVL Boost®

|                                        | Simulatio                | n Tasks                                     |             |
|----------------------------------------|--------------------------|---------------------------------------------|-------------|
| Simulation Tasks                       | Cycle Simulation         | Output Control                              |             |
| Cycle Simulation                       | on                       | Animation                                   | Não marcado |
| Species Transport                      | Classic                  | Traced Cycles                               | Não marcado |
| End of Simulation                      | 100 [cycles]             | Acoustic Cycle                              | Não marcado |
| Convergence control                    | Não marcado              | Saving Interval                             | 0.5 [deg]   |
| Spatial Pipe Discretization            | Average Cell Size: 30 mm | Abcissa                                     | Cycle       |
| Classic Species S                      | etup                     | Pressure                                    | 1 [bar]     |
| Fuel Properties                        | User-defined Fuel        | Temperature                                 | 25 [degC]   |
| Real Gas Factor                        | Não marcado              | Aftertreatment Analysis                     |             |
| Air Humidity                           | Não marcado              | Office                                      | Marcado     |
| Property Dependencies                  | f (P, T, mixtures)       | Use 0D Model for Aftertreatment Injectors   | Não marcado |
| Reference Pressure                     | 1 [bar]                  | Use Large Scale System Acelerator           | Não marcado |
| Reference Temperature                  | 24.85 [degC]             | Enable High-Robustness Option               | Não marcado |
| Restart Contro                         | bl                       | Tolerance Refinement Factor                 | 1[-]        |
| Restart Simulation                     | No                       | Disable Result Writing                      | Não marcado |
| Use Most Recent Restart File           | Marcado                  | Restart Control                             | No          |
| Time Reset                             | Não marcado              | Write Restart File                          | Não marcado |
| Save Restart File at End of Simulation | Não marcado              | PSS-Realtime                                | Não marcado |
| Restart File Saving Interval           | None                     | Set Global Solid Initialization Temperature | Não marcado |
| Backup File                            | Não marcado              | Fuel Composition for Engine A/F Ratio Input | Não marcado |
| Simulation Volumetric                  | Efficiency               | Lineat Acoustics                            |             |
| Reference Element                      | Plenum PL1               | Minimum Frequency                           | 1 [Hz]      |
|                                        |                          | Maximum Frequency                           | 2000 [Hz]   |
|                                        |                          | Frequency points                            | 101         |
|                                        |                          | Reference for Insertion Loss                | None        |
|                                        |                          | Save                                        |             |
|                                        |                          | Save Elements                               | Não marcado |
|                                        |                          | Save Transfer Matrices                      | Não marcado |

# Figura 19 - Simulation tasks

| Simulation Control - Initialization |            |            |             |                |           |  |  |  |
|-------------------------------------|------------|------------|-------------|----------------|-----------|--|--|--|
|                                     | Press.     | Temp.      | Fuel Vapour | Comb. Products | A/F ratio |  |  |  |
|                                     | bar        | degC       | [-]         | [-]            | [-]       |  |  |  |
| 1                                   | P_amb      | T_amb      | 0           | 0              | 10000     |  |  |  |
| 2                                   | P_mainfold | T_mainfold | 0           | 0              | 10000     |  |  |  |
| 3                                   | P_mainfold | T_mainfold | Fuel_Vapour | 0              | AF_ratio  |  |  |  |
| 4                                   | 1.5        | 250        | 0           | 1              | AF_ratio  |  |  |  |

| BOOST Gas Properties Tool |                              |  |  |  |  |
|---------------------------|------------------------------|--|--|--|--|
| Fuel Components - Etanol  |                              |  |  |  |  |
| Kind of fraction ratio    | Liquid volume fraction based |  |  |  |  |
| Fuel Label                | Fraction Ratio [-]           |  |  |  |  |
| H2O                       | 0.06                         |  |  |  |  |
| Ethanol                   | 0.94                         |  |  |  |  |
| Fuel Com                  | ponents - Gasolina           |  |  |  |  |
| Kind of fraction ratio    | Liquid volume fraction based |  |  |  |  |
| Fuel Label                | Fraction Ratio [-]           |  |  |  |  |
| Gasoline                  | 0.75                         |  |  |  |  |
| Ethanol                   | 0.25                         |  |  |  |  |

Figura 20 - Boost Gas Properties Tool

Figura 21 - Engine

| Engine - E1            |              |  |  |  |  |  |
|------------------------|--------------|--|--|--|--|--|
| General                |              |  |  |  |  |  |
| Transient Engine Speed | Não marcado  |  |  |  |  |  |
| Engine Speed           | Engine_speed |  |  |  |  |  |
| Cycle Type             | 4-Stroke     |  |  |  |  |  |
| BMEP Control           | Não marcado  |  |  |  |  |  |
| Cylinder / RPE-Rot     | or Setup     |  |  |  |  |  |
| Identical Cylinders    | Marcado      |  |  |  |  |  |
| Firing Angle [         | deg]         |  |  |  |  |  |
| 1                      | 0            |  |  |  |  |  |
| 2                      | 540          |  |  |  |  |  |
| 3                      | 180          |  |  |  |  |  |
| 4                      | 360          |  |  |  |  |  |
| Engine Fricti          | on           |  |  |  |  |  |
| Engine Friction        | Table        |  |  |  |  |  |
| Friction Multiplier    | 1[-]         |  |  |  |  |  |
| Friction Lis           | t            |  |  |  |  |  |
| Engine speed [rpm]     | FMEP [bar]   |  |  |  |  |  |
| 2000                   | 0.72         |  |  |  |  |  |
| 2500                   | 0.77         |  |  |  |  |  |
| 3000                   | 0.82         |  |  |  |  |  |
| 3500                   | 0.90         |  |  |  |  |  |
| 4000                   | 0.99         |  |  |  |  |  |
| 4500                   | 1.15         |  |  |  |  |  |
| 5000                   | 1.25         |  |  |  |  |  |
| 5500                   | 1.38         |  |  |  |  |  |
| 6000                   | 1.33         |  |  |  |  |  |

Figura 22 - System Boundary

| System Boundary                   | System Boundary - SB1 |               |                           | - SB2             |
|-----------------------------------|-----------------------|---------------|---------------------------|-------------------|
| General                           |                       |               | General                   |                   |
| Save Energy and Mass for Backflow | Não marcado           | Save Energy a | nd Mass for Backflow      | Não marcado       |
| Boundary Type                     | Standard              |               | Boundary Type             | Standard          |
| End Correction                    | Marcado               |               | End Correction            | Marcado           |
| Boundary Condition                | IS                    |               | <b>Boundary Condition</b> | IS                |
| Global Boundary Conditions        | Preference: Set 1     | Global        | Boundary Conditions       | Preference: Set 4 |
| Flow Coefficients                 |                       |               | <b>Flow Coefficients</b>  |                   |
| Pipe 1 Inflow                     | 1[-]                  |               | Pipe 1 Inflow             | 1[-]              |
| Pipe 1 Outflow                    | 1[-]                  |               | Pipe 1 Outflow            | 1[-]              |

| Air Cleaner - CL1        |                      |  |  |
|--------------------------|----------------------|--|--|
| General                  |                      |  |  |
| Total Air Cleaner Volume | 8.7 [L]              |  |  |
| Inlet Collector Volume   | 3 [L]                |  |  |
| Outlet Collector Volume  | 4.3 [L]              |  |  |
| Length of Filter Element | 300 [mm]             |  |  |
| Hydraulic Setting        | Marcado              |  |  |
| Hydraulic Unit           | Diameter             |  |  |
| Hydraulic Diameter       | 201.95 [mm]          |  |  |
| Friction                 |                      |  |  |
| Friction Specification   | Target Pressure Drop |  |  |
| Mass Flow                | 110 [g/s]            |  |  |
| Target Pressure Drop     | 2.6 [kPa]            |  |  |
| Inlet Pressure           | 1 [bar]              |  |  |
| Inlet Air Temperature    | 25 [degC]            |  |  |
| Flow Coefficients        |                      |  |  |
| Pipe 1 Inflow            | 1[-]                 |  |  |
| Pipe 1 Outflow           | 1[-]                 |  |  |
| Pipe 2 Inflow            | 1[-]                 |  |  |
| Pipe 2 Outflow           | 1[-]                 |  |  |

Figura 23 - Air Cleaner

| Throttle - TH1    |                 |                 |                 |  |
|-------------------|-----------------|-----------------|-----------------|--|
| General           |                 |                 |                 |  |
| Ref               | erence Diameter | 50 [mm]         |                 |  |
|                   | Throttle Angle  | Throttle_angle  |                 |  |
| Flow Coefficients |                 |                 |                 |  |
| Th. Angle [deg]   | Flow Coeff. [-] | Th. Angle [deg] | Flow Coeff. [-] |  |
| 0                 | 0.001           | 14.4            | 0.035           |  |
| 0.4               | 0.002           | 16.4            | 0.044           |  |
| 0.9               | 0.002           | 18.4            | 0.053           |  |
| 1.4               | 0.003           | 23.4            | 0.082           |  |
| 1.9               | 0.003           | 28.4            | 0.119           |  |
| 2.4               | 0.004           | 33.4            | 0.163           |  |
| 2.9               | 0.005           | 38.4            | 0.211           |  |
| 3.4               | 0.006           | 48.4            | 0.323           |  |
| 4.4               | 0.007           | 58.4            | 0.455           |  |
| 5.4               | 0.009           | 68.4            | 0.606           |  |
| 6.4               | 0.012           | 78.4            | 0.706           |  |
| 7.4               | 0.014           | 83.4            | 0.731           |  |
| 8.4               | 0.017           | 88.4            | 0.747           |  |
| 10.4              | 0.021           | 90              | 1               |  |
| 12.4              | 0.028           |                 |                 |  |

Figura 24 - Throttle

| Plenum - PL1               |                   |  |  |
|----------------------------|-------------------|--|--|
| General                    |                   |  |  |
| Geometry Definition        | Volume            |  |  |
| Volume                     | 5.04 [L]          |  |  |
| Wall Heat Transfer         | Não marcado       |  |  |
| Connection Defition        |                   |  |  |
| <b>Connection Defition</b> | None              |  |  |
| Initialization             |                   |  |  |
| Global Initialization      | Preference: Set 2 |  |  |
| Flow Coefficients          |                   |  |  |
| Pipe 3 Inflow              | 1[-]              |  |  |
| Pipe 3 Outflow             | 1[-]              |  |  |
| Pipe 4 Inflow              | 1[-]              |  |  |
| Pipe 4 Outflow             | 1[-]              |  |  |
| Pipe 5 Inflow              | 1[-]              |  |  |
| Pipe 5 Outflow             | 1[-]              |  |  |
| Pipe 6 Inflow              | 1[-]              |  |  |
| Pipe 6 Outflow             | 1[-]              |  |  |
| Pipe 7 Inflow              | 1[-]              |  |  |
| Pipe 7 Outflow             | 1[-]              |  |  |
| Injector - I1 / I2 / I3 / I4     |                               |                                     |                                        |  |  |
|----------------------------------|-------------------------------|-------------------------------------|----------------------------------------|--|--|
| General                          |                               | Distillation Curve                  |                                        |  |  |
| Injection Method                 | Intermittent                  | T Distillation [degC]               | Fraction [-]                           |  |  |
| Reference Cylinde                | r                             | 78                                  | 0                                      |  |  |
| 1                                | Cylinder 1                    | 78.1                                | 0.025                                  |  |  |
| 12                               | Cylinder 2                    | 78.41                               | 0.079                                  |  |  |
| 13                               | Cylinder 3                    | 78.74                               | 0.111                                  |  |  |
| 14                               | Cylinder 4                    | 79.3                                | 0.161                                  |  |  |
| Injection Angle (rel. to ETDC)   | Inj_timing                    | 80.7                                | 0.297                                  |  |  |
| injection Angle (ref. to r bc)   | EOI                           | 82.3                                | 0.448                                  |  |  |
| Injector Rate/Duration Settings  | Rate                          | 84.1                                | 0.595                                  |  |  |
| Delivery Rate                    | Inj_rate                      | 86.7                                | 0.725                                  |  |  |
| Fuel Film Thickness              | 0.01 [mm]                     | 89                                  | 0.796                                  |  |  |
| Fuel Film Liquid Density         | Eta. 789 [kg/m³]              | 95.5                                | 0.941                                  |  |  |
| i del film Elquid Density        | Gas. 680 [kg/m <sup>3</sup> ] | 100                                 | 1                                      |  |  |
| Film=Wall Temperature taken from | Measuring Point 1             | Mas                                 | s Flow                                 |  |  |
| Evaporation Multiplier           | 1[-]                          | Mass Flow Specification             | Ratio Control                          |  |  |
| Shape Multiplier                 | 1[-]                          | Ratio                               | AF_ratio                               |  |  |
|                                  |                               | Injectior Model                     | Injection Nozzle (Continous Injection) |  |  |
|                                  |                               | Air Flow taken from Measuring Point | Measuring Point 2                      |  |  |
|                                  |                               | The Injector Covers                 | 25%                                    |  |  |
|                                  |                               | Specie                              | s Option                               |  |  |
|                                  |                               | Fuel Temperature                    | 25 [degC]                              |  |  |
|                                  |                               | Consider Heat of Evaporation        | Marcado                                |  |  |
|                                  |                               | Evaporation Heat                    | Evap_heat                              |  |  |
|                                  |                               | Heat from Wall                      | 0[-]                                   |  |  |
|                                  |                               | Flow Co                             | oefficients                            |  |  |
|                                  |                               | from Pipe 4 to Pipe 8               | 1[-]                                   |  |  |
|                                  |                               | from Pipe 8 to Pipe 4               | 1[-]                                   |  |  |

Figura 26 - Injector

| Figura | 27 | - R | esti | ric | tio | n |
|--------|----|-----|------|-----|-----|---|
|--------|----|-----|------|-----|-----|---|

| Restriction - R1 / R2 / R3 / R4 /<br>R5 / R6 / R7 / R8 |      |  |  |  |
|--------------------------------------------------------|------|--|--|--|
| Flow Coefficients                                      |      |  |  |  |
| from Pipe 8 to Pipe 12                                 | 1[-] |  |  |  |
| from Pipe 12 to Pipe 8                                 | 1[-] |  |  |  |

| Cylinder - C1              |                |   |                                |                           |
|----------------------------|----------------|---|--------------------------------|---------------------------|
| General                    |                | Π | Pollutants                     |                           |
| Bore                       | 77 mm          |   | NOx Kinetic Multiplier         | 1[-]                      |
| Stroke                     | 85.8 mm        |   | NOx Postprocessing Multiplier  | 0.64 [-]                  |
| Compression Ratio          | Comp_ratio     |   | CO Kinetic Multiplier          | 1[-]                      |
| Con-Rod Length             | 135.6 mm       |   | Crevice height                 | 5 mm                      |
| Piston Pin Offset          | 0.8 mm         |   | Crevice gap                    | 0.1 mm                    |
| Effective Blow By Gap      | 0.00015 mm     |   | Oilfilm thickness              | 0.005 mm                  |
| Mean Crankcase Press.      | 1 bar          |   | HC postoxidation multiplier    | 1[-]                      |
| User Defined Piston Motion | Não marcado    |   | HC postoxidation E             | 18516.85 degC             |
| Chamber Attachment         | Não marcado    |   | HC postoxidation f             | 0.3 [-]                   |
| Scavenge Model             | Perfect Mixing |   | HC partial burn P              | 1[-]                      |
| Initialization             |                |   | Knock                          |                           |
| Pressure                   | 5 bar          |   | Exponent a                     | 3.402 [-]                 |
| Temperature                | T_exh_open     |   | Exponent n                     | 1.7 [-]                   |
| Ratio Type                 | A/F - Ratio    |   | Constant A                     | Eta. 0.021 s              |
| Ratio Value                | AF_ratio       |   | Constant A                     | Gas. 0.01768 s            |
| Fuel Vapour                | 0 [-]          |   | Constant B                     | 3526. 85 degC             |
| Combustion Products        | 1[-]           |   | Heat Transfer                  |                           |
| SHP Condition Setting      | Não marcado    |   | Cylinder                       | AVL 2000                  |
| Combustion                 |                |   | Ports                          | Zapf                      |
| Heat Release               | Vibe 2-Zone    |   | Piston Surface Area            | 4656.6257 mm <sup>2</sup> |
| Mixture Preparation        | External       |   | Piston Wall Temperature        | 275 degC                  |
| Fuel Temperature           | 25 degC        |   | Piston Calibration Factor      | 1[-]                      |
| In Cylinder Evaporation    | Não marcado    |   | Cylinder Head Surface Area     | Cyl_head_area             |
| Vibe 2-Zone                |                |   | Cylinder Head Wall Temperature | 250 degC                  |
| Start of Combustion        | Start_comb     |   | Head Calibration Factor        | 1[-]                      |
| Combustion Duration        | Comb_dur       |   | Liner Layer Discretization     | Não marcado               |
| Shape parameter m          | Vibe_m         |   | Liner Surface Area (TDC)       | 72.71351 mm²              |
| Parameter a                | 6.9            |   | Liner Wall Temp. (TDC)         | 170 degC                  |
|                            |                |   | Liner Wall Temp. (BDC)         | 150 degC                  |
|                            |                |   | Liner Calibration Factor       | 1[-]                      |
|                            |                |   | Combustion System              | DI                        |
|                            |                |   | Incylinder Swirl Ration nD/nM  | 0[-]                      |
|                            |                |   | Variable Wall Temperature      | Não marcado               |

Figura 28 - Cyclinder

| Pipe Contro                            | I Surface Are   | ea [mm²]  | W. Temp. [degC]                        |         |                 |
|----------------------------------------|-----------------|-----------|----------------------------------------|---------|-----------------|
| 12 Valve                               | 656.8           | 81        | 250                                    |         |                 |
| 16 Valve                               | 399.0           | 23        | 600                                    |         |                 |
|                                        |                 |           |                                        |         |                 |
| Intake Valve Controlled                |                 |           | Exhaust Valve Cont                     | trolled | 00 54 5         |
| Inner Valve Seat (=Reference) Diameter | 28.92 [mm]      | Inner Val | Inner Valve Seat (=Reference) Diameter |         | 22.54 [mm]      |
| Valve Clearance                        | 0.45 [mm]       |           | Valve Clea                             | irance  | 0.45 [mm]       |
| Scalling Factor for Eff. Flow Area     | 1.045 [-]       | S         | calling Factor for Eff. Flow           | / Area  | 0.635 [-]       |
| Calculate Dynamic Incylinder Swirl     | Não marcado     | Cal       | culate Dynamic Incylinder              | Swirl   | Não marcado     |
| Calculate Dynamic Incylinder Tumble    | Não marcado     | Calcul    | ate Dynamic Incylinder Tu              | imble   | Não marcado     |
| Reference Lift for Valve Timing        | 0 [mm]          |           | Reference Lift for Valve T             | iming   | 0[mm]           |
| Reference Lift Base                    | Effective       |           | Reference Lift                         | t Base  | Effective       |
| Flow Coefficients                      |                 |           | Flow Coefficie                         | nts     |                 |
| Pressure Ratio                         | 0.85 [-]        |           | Pressure                               | Ratio   | 1.15 [-]        |
| Effective Valve Lift                   | Marcado         |           | Effective Valv                         | ve Lift | Marcado         |
| Valve Lift [mm]                        | Flow Coeff. [-] |           | Valve Lift                             | [mm]    | Flow Coeff. [-] |
| 0                                      | 0               |           |                                        | 0       | 0               |
| 1                                      | 0.08034         |           |                                        | 1       | 0,118845        |
| 2                                      | 0.16352         |           |                                        | 2       | 0,259688        |
| 3                                      | 0.2546          |           |                                        | 3       | 0,412869        |
| 4                                      | 0.3471          |           |                                        | 4       | 0,556368        |
| 5                                      | 0.43063         |           |                                        | 5       | 0,669741        |
| 6                                      | 0.49646         |           |                                        | 6       | 0,742813        |
| 7                                      | 0.54071         |           |                                        | 7       | 0,779311        |
| 8                                      | 0.56534         |           |                                        | 8       | 0,795418        |
| 9                                      | 0.57686         |           |                                        | 9       | 0,813262        |
| 10                                     | 0.58274         | <b>F</b>  |                                        |         |                 |

Figura 29 - Cylinder - Valve Port Specifications

**Valve Port Specifications** 

Fonte: Elaborado pelo autor

**Figura 30 - Junction** 

| Junction - J1 / J2              |                   |  |  |  |  |
|---------------------------------|-------------------|--|--|--|--|
| General                         |                   |  |  |  |  |
| Junction Type Constant Pressure |                   |  |  |  |  |
| Constant                        | Constant Pressure |  |  |  |  |
| Pipe Inflow                     | 1[-]              |  |  |  |  |
| Pipe Outflow                    | 1[-]              |  |  |  |  |

| - Catal | lyst    |
|---------|---------|
|         | - Catal |

| Catalyst - CAT 1            |                      |  |  |  |  |  |
|-----------------------------|----------------------|--|--|--|--|--|
| General                     |                      |  |  |  |  |  |
| Chemical Reactions          | Não marcado          |  |  |  |  |  |
| Monolith Volume             | 2.451 [L]            |  |  |  |  |  |
| Length of Monolith          | 240 [mm]             |  |  |  |  |  |
| Inlet Collector Volume      | 0.614 [L]            |  |  |  |  |  |
| Outlect Collector Volume    | 0.614 [L]            |  |  |  |  |  |
| Type Specifi                | cation               |  |  |  |  |  |
| Catalyst Type Specification | Square Cell Catalyst |  |  |  |  |  |
| Cell Density (CPSI)         | 600 [1/in²]          |  |  |  |  |  |
| Wall Thickness              | 36.18 [micron]       |  |  |  |  |  |
| Friction                    | n                    |  |  |  |  |  |
| Friction Specification      | Coefficient          |  |  |  |  |  |
| Coefficient a               | 64 [-]               |  |  |  |  |  |
| Coefficient b               | -1[-]                |  |  |  |  |  |
| Turbulent                   | 0.019 [-]            |  |  |  |  |  |
| Channel Shape               | Square               |  |  |  |  |  |
| Result Specif               | ication              |  |  |  |  |  |
| Spatial Positions           | Use 5 Points         |  |  |  |  |  |
| Type of Results             | Standard             |  |  |  |  |  |
| Flow Coeffi                 | cients               |  |  |  |  |  |
| Pipe 25 Inflow              | 1[-]                 |  |  |  |  |  |
| Pipe 25 Outflow             | 1[-]                 |  |  |  |  |  |
| Pipe 26 Inflow              | 1[-]                 |  |  |  |  |  |
| Pipe 26 Outflow             | 1[-]                 |  |  |  |  |  |

| Pipe                      | 1                   |    | Pipe                      | 2                   |
|---------------------------|---------------------|----|---------------------------|---------------------|
| Genera                    | al                  | 11 | Gener                     | al                  |
| Pipe Length               | 500 [mm]            |    | Pipe Length               | 300 [mm]            |
| Diameter                  | 65 [mm]             |    | Diameter                  | 65 [mm]             |
| Hydraulic Setting         | Não marcado         |    | Hydraulic Setting         | Não marcado         |
| Bent Pipe                 | Não marcado         |    | , Bent Pipe               | Não marcado         |
| Lam. Friction Coeff.      | 64 [-]              |    | Lam. Friction Coeff.      | 64 [-]              |
| Turbulent Friction        | Surface Roughness   |    | Turbulent Friction        | Surface Roughness   |
| Surface Roughness         | 0.0015 [-]          |    | Surface Roughness         | 0.0015 [-]          |
| Friction Multiplier       | 1[-]                |    | Friction Multiplier       | 1[-]                |
| Absorptive Material       | Não marcado         |    | Absorptive Material       | Não marcado         |
| Gas/Wall Heat Transfer    | Re-Analogy          |    | Gas/Wall Heat Transfer    | Re-Analogy          |
| Heat Transfer Factor      | 1[-]                |    | Heat Transfer Factor      | 1[-]                |
| Wall Temperature          | 26.85 [degC]        |    | Wall Temperature          | 26.85 [degC]        |
| Variable Wall Temperature | Não marcado         |    | Variable Wall Temperature | Não marcado         |
| Initializat               | tion                | 11 | Initializa                | tion                |
| Global Initialization     | Preference: Set 1   |    | Global Initialization     | Preference: Set 1   |
|                           |                     | זר |                           |                     |
| Pipe                      | 3                   |    | Pipe 4 / 5                | /6/7                |
| Genera                    | al                  |    | Gener                     | al                  |
| Pipe Length               | 300 [mm]            |    | Pipe Length               | 350 [mm]            |
| Diameter                  | 70 [mm]             |    | Diameter                  | 40 [mm]             |
| Hydraulic Setting         | Não marcado         |    | Hydraulic Setting         | Não marcado         |
| Bent Pipe                 | Marcado             |    | Bent Pipe                 | Marcado             |
| Bending Radius            | Table               |    | Bending Radius            | Table               |
| Lam. Friction Coeff.      | 64 [-]              |    | Lam. Friction Coeff.      | 64 [-]              |
| <b>Turbulent Friction</b> | Surface Roughness   |    | <b>Turbulent Friction</b> | Surface Roughness   |
| Surface Roughness         | 0.0015 [-]          |    | Surface Roughness         | 0.0015 [-]          |
| Friction Multiplier       | 1[-]                |    | Friction Multiplier       | 1[-]                |
| Absorptive Material       | Não marcado         |    | Absorptive Material       | Não marcado         |
| Gas/Wall Heat Transfer    | Re-Analogy          |    | Gas/Wall Heat Transfer    | Re-Analogy          |
| Heat Transfer Factor      | 1[-]                |    | Heat Transfer Factor      | 1[-]                |
| Wall Temperature          | 26.85 [degC]        |    | Wall Temperature          | 36.85 [degC]        |
| Variable Wall Temperature | Não marcado         |    | Variable Wall Temperature | Não marcado         |
| Bending R                 | adius               |    | Bending R                 | adius               |
| Location [mm]             | Bending Radius [mm] |    | Location [mm]             | Bending Radius [mm] |
| 0                         | 0                   |    | 0                         | 0                   |
| 120                       | 100000              |    | 110                       | 30                  |
| 300                       | 115                 |    | 350                       | 100000              |
| Initializat               | tion                |    | Initializa                | tion                |
| Global Initialization     | Preference: Set 1   | 11 | Global Initialization     | Preference: Set 2   |

Figura 32 - Pipes A

| Pipe 8 / 9 / 10 / 11                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              | Pipe 12 / 13 / 14 / 15                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| General                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              | Gener                                                                                                                                                                                                                                                                                                          | al                                                                                                                                                                                             |  |
| Pipe Length                                                                                                                                                                                                                                                                                             | 50 [mm]                                                                                                                                                                                                      | Pipe Length                                                                                                                                                                                                                                                                                                    | 50 [mm]                                                                                                                                                                                        |  |
| Diameter                                                                                                                                                                                                                                                                                                | 40 [mm]                                                                                                                                                                                                      | Diameter                                                                                                                                                                                                                                                                                                       | 40 [mm]                                                                                                                                                                                        |  |
| Hydraulic Setting                                                                                                                                                                                                                                                                                       | Não marcado                                                                                                                                                                                                  | Hydraulic Setting                                                                                                                                                                                                                                                                                              | Não marcado                                                                                                                                                                                    |  |
| Bent Pipe                                                                                                                                                                                                                                                                                               | Não marcado                                                                                                                                                                                                  | Bent Pipe                                                                                                                                                                                                                                                                                                      | Não marcado                                                                                                                                                                                    |  |
| Lam. Friction Coeff.                                                                                                                                                                                                                                                                                    | 64 [-]                                                                                                                                                                                                       | Lam. Friction Coeff.                                                                                                                                                                                                                                                                                           | 64 [-]                                                                                                                                                                                         |  |
| Turbulent Friction                                                                                                                                                                                                                                                                                      | Surface Roughness                                                                                                                                                                                            | Turbulent Friction                                                                                                                                                                                                                                                                                             | Surface Roughness                                                                                                                                                                              |  |
| Surface Roughness                                                                                                                                                                                                                                                                                       | 0.25 [-]                                                                                                                                                                                                     | Surface Roughness                                                                                                                                                                                                                                                                                              | 0.25 [-]                                                                                                                                                                                       |  |
| Friction Multiplier                                                                                                                                                                                                                                                                                     | 1[-]                                                                                                                                                                                                         | Friction Multiplier                                                                                                                                                                                                                                                                                            | 1[-]                                                                                                                                                                                           |  |
| Absorptive Material                                                                                                                                                                                                                                                                                     | Não marcado                                                                                                                                                                                                  | Absorptive Material                                                                                                                                                                                                                                                                                            | Não marcado                                                                                                                                                                                    |  |
| Gas/Wall Heat Transfer                                                                                                                                                                                                                                                                                  | Re-Analogy                                                                                                                                                                                                   | Gas/Wall Heat Transfer                                                                                                                                                                                                                                                                                         | Re-Analogy                                                                                                                                                                                     |  |
| Heat Transfer Factor                                                                                                                                                                                                                                                                                    | 1[-]                                                                                                                                                                                                         | Heat Transfer Factor                                                                                                                                                                                                                                                                                           | 1[-]                                                                                                                                                                                           |  |
| Wall Temperature                                                                                                                                                                                                                                                                                        | 66.85 [degC]                                                                                                                                                                                                 | Wall Temperature                                                                                                                                                                                                                                                                                               | 66.85 [degC]                                                                                                                                                                                   |  |
| Variable Wall Temperature                                                                                                                                                                                                                                                                               | Não marcado                                                                                                                                                                                                  | Variable Wall Temperature                                                                                                                                                                                                                                                                                      | Não marcado                                                                                                                                                                                    |  |
| Initialization                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              | Initialization                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |  |
| Global Initialization                                                                                                                                                                                                                                                                                   | Preference: Set 3                                                                                                                                                                                            | Global Initialization                                                                                                                                                                                                                                                                                          | Preference: Set 3                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |  |
| Pipe 16 / 17                                                                                                                                                                                                                                                                                            | / 18 / 19                                                                                                                                                                                                    | Pipe                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                             |  |
| Pipe 16 / 17                                                                                                                                                                                                                                                                                            | / 18 / 19                                                                                                                                                                                                    | Pipe S                                                                                                                                                                                                                                                                                                         | <b>22</b><br>al                                                                                                                                                                                |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length                                                                                                                                                                                                                                                                   | <b>/ 18 / 19</b><br>al<br>50 [mm]                                                                                                                                                                            | Pipe S<br>Gener<br>Pipe Length                                                                                                                                                                                                                                                                                 | <b>22</b><br>al<br>70 [mm]                                                                                                                                                                     |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter                                                                                                                                                                                                                                                       | <b>/ 18 / 19</b><br>al<br>50 [mm]<br>40 [mm]                                                                                                                                                                 | Pipe S<br>Gener<br>Pipe Length<br>Diameter                                                                                                                                                                                                                                                                     | <b>22</b><br>al<br>70 [mm]<br>40 [mm]                                                                                                                                                          |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting                                                                                                                                                                                                                                  | <b>/ 18 / 19</b><br>al<br>50 [mm]<br>40 [mm]<br>Não marcado                                                                                                                                                  | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting                                                                                                                                                                                                                                                | <b>22</b><br>al<br>70 [mm]<br>40 [mm]<br>Não marcado                                                                                                                                           |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe                                                                                                                                                                                                                     | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado                                                                                                                                         | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe                                                                                                                                                                                                                                   | <b>22</b><br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado                                                                                                                            |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.                                                                                                                                                                                             | <b>/ 18 / 19</b><br>al<br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]                                                                                                                         | Pipe S<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.                                                                                                                                                                                                           | <b>22</b><br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]                                                                                                                  |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction                                                                                                                                                                       | <b>/ 18 / 19</b><br><b>al</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness                                                                                             | Pipe S<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction                                                                                                                                                                                     | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness                                                                                                    |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness                                                                                                                                                  | <b>/ 18 / 19</b><br><b>al</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]                                                                                 | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness                                                                                                                                                                | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]                                                                                        |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier                                                                                                                           | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]                                                                                     | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier                                                                                                                                         | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]                                                                               |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material                                                                                                    | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado                                                                      | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material                                                                                                                  | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado                                                                |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer                                                                          | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy                                                        | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer                                                                                        | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy                                                  |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor                                                  | <b>/ 18 / 19</b><br><b>al</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]                                  | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor                                                                | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]                                                        |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature                              | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>576.85 [degC]                              | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature                                            | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>476.85 [degC]                                       |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature<br>Variable Wall Temperature | <b>/ 18 / 19</b><br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>576.85 [degC]<br>Não marcado               | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature<br>Variable Wall Temperature               | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Aão marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>476.85 [degC]<br>Não marcado         |  |
| Pipe 16 / 17<br>Genera<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature<br>Variable Wall Temperature | <b>/ 18 / 19</b><br>al<br>50 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.25 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>576.85 [degC]<br>Não marcado<br>tion | Pipe 2<br>Gener<br>Pipe Length<br>Diameter<br>Hydraulic Setting<br>Bent Pipe<br>Lam. Friction Coeff.<br>Turbulent Friction<br>Surface Roughness<br>Friction Multiplier<br>Absorptive Material<br>Gas/Wall Heat Transfer<br>Heat Transfer Factor<br>Wall Temperature<br>Variable Wall Temperature<br>Initializa | 22<br>al<br>70 [mm]<br>40 [mm]<br>Não marcado<br>Não marcado<br>64 [-]<br>Surface Roughness<br>0.05 [-]<br>1 [-]<br>Não marcado<br>Re-Analogy<br>1 [-]<br>476.85 [degC]<br>Não marcado<br>tion |  |

Figura 33 - Pipes B

| Pipe 20                   | / 21                | Pipe 23                   | / 24                |
|---------------------------|---------------------|---------------------------|---------------------|
| Genera                    | al                  | Genera                    | al                  |
| Pipe Length               | 110 [mm]            | Pipe Length               | 200 [mm]            |
| Diameter                  | 40 [mm]             | Diameter                  | 40 [mm]             |
| Hydraulic Setting         | Não marcado         | Hydraulic Setting         | Não marcado         |
| Bent Pipe                 | Marcado             | Bent Pipe                 | Marcado             |
| Bending Radius            | Table               | Bending Radius            | Table               |
| Lam. Friction Coeff.      | 64 [-]              | Lam. Friction Coeff.      | 64 [-]              |
| Turbulent Friction        | Surface Roughness   | Turbulent Friction        | Surface Roughness   |
| Surface Roughness         | 0.05 [-]            | Surface Roughness         | 0.05 [-]            |
| Friction Multiplier       | 1[-]                | Friction Multiplier       | 1[-]                |
| Absorptive Material       | Não marcado         | Absorptive Material       | Não marcado         |
| Gas/Wall Heat Transfer    | Re-Analogy          | Gas/Wall Heat Transfer    | Re-Analogy          |
| Heat Transfer Factor      | 1[-]                | Heat Transfer Factor      | 1[-]                |
| Wall Temperature          | 476.85 [degC]       | Wall Temperature          | 476.85 [degC]       |
| Variable Wall Temperature | Não marcado         | Variable Wall Temperature | Não marcado         |
| Bending R                 | adius               | Bending R                 | adius               |
| Location [mm]             | Bending Radius [mm] | Location [mm]             | Bending Radius [mm] |
| 0                         | 0                   | 0                         | 0                   |
| 60                        | 57                  | 60                        | 57                  |
| 110                       | 100000              | 110                       | 100000              |
| Initializat               | tion                | Initializa                | tion                |
| Global Initialization     | Preference: Set 4   | Global Initialization     | Preference: Set 4   |
| Pipe 2                    | 25                  | Pipe 2                    | 26                  |
| Genera                    | al                  | Gener                     | al                  |
| Pipe Length               | 50 [mm]             | Pipe Length               | 2160 [mm]           |
| Diameter                  | 40 [mm]             | Diameter                  | 46 [mm]             |
| Hydraulic Setting         | Não marcado         | Hydraulic Setting         | Não marcado         |
| Bent Pine                 | Não marcado         | Bent Pine                 | Não marcado         |
| Lam. Friction Coeff.      | 64 [-]              | Lam. Friction Coeff.      | 64 [-]              |
| Turbulent Friction        | Surface Roughness   | Turbulent Friction        | Surface Roughness   |
| Surface Roughness         | 0.05[-]             | Surface Boughness         | 0.05 [-]            |
| Friction Multiplier       | 1[-]                | Friction Multiplier       | 1[-]                |
| Absorptive Material       | Não marcado         | Absorptive Material       | Não marcado         |
| Gas/Wall Heat Transfer    | Re-Analogy          | Gas/Wall Heat Transfer    | Re-Analogy          |
| Heat Transfer Factor      | 1[-]                | Heat Transfer Factor      | 1[-]                |
| Wall Temperature          | 476.85 [degC]       | Wall Temperature          | 326.85 [degC]       |
| Variable Wall Temperature | Não marcado         | Variable Wall Temperature | Não marcado         |
| Initializat               | tion                | Initializa                | tion                |
| Global Initialization     | Preference: Set 4   | Global Initialization     | Preference: Set 4   |

Figura 34 - Pipes C

|           | Comp_ratio     | 10.5     | [-] Ratio                |
|-----------|----------------|----------|--------------------------|
| Etanol    | Evap_heat      | 846      | kJ/kg (Evaporation Heat) |
| Gasolina  | Evap_heat      | 318      | kJ/kg (Evaporation Heat) |
| Etanol    | Vibe_m         | 1.22     | [-] Ratio                |
| Gasolina  | Vibe_m         | 1.50     | [-] Ratio                |
| Rc = 10,5 | Cyl_head_area  | 5089.931 | mm² (Area)               |
| Rc = 14,5 | Cyl_head_area  | 4902.535 | mm² (Area)               |
|           | Engine_speed   | Case Set | rpm (Angular velocity)   |
|           | P_amb          | Case Set | bar (Pressure)           |
|           | T_amb          | Case Set | degC (Temperature)       |
|           | Throttle_angle | Case Set | deg (Angle)              |
|           | P_mainfold     | Case Set | bar (Pressure)           |
|           | T_mainfold     | Case Set | degC (Temperature)       |
|           | AF_ratio       | Case Set | [-] Ratio                |
|           | Fuel_vapour    | Case Set | [-] Ratio                |
|           | Inj_rate       | Case Set | g/s (Massflow)           |
|           | Inj_timing     | Case Set | deg (Angle)              |
|           | Start_comb     | Case Set | deg (Angle)              |
|           | Comb_dur       | Case Set | deg (Angle)              |
|           | T_exh_open     | Case Set | degC (Temperature)       |

Figura 35 - Parameters

## **APÊNDICE B - Case Sets**

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 1  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,6  | 30,0           | 0,897      | 24,0       | 9,14     |
| Case 2 | 2500         | 0,909 | 22,4  | 72,0           | 0,897      | 24,0       | 8,63     |
| Case 3 | 3000         | 0,909 | 22,8  | 43,0           | 0,898      | 24,0       | 8,40     |
| Case 4 | 3500         | 0,909 | 23,1  | 40,0           | 0,897      | 24,0       | 8,71     |
| Case 5 | 4000         | 0,909 | 23,4  | 56,0           | 0,891      | 24,0       | 8,50     |
| Case 6 | 4500         | 0,909 | 23,7  | 90,0           | 0,885      | 24,7       | 8,31     |
| Case 7 | 5000         | 0,909 | 23,8  | 90,0           | 0,885      | 24,6       | 8,36     |
| Case 8 | 5500         | 0,908 | 23,7  | 90,0           | 0,883      | 25,0       | 8,33     |
| Case 9 | 6000         | 0,908 | 23,4  | 90,0           | 0,889      | 26,0       | 7,96     |

## Quadro 6 - Case Set - Modelo de Validação Etanol Carga A

CASE SET - MODELO DE VALIDAÇÃO ETANOL CARGA A

| Set 1  | rpm                                   | bar                                   | degC     | deg        | bar                                   | degC     | [-]        |
|--------|---------------------------------------|---------------------------------------|----------|------------|---------------------------------------|----------|------------|
| Case 1 | 2000                                  | 0,908                                 | 22,6     | 30,0       | 0,897                                 | 24,0     | 9,14       |
| Case 2 | 2500                                  | 0,909                                 | 22,4     | 72,0       | 0,897                                 | 24,0     | 8,63       |
| Case 3 | 3000                                  | 0,909                                 | 22,8     | 43,0       | 0,898                                 | 24,0     | 8,40       |
| Case 4 | 3500                                  | 0,909                                 | 23,1     | 40,0       | 0,897                                 | 24,0     | 8,71       |
| Case 5 | 4000                                  | 0,909                                 | 23,4     | 56,0       | 0,891                                 | 24,0     | 8,50       |
| Case 6 | 4500                                  | 0,909                                 | 23,7     | 90,0       | 0,885                                 | 24,7     | 8,31       |
| Case 7 | 5000                                  | 0,909                                 | 23,8     | 90,0       | 0,885                                 | 24,6     | 8,36       |
| Case 8 | 5500                                  | 0,908                                 | 23,7     | 90,0       | 0,883                                 | 25,0     | 8,33       |
| Case 9 | 6000                                  | 0,908                                 | 23,4     | 90,0       | 0,889                                 | 26,0     | 7,96       |
|        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |          |            | · · · · · · · · · · · · · · · · · · · |          | ·          |
| Case   | Engine_Speed                          | Fuel_vapour                           | Inj_rate | Inj_timing | Start_comb                            | Comb_dur | T_exh_open |

deg

490

490

490

490

490

deg

-8,3

-24,0

-19,9

-21,0

-26,7

deg

40

40

45

45

45

45

50

55

55

degC

745

778

779

798

833

848

874

891

895

| 2500 | 0,116 | 3,41 | 490 | -10,6 |
|------|-------|------|-----|-------|
| 3000 | 0,119 | 3,37 | 490 | -18,2 |
| 3500 | 0,115 | 3,37 | 490 | -18,0 |
| 4000 | 0,118 | 3,39 | 490 | -23,4 |

3,37

3,41

3,42

3,39

g/s

3,37

[-]

0,109

0,120

0,120

0,120

0,126

Set 1

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

rpm

2000

4500

5000

5500

6000

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,6  | 19,5           | 0,799      | 25,0       | 8,98     |
| Case 2 | 2500         | 0,909 | 22,6  | 22,8           | 0,773      | 24,0       | 9,01     |
| Case 3 | 3000         | 0,909 | 22,9  | 26,5           | 0,791      | 25,0       | 9,00     |
| Case 4 | 3500         | 0,909 | 23,3  | 26,3           | 0,771      | 25,0       | 9,01     |
| Case 5 | 4000         | 0,909 | 23,7  | 28,3           | 0,722      | 26,0       | 9,02     |
| Case 6 | 4500         | 0,909 | 24,6  | 30,1           | 0,700      | 26,0       | 9,03     |
| Case 7 | 5000         | 0,909 | 24,5  | 32,7           | 0,722      | 26,0       | 9,02     |
| Case 8 | 5500         | 0,908 | 24,3  | 39,1           | 0,761      | 26,0       | 9,01     |
| Case 9 | 6000         | 0,908 | 23,7  | 52,9           | 0,832      | 27,0       | 8,15     |

Quadro 7 - Case Set - Modelo de Validação Etanol Carga B

CASE SET - MODELO DE VALIDAÇÃO ETANOL CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,111       | 3,35     | 490        | -4,5       | 35       | 762        |
| Case 2 | 2500         | 0,111       | 3,38     | 490        | -6,7       | 35       | 802        |
| Case 3 | 3000         | 0,111       | 3,42     | 490        | -12,9      | 40       | 830        |
| Case 4 | 3500         | 0,111       | 3,42     | 490        | -13,0      | 40       | 851        |
| Case 5 | 4000         | 0,111       | 3,39     | 490        | -14,9      | 40       | 868        |
| Case 6 | 4500         | 0,111       | 3,41     | 490        | -15,9      | 40       | 893        |
| Case 7 | 5000         | 0,111       | 3,39     | 490        | -11,2      | 45       | 916        |
| Case 8 | 5500         | 0,111       | 3,56     | 490        | -16,6      | 50       | 912        |
| Case 9 | 6000         | 0,123       | 3,43     | 490        | -26,6      | 50       | 900        |

|        |              |       |       | ,              |            |            |          |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,4  | 12,2           | 0,506      | 25,0       | 8,91     |
| Case 2 | 2500         | 0,909 | 22,4  | 14,2           | 0,493      | 25,0       | 8,97     |
| Case 3 | 3000         | 0,909 | 22,6  | 15,7           | 0,511      | 25,0       | 8,96     |
| Case 4 | 3500         | 0,909 | 22,8  | 17,4           | 0,494      | 26,0       | 8,97     |
| Case 5 | 4000         | 0,909 | 23,0  | 19,0           | 0,458      | 26,0       | 9,01     |
| Case 6 | 4500         | 0,909 | 23,5  | 20,6           | 0,450      | 27,0       | 9,01     |
| Case 7 | 5000         | 0,909 | 23,6  | 22,0           | 0,463      | 27,0       | 8,98     |
| Case 8 | 5500         | 0,909 | 23,7  | 23,6           | 0,492      | 27,0       | 8,98     |
| Case 9 | 6000         | 0,908 | 23,3  | 25,7           | 0,554      | 27,0       | 9,00     |

Quadro 8 - Case Set - Modelo de Validação Etanol Carga C

CASE SET - MODELO DE VALIDAÇÃO ETANOL CARGA C

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,112       | 3,32     | 490        | -4,6       | 35       | 661        |
| Case 2 | 2500         | 0,111       | 3,30     | 490        | -7,3       | 35       | 721        |
| Case 3 | 3000         | 0,112       | 3,36     | 490        | -5,5       | 35       | 748        |
| Case 4 | 3500         | 0,111       | 3,34     | 490        | -6,3       | 35       | 782        |
| Case 5 | 4000         | 0,111       | 3,33     | 490        | -7,7       | 35       | 819        |
| Case 6 | 4500         | 0,111       | 3,35     | 490        | -9,3       | 40       | 852        |
| Case 7 | 5000         | 0,111       | 3,33     | 490        | -11,2      | 40       | 865        |
| Case 8 | 5500         | 0,111       | 3,39     | 490        | -11,3      | 40       | 883        |
| Case 9 | 6000         | 0,111       | 3,39     | 490        | -19,9      | 45       | 907        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 1  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,911 | 19,0  | 27,0           | 0,893      | 24,0       | 12,43    |
| Case 2 | 2500         | 0,911 | 19,0  | 90,0           | 0,895      | 24,0       | 12,41    |
| Case 3 | 3000         | 0,911 | 20,0  | 90,0           | 0,896      | 22,8       | 12,14    |
| Case 4 | 3500         | 0,911 | 20,0  | 90,0           | 0,895      | 22,8       | 12,44    |
| Case 5 | 4000         | 0,911 | 20,0  | 90,0           | 0,889      | 23,0       | 11,63    |
| Case 6 | 4500         | 0,911 | 21,0  | 90,0           | 0,884      | 24,0       | 11,04    |
| Case 7 | 5000         | 0,911 | 21,0  | 90,0           | 0,885      | 24,0       | 10,80    |
| Case 8 | 5500         | 0,911 | 21,0  | 90,0           | 0,884      | 25,0       | 10,31    |
| Case 9 | 6000         | 0,911 | 21,0  | 90,0           | 0,883      | 27,0       | 10,15    |

Quadro 9 - Case Set - Modelo de Validação Gasolina Carga A

CASE SET - MODELO DE VALIDAÇÃO GASOLINA CARGA A

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 1  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,080       | 3,43     | 490        | -3,1       | 35       | 766        |
| Case 2 | 2500         | 0,081       | 3,43     | 490        | -4,7       | 35       | 853        |
| Case 3 | 3000         | 0,082       | 3,43     | 490        | -8,9       | 35       | 817        |
| Case 4 | 3500         | 0,080       | 3,43     | 490        | -9,9       | 35       | 846        |
| Case 5 | 4000         | 0,086       | 3,43     | 490        | -8,7       | 40       | 862        |
| Case 6 | 4500         | 0,091       | 3,43     | 490        | -7,1       | 40       | 871        |
| Case 7 | 5000         | 0,093       | 3,43     | 490        | -7,0       | 45       | 871        |
| Case 8 | 5500         | 0,097       | 3,43     | 490        | -11,9      | 45       | 871        |
| Case 9 | 6000         | 0,099       | 3,43     | 490        | -11,2      | 45       | 856        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,904 | 20,0  | 22,4           | 0,809      | 24,0       | 13,18    |
| Case 2 | 2500         | 0,903 | 20,0  | 23,8           | 0,777      | 24,0       | 13,21    |
| Case 3 | 3000         | 0,903 | 19,0  | 27,4           | 0,775      | 21,0       | 13,16    |
| Case 4 | 3500         | 0,904 | 19,0  | 27,4           | 0,763      | 23,0       | 13,14    |
| Case 5 | 4000         | 0,905 | 20,0  | 27,7           | 0,699      | 25,0       | 12,37    |
| Case 6 | 4500         | 0,906 | 20,0  | 29,1           | 0,671      | 25,0       | 11,90    |
| Case 7 | 5000         | 0,907 | 22,0  | 31,7           | 0,691      | 27,0       | 11,33    |
| Case 8 | 5500         | 0,907 | 22,0  | 34,5           | 0,711      | 28,0       | 11,20    |
| Case 9 | 6000         | 0,907 | 21,0  | 49,5           | 0,799      | 28,0       | 11,19    |

Quadro 10 - Case Set - Modelo de Validação Gasolina Carga B

CASE SET - MODELO DE VALIDAÇÃO GASOLINA CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,076       | 3,50     | 490        | -3,5       | 35       | 841        |
| Case 2 | 2500         | 0,076       | 3,48     | 490        | -5,7       | 35       | 859        |
| Case 3 | 3000         | 0,076       | 3,42     | 490        | -8,8       | 35       | 876        |
| Case 4 | 3500         | 0,076       | 3,52     | 490        | -9,6       | 40       | 903        |
| Case 5 | 4000         | 0,081       | 3,60     | 490        | -9,5       | 40       | 870        |
| Case 6 | 4500         | 0,084       | 3,61     | 490        | -12,1      | 40       | 868        |
| Case 7 | 5000         | 0,088       | 3,60     | 490        | -14,0      | 45       | 859        |
| Case 8 | 5500         | 0,089       | 3,61     | 490        | -13,2      | 45       | 879        |
| Case 9 | 6000         | 0,089       | 3,61     | 490        | -13,1      | 45       | 887        |

-

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,904 | 20,0  | 11,9           | 0,489      | 25,0       | 13,16    |
| Case 2 | 2500         | 0,904 | 21,0  | 13,6           | 0,475      | 25,0       | 13,17    |
| Case 3 | 3000         | 0,903 | 19,0  | 15,0           | 0,481      | 23,0       | 13,19    |
| Case 4 | 3500         | 0,904 | 19,0  | 16,4           | 0,456      | 24,0       | 13,14    |
| Case 5 | 4000         | 0,905 | 21,0  | 17,8           | 0,413      | 26,0       | 13,14    |
| Case 6 | 4500         | 0,906 | 21,0  | 18,9           | 0,398      | 26,0       | 13,12    |
| Case 7 | 5000         | 0,907 | 20,0  | 20,4           | 0,416      | 25,0       | 13,14    |
| Case 8 | 5500         | 0,907 | 22,0  | 21,6           | 0,435      | 29,0       | 13,16    |
| Case 9 | 6000         | 0,907 | 22,0  | 26,9           | 0,580      | 29,0       | 12,60    |
|        | -            |       |       |                |            |            |          |

Quadro 11 - Case Set - Modelo de Validação Gasolina Carga C

CASE SET - MODELO DE VALIDAÇÃO GASOLINA CARGA C

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,076       | 3,41     | 490        | -7,8       | 35       | 717        |
| Case 2 | 2500         | 0,076       | 3,36     | 490        | -9,6       | 35       | 751        |
| Case 3 | 3000         | 0,076       | 3,25     | 490        | -10,9      | 40       | 781        |
| Case 4 | 3500         | 0,076       | 3,36     | 490        | -11,6      | 40       | 822        |
| Case 5 | 4000         | 0,076       | 3,42     | 490        | -10,6      | 40       | 851        |
| Case 6 | 4500         | 0,076       | 3,42     | 490        | -12,8      | 40       | 882        |
| Case 7 | 5000         | 0,076       | 3,40     | 490        | -10,3      | 40       | 903        |
| Case 8 | 5500         | 0,076       | 3,43     | 490        | -13,9      | 45       | 921        |
| Case 9 | 6000         | 0,079       | 3,57     | 490        | -14,9      | 45       | 918        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,6  | 90,0           | 0,897      | 25,0       | 8,98     |
| Case 2 | 2500         | 0,909 | 22,6  | 90,0           | 0,897      | 24,0       | 9,01     |
| Case 3 | 3000         | 0,909 | 22,9  | 90,0           | 0,898      | 25,0       | 9,00     |
| Case 4 | 3500         | 0,909 | 23,3  | 90,0           | 0,897      | 25,0       | 9,01     |
| Case 5 | 4000         | 0,909 | 23,7  | 90,0           | 0,891      | 26,0       | 9,02     |
| Case 6 | 4500         | 0,909 | 24,6  | 90,0           | 0,885      | 26,0       | 9,03     |
| Case 7 | 5000         | 0,909 | 24,5  | 90,0           | 0,885      | 26,0       | 9,02     |
| Case 8 | 5500         | 0,908 | 24,3  | 90,0           | 0,883      | 26,0       | 9,01     |
| Case 9 | 6000         | 0,908 | 23,7  | 90,0           | 0,889      | 27,0       | 8,15     |

Quadro 12 - Case Set - Modelo EIVC Etanol Carga B

CASE SET - MODELO EIVC ETANOL CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,111       | 3,35     | 470        | -4,5       | 35       | 762        |
| Case 2 | 2500         | 0,111       | 3,38     | 470        | -6,7       | 35       | 802        |
| Case 3 | 3000         | 0,111       | 3,42     | 466        | -12,9      | 40       | 830        |
| Case 4 | 3500         | 0,111       | 3,42     | 472        | -13,0      | 40       | 851        |
| Case 5 | 4000         | 0,111       | 3,39     | 484        | -14,9      | 40       | 868        |
| Case 6 | 4500         | 0,111       | 3,41     | 490        | -15,9      | 40       | 893        |
| Case 7 | 5000         | 0,111       | 3,39     | 490        | -11,2      | 45       | 916        |
| Case 8 | 5500         | 0,111       | 3,56     | 490        | -16,6      | 50       | 912        |
| Case 9 | 6000         | 0,123       | 3,43     | 490        | -26,6      | 50       | 900        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,4  | 90,0           | 0,897      | 25,0       | 8,91     |
| Case 2 | 2500         | 0,909 | 22,4  | 90,0           | 0,897      | 25,0       | 8,97     |
| Case 3 | 3000         | 0,909 | 22,6  | 90,0           | 0,898      | 25,0       | 8,96     |
| Case 4 | 3500         | 0,909 | 22,8  | 90,0           | 0,897      | 26,0       | 8,97     |
| Case 5 | 4000         | 0,909 | 23,0  | 90,0           | 0,891      | 26,0       | 9,01     |
| Case 6 | 4500         | 0,909 | 23,5  | 90,0           | 0,885      | 27,0       | 9,01     |
| Case 7 | 5000         | 0,909 | 23,6  | 90,0           | 0,885      | 27,0       | 8,98     |
| Case 8 | 5500         | 0,909 | 23,7  | 90,0           | 0,883      | 27,0       | 8,98     |
| Case 9 | 6000         | 0,908 | 23,3  | 90,0           | 0,889      | 27,0       | 9,00     |
|        |              |       |       |                |            |            |          |

Quadro 13 - Case Set - Modelo EIVC Etanol Carga C

CASE SET - MODELO EIVC ETANOL CARGA C

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,112       | 3,32     | 426        | -4,6       | 35       | 661        |
| Case 2 | 2500         | 0,111       | 3,30     | 432        | -7,3       | 35       | 721        |
| Case 3 | 3000         | 0,112       | 3,36     | 432        | -5,5       | 35       | 748        |
| Case 4 | 3500         | 0,111       | 3,34     | 444        | -6,3       | 35       | 782        |
| Case 5 | 4000         | 0,111       | 3,33     | 452        | -7,7       | 35       | 819        |
| Case 6 | 4500         | 0,111       | 3,35     | 460        | -9,3       | 40       | 852        |
| Case 7 | 5000         | 0,111       | 3,33     | 464        | -11,2      | 40       | 865        |
| Case 8 | 5500         | 0,111       | 3,39     | 468        | -11,3      | 40       | 883        |
| Case 9 | 6000         | 0,111       | 3,39     | 484        | -19,9      | 45       | 907        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |  |  |  |  |
|--------|--------------|-------|-------|----------------|------------|------------|----------|--|--|--|--|
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |  |  |  |  |
| Case 1 | 2000         | 0,904 | 20,0  | 90,0           | 0,886      | 24,0       | 13,18    |  |  |  |  |
| Case 2 | 2500         | 0,903 | 20,0  | 90,0           | 0,888      | 24,0       | 13,21    |  |  |  |  |
| Case 3 | 3000         | 0,903 | 19,0  | 90,0           | 0,888      | 21,0       | 13,16    |  |  |  |  |
| Case 4 | 3500         | 0,904 | 19,0  | 90,0           | 0,888      | 23,0       | 13,14    |  |  |  |  |
| Case 5 | 4000         | 0,905 | 20,0  | 90,0           | 0,883      | 25,0       | 12,37    |  |  |  |  |
| Case 6 | 4500         | 0,906 | 20,0  | 90,0           | 0,879      | 25,0       | 11,90    |  |  |  |  |
| Case 7 | 5000         | 0,907 | 22,0  | 90,0           | 0,881      | 27,0       | 11,33    |  |  |  |  |
| Case 8 | 5500         | 0,907 | 22,0  | 90,0           | 0,880      | 28,0       | 11,20    |  |  |  |  |
| Case 9 | 6000         | 0,907 | 21,0  | 90,0           | 0,879      | 28,0       | 11,19    |  |  |  |  |

Quadro 14 - Case Set - Modelo EIVC Gasolina Carga B

| Set 2      | rpm          | bar         | degC     | deg        | bar        | degC     | [-]       |
|------------|--------------|-------------|----------|------------|------------|----------|-----------|
| Case 1     | 2000         | 0,904       | 20,0     | 90,0       | 0,886      | 24,0     | 13,18     |
| Case 2     | 2500         | 0,903       | 20,0     | 90,0       | 0,888      | 24,0     | 13,21     |
| Case 3     | 3000         | 0,903       | 19,0     | 90,0       | 0,888      | 21,0     | 13,16     |
| Case 4     | 3500         | 0,904       | 19,0     | 90,0       | 0,888      | 23,0     | 13,14     |
| Case 5     | 4000         | 0,905       | 20,0     | 90,0       | 0,883      | 25,0     | 12,37     |
| Case 6     | 4500         | 0,906       | 20,0     | 90,0       | 0,879      | 25,0     | 11,90     |
| Case 7     | 5000         | 0,907       | 22,0     | 90,0       | 0,881      | 27,0     | 11,33     |
| Case 8     | 5500         | 0,907       | 22,0     | 90,0       | 0,880      | 28,0     | 11,20     |
| Case 9     | 6000         | 0,907       | 21,0     | 90,0       | 0,879      | 28,0     | 11,19     |
|            |              |             |          |            |            | •        |           |
| Case       | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_ope |
| Set 2      | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC      |
| <i>a</i> 1 | 2000         | 0.074       | 2.50     | 10.1       |            | 25       | 0.11      |

CASE SET - MODELO EIVC GASOLINA CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,076       | 3,50     | 484        | -3,5       | 35       | 841        |
| Case 2 | 2500         | 0,076       | 3,48     | 482        | -5,7       | 35       | 859        |
| Case 3 | 3000         | 0,076       | 3,42     | 470        | -8,8       | 35       | 876        |
| Case 4 | 3500         | 0,076       | 3,52     | 478        | -9,6       | 40       | 903        |
| Case 5 | 4000         | 0,081       | 3,60     | 486        | -9,5       | 40       | 870        |
| Case 6 | 4500         | 0,084       | 3,61     | 490        | -12,1      | 40       | 868        |
| Case 7 | 5000         | 0,088       | 3,60     | 490        | -14,0      | 45       | 859        |
| Case 8 | 5500         | 0,089       | 3,61     | 490        | -13,2      | 45       | 879        |
| Case 9 | 6000         | 0,089       | 3,61     | 490        | -13,1      | 45       | 887        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,904 | 20,0  | 90,0           | 0,886      | 25,0       | 13,16    |
| Case 2 | 2500         | 0,904 | 21,0  | 90,0           | 0,888      | 25,0       | 13,17    |
| Case 3 | 3000         | 0,903 | 19,0  | 90,0           | 0,889      | 23,0       | 13,19    |
| Case 4 | 3500         | 0,904 | 19,0  | 90,0           | 0,888      | 24,0       | 13,14    |
| Case 5 | 4000         | 0,905 | 21,0  | 90,0           | 0,883      | 26,0       | 13,14    |
| Case 6 | 4500         | 0,906 | 21,0  | 90,0           | 0,879      | 26,0       | 13,12    |
| Case 7 | 5000         | 0,907 | 20,0  | 90,0           | 0,881      | 25,0       | 13,14    |
| Case 8 | 5500         | 0,907 | 22,0  | 90,0           | 0,880      | 29,0       | 13,16    |
| Case 9 | 6000         | 0,907 | 22,0  | 90,0           | 0,879      | 29,0       | 12,60    |

Quadro 15 - Case Set - Modelo EIVC Gasolina Carga C

CASE SET - MODELO EIVC GASOLINA CARGA C

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,076       | 3,41     | 430        | -7,8       | 35       | 717        |
| Case 2 | 2500         | 0,076       | 3,36     | 434        | -9,6       | 35       | 751        |
| Case 3 | 3000         | 0,076       | 3,25     | 434        | -10,9      | 40       | 781        |
| Case 4 | 3500         | 0,076       | 3,36     | 444        | -11,6      | 40       | 822        |
| Case 5 | 4000         | 0,076       | 3,42     | 450        | -10,6      | 40       | 851        |
| Case 6 | 4500         | 0,076       | 3,42     | 456        | -12,8      | 40       | 882        |
| Case 7 | 5000         | 0,076       | 3,40     | 462        | -10,3      | 40       | 903        |
| Case 8 | 5500         | 0,076       | 3,43     | 462        | -13,9      | 45       | 921        |
| Case 9 | 6000         | 0,079       | 3,57     | 490        | -14,9      | 45       | 918        |

|        |              |       |       |                | ,          |            |          |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
| Set 1  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,6  | 30,0           | 0,897      | 24,0       | 9,14     |
| Case 2 | 2500         | 0,909 | 22,4  | 72,0           | 0,897      | 24,0       | 8,63     |
| Case 3 | 3000         | 0,909 | 22,8  | 43,0           | 0,898      | 24,0       | 8,40     |
| Case 4 | 3500         | 0,909 | 23,1  | 40,0           | 0,897      | 24,0       | 8,71     |
| Case 5 | 4000         | 0,909 | 23,4  | 56,0           | 0,891      | 24,0       | 8,50     |
| Case 6 | 4500         | 0,909 | 23,7  | 90,0           | 0,885      | 24,7       | 8,31     |
| Case 7 | 5000         | 0,909 | 23,8  | 90,0           | 0,885      | 24,6       | 8,36     |
| Case 8 | 5500         | 0,908 | 23,7  | 90,0           | 0,883      | 25,0       | 8,33     |
| Case 9 | 6000         | 0,908 | 23,4  | 90,0           | 0,889      | 26,0       | 7,96     |

Quadro 16 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga A

### CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 ETANOL CARGA A

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 1  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,109       | 3,37     | 490        | -8,3       | 40       | 745        |
| Case 2 | 2500         | 0,116       | 3,41     | 490        | -10,6      | 40       | 778        |
| Case 3 | 3000         | 0,119       | 3,37     | 490        | -18,2      | 45       | 779        |
| Case 4 | 3500         | 0,115       | 3,37     | 490        | -18,0      | 45       | 798        |
| Case 5 | 4000         | 0,118       | 3,39     | 490        | -23,4      | 45       | 833        |
| Case 6 | 4500         | 0,120       | 3,37     | 490        | -24,0      | 45       | 848        |
| Case 7 | 5000         | 0,120       | 3,41     | 490        | -19,9      | 50       | 874        |
| Case 8 | 5500         | 0,120       | 3,42     | 490        | -21,0      | 55       | 891        |
| Case 9 | 6000         | 0,126       | 3,39     | 490        | -26,7      | 55       | 895        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,6  | 90,0           | 0,897      | 25,0       | 8,98     |
| Case 2 | 2500         | 0,909 | 22,6  | 90,0           | 0,897      | 24,0       | 9,01     |
| Case 3 | 3000         | 0,909 | 22,9  | 90,0           | 0,898      | 25,0       | 9,00     |
| Case 4 | 3500         | 0,909 | 23,3  | 90,0           | 0,897      | 25,0       | 9,01     |
| Case 5 | 4000         | 0,909 | 23,7  | 90,0           | 0,891      | 26,0       | 9,02     |
| Case 6 | 4500         | 0,909 | 24,6  | 90,0           | 0,885      | 26,0       | 9,03     |
| Case 7 | 5000         | 0,909 | 24,5  | 90,0           | 0,885      | 26,0       | 9,02     |
| Case 8 | 5500         | 0,908 | 24,3  | 90,0           | 0,883      | 26,0       | 9,01     |
| Case 9 | 6000         | 0,908 | 23,7  | 90,0           | 0,889      | 27,0       | 8,15     |

Quadro 17 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga B

CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 ETANOL CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,111       | 3,35     | 468        | -4,5       | 35       | 762        |
| Case 2 | 2500         | 0,111       | 3,38     | 468        | -6,7       | 35       | 802        |
| Case 3 | 3000         | 0,111       | 3,42     | 466        | -12,9      | 40       | 830        |
| Case 4 | 3500         | 0,111       | 3,42     | 470        | -13,0      | 40       | 851        |
| Case 5 | 4000         | 0,111       | 3,39     | 482        | -14,9      | 40       | 868        |
| Case 6 | 4500         | 0,111       | 3,41     | 490        | -15,9      | 40       | 893        |
| Case 7 | 5000         | 0,111       | 3,39     | 490        | -11,2      | 45       | 916        |
| Case 8 | 5500         | 0,111       | 3,56     | 490        | -16,6      | 50       | 912        |
| Case 9 | 6000         | 0,123       | 3,43     | 490        | -26,6      | 50       | 900        |

|        |              |       |       |                | ,          |            |          |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,908 | 22,4  | 90,0           | 0,897      | 25,0       | 8,91     |
| Case 2 | 2500         | 0,909 | 22,4  | 90,0           | 0,897      | 25,0       | 8,97     |
| Case 3 | 3000         | 0,909 | 22,6  | 90,0           | 0,898      | 25,0       | 8,96     |
| Case 4 | 3500         | 0,909 | 22,8  | 90,0           | 0,897      | 26,0       | 8,97     |
| Case 5 | 4000         | 0,909 | 23,0  | 90,0           | 0,891      | 26,0       | 9,01     |
| Case 6 | 4500         | 0,909 | 23,5  | 90,0           | 0,885      | 27,0       | 9,01     |
| Case 7 | 5000         | 0,909 | 23,6  | 90,0           | 0,885      | 27,0       | 8,98     |
| Case 8 | 5500         | 0,909 | 23,7  | 90,0           | 0,883      | 27,0       | 8,98     |
| Case 9 | 6000         | 0,908 | 23,3  | 90,0           | 0,889      | 27,0       | 9,00     |

Quadro 18 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Etanol Carga C

### CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 ETANOL CARGA C

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,112       | 3,32     | 426        | -4,6       | 35       | 661        |
| Case 2 | 2500         | 0,111       | 3,30     | 430        | -7,3       | 35       | 721        |
| Case 3 | 3000         | 0,112       | 3,36     | 430        | -5,5       | 35       | 748        |
| Case 4 | 3500         | 0,111       | 3,34     | 440        | -6,3       | 35       | 782        |
| Case 5 | 4000         | 0,111       | 3,33     | 448        | -7,7       | 35       | 819        |
| Case 6 | 4500         | 0,111       | 3,35     | 456        | -9,3       | 40       | 852        |
| Case 7 | 5000         | 0,111       | 3,33     | 462        | -11,2      | 40       | 865        |
| Case 8 | 5500         | 0,111       | 3,39     | 464        | -11,3      | 40       | 883        |
| Case 9 | 6000         | 0,111       | 3,39     | 478        | -19,9      | 45       | 907        |

| CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 GASOLINA CARGA A |              |       |       |                |            |            |          |  |  |  |
|------------------------------------------------------------------|--------------|-------|-------|----------------|------------|------------|----------|--|--|--|
| Case                                                             | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |  |  |  |
| Set 1                                                            | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |  |  |  |
| Case 1                                                           | 2000         | 0,911 | 19,0  | 90,0           | 0,893      | 24,0       | 12,43    |  |  |  |
| Case 2                                                           | 2500         | 0,911 | 19,0  | 90,0           | 0,895      | 24,0       | 12,41    |  |  |  |
| Case 3                                                           | 3000         | 0,911 | 20,0  | 90,0           | 0,896      | 22,8       | 12,14    |  |  |  |
| Case 4                                                           | 3500         | 0,911 | 20,0  | 90,0           | 0,895      | 22,8       | 12,44    |  |  |  |
| Case 5                                                           | 4000         | 0,911 | 20,0  | 90,0           | 0,889      | 23,0       | 11,63    |  |  |  |
| Case 6                                                           | 4500         | 0,911 | 21,0  | 90,0           | 0,884      | 24,0       | 11,04    |  |  |  |
| Case 7                                                           | 5000         | 0,911 | 21,0  | 90,0           | 0,885      | 24,0       | 10,80    |  |  |  |
| Case 8                                                           | 5500         | 0,911 | 21,0  | 90,0           | 0,884      | 25,0       | 10,31    |  |  |  |
| Case 9                                                           | 6000         | 0,911 | 21,0  | 90,0           | 0,883      | 27,0       | 10,15    |  |  |  |

Quadro 19 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga A

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 1  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,080       | 3,43     | 454        | -3,1       | 35       | 766        |
| Case 2 | 2500         | 0,081       | 3,43     | 454        | -4,7       | 35       | 853        |
| Case 3 | 3000         | 0,082       | 3,43     | 452        | -8,9       | 35       | 817        |
| Case 4 | 3500         | 0,080       | 3,43     | 460        | -9,9       | 35       | 846        |
| Case 5 | 4000         | 0,086       | 3,43     | 474        | -8,7       | 40       | 862        |
| Case 6 | 4500         | 0,091       | 3,43     | 488        | -7,1       | 40       | 871        |
| Case 7 | 5000         | 0,093       | 3,43     | 490        | -7,0       | 45       | 871        |
| Case 8 | 5500         | 0,097       | 3,43     | 490        | -11,9      | 45       | 871        |
| Case 9 | 6000         | 0,099       | 3,43     | 490        | -11,2      | 45       | 856        |

|        |              |       |       |                | ,          |            |          |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
| Set 2  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,904 | 20,0  | 90,0           | 0,886      | 24,0       | 13,18    |
| Case 2 | 2500         | 0,903 | 20,0  | 90,0           | 0,888      | 24,0       | 13,21    |
| Case 3 | 3000         | 0,903 | 19,0  | 90,0           | 0,888      | 21,0       | 13,16    |
| Case 4 | 3500         | 0,904 | 19,0  | 90,0           | 0,888      | 23,0       | 13,14    |
| Case 5 | 4000         | 0,905 | 20,0  | 90,0           | 0,883      | 25,0       | 12,37    |
| Case 6 | 4500         | 0,906 | 20,0  | 90,0           | 0,879      | 25,0       | 11,90    |
| Case 7 | 5000         | 0,907 | 22,0  | 90,0           | 0,881      | 27,0       | 11,33    |
| Case 8 | 5500         | 0,907 | 22,0  | 90,0           | 0,880      | 28,0       | 11,20    |
| Case 9 | 6000         | 0,907 | 21,0  | 90,0           | 0,879      | 28,0       | 11,19    |

Quadro 20 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga B

#### CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 GASOLINA CARGA B

| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 2  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case 1 | 2000         | 0,076       | 3,50     | 454        | -3,5       | 35       | 841        |
| Case 2 | 2500         | 0,076       | 3,48     | 454        | -5,7       | 35       | 859        |
| Case 3 | 3000         | 0,076       | 3,42     | 452        | -8,8       | 35       | 876        |
| Case 4 | 3500         | 0,076       | 3,52     | 462        | -9,6       | 40       | 903        |
| Case 5 | 4000         | 0,081       | 3,60     | 472        | -9,5       | 40       | 870        |
| Case 6 | 4500         | 0,084       | 3,61     | 476        | -12,1      | 40       | 868        |
| Case 7 | 5000         | 0,088       | 3,60     | 482        | -14,0      | 45       | 859        |
| Case 8 | 5500         | 0,089       | 3,61     | 486        | -13,2      | 45       | 879        |
| Case 9 | 6000         | 0,089       | 3,61     | 490        | -13,1      | 45       | 887        |

| Case   | Engine_Speed | P_amb | T_amb | Throttle_angle | P_mainfold | T_mainfold | AF_ratio |
|--------|--------------|-------|-------|----------------|------------|------------|----------|
| Set 3  | rpm          | bar   | degC  | deg            | bar        | degC       | [-]      |
| Case 1 | 2000         | 0,904 | 20,0  | 90,0           | 0,886      | 25,0       | 13,16    |
| Case 2 | 2500         | 0,904 | 21,0  | 90,0           | 0,888      | 25,0       | 13,17    |
| Case 3 | 3000         | 0,903 | 19,0  | 90,0           | 0,889      | 23,0       | 13,19    |
| Case 4 | 3500         | 0,904 | 19,0  | 90,0           | 0,888      | 24,0       | 13,14    |
| Case 5 | 4000         | 0,905 | 21,0  | 90,0           | 0,883      | 26,0       | 13,14    |
| Case 6 | 4500         | 0,906 | 21,0  | 90,0           | 0,879      | 26,0       | 13,12    |
| Case 7 | 5000         | 0,907 | 20,0  | 90,0           | 0,881      | 25,0       | 13,14    |
| Case 8 | 5500         | 0,907 | 22,0  | 90,0           | 0,880      | 29,0       | 13,16    |
| Case 9 | 6000         | 0,907 | 22,0  | 90,0           | 0,879      | 29,0       | 12,60    |

Quadro 21 - Case Set - Modelo de Ciclo Miller com Rc 14,5:1 Gasolina Carga C

CASE SET - MODELO DE CICLO MILLER COM RC 14,5:1 GASOLINA CARGA C

| Case 1 | 2000         | 0,076       | 3,41     | 428        | -7,8       | 35       | 717        |
|--------|--------------|-------------|----------|------------|------------|----------|------------|
| Set 3  | rpm          | [-]         | g/s      | deg        | deg        | deg      | degC       |
| Case   | Engine_Speed | Fuel_vapour | Inj_rate | Inj_timing | Start_comb | Comb_dur | T_exh_open |
|        |              |             |          |            |            |          |            |
| Case 9 | 6000         | 0,907       | 22,0     | 90,0       | 0,879      | 29,0     | 12,60      |
| Case 8 | 5500         | 0,907       | 22,0     | 90,0       | 0,880      | 29,0     | 13,16      |
| Case 7 | 5000         | 0,907       | 20,0     | 90,0       | 0,881      | 25,0     | 13,14      |
| Case 6 | 4500         | 0,906       | 21,0     | 90,0       | 0,879      | 26,0     | 13,12      |
| Case 5 | 4000         | 0,905       | 21,0     | 90,0       | 0,883      | 26,0     | 13,14      |
| Case 4 | 3500         | 0,904       | 19,0     | 90,0       | 0,888      | 24,0     | 13,14      |
| Case 3 | 3000         | 0,903       | 19,0     | 90,0       | 0,889      | 23,0     | 13,19      |
| Case 2 | 2500         | 0,904       | 21,0     | 90,0       | 0,888      | 25,0     | 13,17      |
| Case 1 | 2000         | 0,904       | 20,0     | 90,0       | 0,886      | 25,0     | 13,16      |

Fonte: Elaborado pelo autor

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

2500

3000

3500

4000

4500

5000

5500

6000

0,076

0,076

0,076

0,076

0,076

0,076

0,076

0,079

3,36

3,25

3,36

3,42

3,42

3,40

3,43

3,57

432

432

440

448

452

460

460

484

-9,6

-10,9

-11,6

-10,6

-12,8

-10,3

-13,9

-14,9

35

40

40

40

40

40

45

45

751

781

822

851

882

903

921

918

# APÊNDICE C - Diagramas de válvula

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 98            | 0               | 172           | 4,59464         | 246           | 7,91398         | 320           | 2,45401         |
| 100           | 0,00196         | 174           | 4,79387         | 248           | 7,87572         | 322           | 2,24885         |
| 102           | 0,00785         | 176           | 4,98819         | 250           | 7,83053         | 324           | 2,04969         |
| 104           | 0,01767         | 178           | 5,1774          | 252           | 7,77842         | 326           | 1,85766         |
| 106           | 0,03142         | 180           | 5,36136         | 254           | 7,7194          | 328           | 1,67391         |
| 108           | 0,04713         | 182           | 5,53992         | 256           | 7,65348         | 330           | 1,49947         |
| 110           | 0,06284         | 184           | 5,71297         | 258           | 7,58069         | 332           | 1,33503         |
| 112           | 0,07931         | 186           | 5,88037         | 260           | 7,50105         | 334           | 1,18094         |
| 114           | 0,10035         | 188           | 6,04201         | 262           | 7,41461         | 336           | 1,03737         |
| 116           | 0,13012         | 190           | 6,1978          | 264           | 7,3214          | 338           | 0,90444         |
| 118           | 0,1704          | 192           | 6,34765         | 266           | 7,22149         | 340           | 0,78222         |
| 120           | 0,22144         | 194           | 6,49147         | 268           | 7,11493         | 342           | 0,67072         |
| 122           | 0,28331         | 196           | 6,62917         | 270           | 7,0018          | 344           | 0,56993         |
| 124           | 0,35603         | 198           | 6,76066         | 272           | 6,88215         | 346           | 0,47985         |
| 126           | 0,43961         | 200           | 6,88588         | 274           | 6,75606         | 348           | 0,40048         |
| 128           | 0,53406         | 202           | 7,00475         | 276           | 6,62361         | 350           | 0,33182         |
| 130           | 0,63938         | 204           | 7,11721         | 278           | 6,48491         | 352           | 0,27385         |
| 132           | 0,75555         | 206           | 7,22316         | 280           | 6,34005         | 354           | 0,22656         |
| 134           | 0,88251         | 208           | 7,32259         | 282           | 6,18914         | 356           | 0,18993         |
| 136           | 1,02014         | 210           | 7,41539         | 284           | 6,03229         | 358           | 0,16392         |
| 138           | 1,16824         | 212           | 7,50152         | 286           | 5,86963         | 360           | 0,14744         |
| 140           | 1,32656         | 214           | 7,58092         | 288           | 5,70126         | 362           | 0,13611         |
| 142           | 1,49474         | 216           | 7,65354         | 290           | 5,52732         | 364           | 0,12564         |
| 144           | 1,67235         | 218           | 7,71936         | 292           | 5,34794         | 366           | 0,11517         |
| 146           | 1,85874         | 220           | 7,77833         | 294           | 5,16331         | 368           | 0,1047          |
| 148           | 2,05302         | 222           | 7,83043         | 296           | 4,97358         | 370           | 0,09423         |
| 150           | 2,25411         | 224           | 7,87564         | 298           | 4,77898         | 372           | 0,08376         |
| 152           | 2,46085         | 226           | 7,91392         | 300           | 4,57975         | 374           | 0,07329         |
| 154           | 2,67209         | 228           | 7,94527         | 302           | 4,37616         | 376           | 0,06282         |
| 156           | 2,88668         | 230           | 7,96965         | 304           | 4,16858         | 378           | 0,05235         |
| 158           | 3,10347         | 232           | 7,98707         | 306           | 3,9575          | 380           | 0,04188         |
| 160           | 3,32134         | 234           | 7,99752         | 308           | 3,74359         | 382           | 0,03141         |
| 162           | 3,53921         | 236           | 8,00101         | 310           | 3,52762         | 384           | 0,02094         |
| 164           | 3,75604         | 238           | 7,99752         | 312           | 3,31054         | 386           | 0,01178         |
| 166           | 3,97081         | 240           | 7,98708         | 314           | 3,09346         | 388           | 0,00523         |
| 168           | 4,18262         | 242           | 7,96967         | 316           | 2,87754         | 390           | 0,00131         |
| 170           | 4,39076         | 244           | 7,9453          | 318           | 2,66398         | 392           | 0               |

Figura 36 - Diagrama da válvula de escape

| Fonte: | Elaborado | pelo | autor |
|--------|-----------|------|-------|

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 404           | 4,89992         | 476           | 8,44923         | 548           | 2,45682         |
| 334           | 0,00262         | 406           | 5,11911         | 478           | 8,40475         | 550           | 2,23671         |
| 336           | 0,01047         | 408           | 5,33273         | 480           | 8,3522          | 552           | 2,02583         |
| 338           | 0,02356         | 410           | 5,54055         | 482           | 8,29161         | 554           | 1,82507         |
| 340           | 0,03927         | 412           | 5,74243         | 484           | 8,22301         | 556           | 1,63491         |
| 342           | 0,05497         | 414           | 5,93821         | 486           | 8,14644         | 558           | 1,45569         |
| 344           | 0,07155         | 416           | 6,12776         | 488           | 8,06193         | 560           | 1,28762         |
| 346           | 0,09328         | 418           | 6,31094         | 490           | 7,96954         | 562           | 1,1308          |
| 348           | 0,12468         | 420           | 6,48766         | 492           | 7,86932         | 564           | 0,98529         |
| 350           | 0,1673          | 422           | 6,65778         | 494           | 7,76135         | 566           | 0,85114         |
| 352           | 0,22122         | 424           | 6,82122         | 496           | 7,64568         | 568           | 0,72841         |
| 354           | 0,2864          | 426           | 6,97784         | 498           | 7,52241         | 570           | 0,61713         |
| 356           | 0,36279         | 428           | 7,12756         | 500           | 7,3916          | 572           | 0,51733         |
| 358           | 0,45035         | 430           | 7,27027         | 502           | 7,25333         | 574           | 0,42905         |
| 360           | 0,54901         | 432           | 7,40588         | 504           | 7,10769         | 576           | 0,35233         |
| 362           | 0,65872         | 434           | 7,53429         | 506           | 6,95476         | 578           | 0,28719         |
| 364           | 0,7794          | 436           | 7,65542         | 508           | 6,79466         | 580           | 0,23365         |
| 366           | 0,91098         | 438           | 7,76918         | 510           | 6,62749         | 582           | 0,19172         |
| 368           | 1,05336         | 440           | 7,87549         | 512           | 6,45337         | 584           | 0,16122         |
| 370           | 1,20642         | 442           | 7,97428         | 514           | 6,27245         | 586           | 0,14115         |
| 372           | 1,36998         | 444           | 8,06547         | 516           | 6,08487         | 588           | 0,12812         |
| 374           | 1,54381         | 446           | 8,149           | 518           | 5,89076         | 590           | 0,11517         |
| 376           | 1,72762         | 448           | 8,22479         | 520           | 5,6903          | 592           | 0,1047          |
| 378           | 1,92109         | 450           | 8,29278         | 522           | 5,48362         | 594           | 0,09423         |
| 380           | 2,12384         | 452           | 8,35291         | 524           | 5,27092         | 596           | 0,08376         |
| 382           | 2,33538         | 454           | 8,40514         | 526           | 5,05239         | 598           | 0,07329         |
| 384           | 2,55507         | 456           | 8,44942         | 528           | 4,82827         | 600           | 0,06282         |
| 386           | 2,78196         | 458           | 8,4857          | 530           | 4,5989          | 602           | 0,05235         |
| 388           | 3,01483         | 460           | 8,51396         | 532           | 4,3647          | 604           | 0,04188         |
| 390           | 3,25215         | 462           | 8,53416         | 534           | 4,12639         | 606           | 0,03141         |
| 392           | 3,49223         | 464           | 8,5463          | 536           | 3,88509         | 608           | 0,0212          |
| 394           | 3,73333         | 466           | 8,55035         | 538           | 3,64216         | 610           | 0,01283         |
| 396           | 3,97371         | 468           | 8,54632         | 540           | 3,39909         | 612           | 0,00654         |
| 398           | 4,21163         | 470           | 8,53418         | 542           | 3,15742         | 614           | 0,00236         |
| 400           | 4,44579         | 472           | 8,51396         | 544           | 2,91876         | 616           | 0,00026         |
| 402           | 4,67537         | 474           | 8,48563         | 546           | 2,68469         | 618           | 0               |

Figura 37 - Diagrama da válvula de admissão original

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 400           | 4,44579         | 468           | 8,54632         | 536           | 3,88509         |
| 334           | 0,00262         | 402           | 4,67537         | 470           | 8,53418         | 538           | 3,64216         |
| 336           | 0,01047         | 404           | 4,89992         | 472           | 8,51396         | 540           | 3,39909         |
| 338           | 0,02356         | 406           | 5,11911         | 474           | 8,48563         | 542           | 3,15742         |
| 340           | 0,03927         | 408           | 5,33273         | 476           | 8,44923         | 544           | 2,91876         |
| 342           | 0,05497         | 410           | 5,54055         | 478           | 8,40475         | 546           | 0,98529         |
| 344           | 0,07155         | 412           | 5,74243         | 480           | 8,3522          | 548           | 0,85114         |
| 346           | 0,09328         | 414           | 5,93821         | 482           | 8,29161         | 550           | 0,72841         |
| 348           | 0,12468         | 416           | 6,12776         | 484           | 8,22301         | 552           | 0,61713         |
| 350           | 0,1673          | 418           | 6,31094         | 486           | 8,14644         | 554           | 0,51733         |
| 352           | 0,22122         | 420           | 6,48766         | 488           | 8,06193         | 556           | 0,42905         |
| 354           | 0,2864          | 422           | 6,65778         | 490           | 7,96954         | 558           | 0,35233         |
| 356           | 0,36279         | 424           | 6,82122         | 492           | 7,86932         | 560           | 0,28719         |
| 358           | 0,45035         | 426           | 6,97784         | 494           | 7,76135         | 562           | 0,23365         |
| 360           | 0,54901         | 428           | 7,12756         | 496           | 7,64568         | 564           | 0,19172         |
| 362           | 0,65872         | 430           | 7,27027         | 498           | 7,52241         | 566           | 0,16122         |
| 364           | 0,7794          | 432           | 7,40588         | 500           | 7,3916          | 568           | 0,14115         |
| 366           | 0,91098         | 434           | 7,53429         | 502           | 7,25333         | 570           | 0,12812         |
| 368           | 1,05336         | 436           | 7,65542         | 504           | 7,10769         | 572           | 0,11517         |
| 370           | 1,20642         | 438           | 7,76918         | 506           | 6,95476         | 574           | 0,1047          |
| 372           | 1,36998         | 440           | 7,87549         | 508           | 6,79466         | 576           | 0,09423         |
| 374           | 1,54381         | 442           | 7,97428         | 510           | 6,62749         | 578           | 0,08376         |
| 376           | 1,72762         | 444           | 8,06547         | 512           | 6,45337         | 580           | 0,07329         |
| 378           | 1,92109         | 446           | 8,149           | 514           | 6,27245         | 582           | 0,06282         |
| 380           | 2,12384         | 448           | 8,22479         | 516           | 6,08487         | 584           | 0,05235         |
| 382           | 2,33538         | 450           | 8,29278         | 518           | 5,89076         | 586           | 0,04188         |
| 384           | 2,55507         | 452           | 8,35291         | 520           | 5,6903          | 588           | 0,03141         |
| 386           | 2,78196         | 454           | 8,40514         | 522           | 5,48362         | 590           | 0,0212          |
| 388           | 3,01483         | 456           | 8,44942         | 524           | 5,27092         | 592           | 0,01283         |
| 390           | 3,25215         | 458           | 8,4857          | 526           | 5,05239         | 594           | 0,00654         |
| 392           | 3,49223         | 460           | 8,51396         | 528           | 4,82827         | 596           | 0,00236         |
| 394           | 3,73333         | 462           | 8,53416         | 530           | 4,5989          | 598           | 0,00026         |
| 396           | 3,97371         | 464           | 8,5463          | 532           | 4,3647          | 600           | 0               |
| 398           | 4,21163         | 466           | 8,55035         | 534           | 4,12639         |               |                 |

Figura 38 - Diagrama da válvula de admissão 14 DPMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    |
| 332    | 0       | 398    | 4,21163 | 464    | 8,5463  | 530    | 4,5989  |
| 334    | 0,00262 | 400    | 4,44579 | 466    | 8,55035 | 532    | 4,3647  |
| 336    | 0,01047 | 402    | 4,67537 | 468    | 8,54632 | 534    | 4,12639 |
| 338    | 0,02356 | 404    | 4,89992 | 470    | 8,53418 | 536    | 3,88509 |
| 340    | 0,03927 | 406    | 5,11911 | 472    | 8,51396 | 538    | 0,98529 |
| 342    | 0,05497 | 408    | 5,33273 | 474    | 8,48563 | 540    | 0,85114 |
| 344    | 0,07155 | 410    | 5,54055 | 476    | 8,44923 | 542    | 0,72841 |
| 346    | 0,09328 | 412    | 5,74243 | 478    | 8,40475 | 544    | 0,61713 |
| 348    | 0,12468 | 414    | 5,93821 | 480    | 8,3522  | 546    | 0,51733 |
| 350    | 0,1673  | 416    | 6,12776 | 482    | 8,29161 | 548    | 0,42905 |
| 352    | 0,22122 | 418    | 6,31094 | 484    | 8,22301 | 550    | 0,35233 |
| 354    | 0,2864  | 420    | 6,48766 | 486    | 8,14644 | 552    | 0,28719 |
| 356    | 0,36279 | 422    | 6,65778 | 488    | 8,06193 | 554    | 0,23365 |
| 358    | 0,45035 | 424    | 6,82122 | 490    | 7,96954 | 556    | 0,19172 |
| 360    | 0,54901 | 426    | 6,97784 | 492    | 7,86932 | 558    | 0,16122 |
| 362    | 0,65872 | 428    | 7,12756 | 494    | 7,76135 | 560    | 0,14115 |
| 364    | 0,7794  | 430    | 7,27027 | 496    | 7,64568 | 562    | 0,12812 |
| 366    | 0,91098 | 432    | 7,40588 | 498    | 7,52241 | 564    | 0,11517 |
| 368    | 1,05336 | 434    | 7,53429 | 500    | 7,3916  | 566    | 0,1047  |
| 370    | 1,20642 | 436    | 7,65542 | 502    | 7,25333 | 568    | 0,09423 |
| 372    | 1,36998 | 438    | 7,76918 | 504    | 7,10769 | 570    | 0,08376 |
| 374    | 1,54381 | 440    | 7,87549 | 506    | 6,95476 | 572    | 0,07329 |
| 376    | 1,72762 | 442    | 7,97428 | 508    | 6,79466 | 574    | 0,06282 |
| 378    | 1,92109 | 444    | 8,06547 | 510    | 6,62749 | 576    | 0,05235 |
| 380    | 2,12384 | 446    | 8,149   | 512    | 6,45337 | 578    | 0,04188 |
| 382    | 2,33538 | 448    | 8,22479 | 514    | 6,27245 | 580    | 0,03141 |
| 384    | 2,55507 | 450    | 8,29278 | 516    | 6,08487 | 582    | 0,0212  |
| 386    | 2,78196 | 452    | 8,35291 | 518    | 5,89076 | 584    | 0,01283 |
| 388    | 3,01483 | 454    | 8,40514 | 520    | 5,6903  | 586    | 0,00654 |
| 390    | 3,25215 | 456    | 8,44942 | 522    | 5,48362 | 588    | 0,00236 |
| 392    | 3,49223 | 458    | 8,4857  | 524    | 5,27092 | 590    | 0,00026 |
| 394    | 3,73333 | 460    | 8,51396 | 526    | 5,05239 | 592    | 0       |
| 396    | 3,97371 | 462    | 8,53416 | 528    | 4,82827 |        |         |

Figura 39 - Diagrama da válvula de admissão 6 DPMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 394           | 3,73333         | 456           | 8.44942         | 518           | 5.89076         |
| 334           | 0.00262         | 396           | 3,97371         | 458           | 8.4857          | 520           | 5,6903          |
| 336           | 0.01047         | 398           | 4.21163         | 460           | 8.51396         | 522           | 5.48362         |
| 338           | 0.02356         | 400           | 4.44579         | 462           | 8.53416         | 524           | 0.98529         |
| 340           | 0,03927         | 402           | 4,67537         | 464           | 8,5463          | 526           | 0,85114         |
| 342           | 0,05497         | 404           | 4,89992         | 466           | 8,55035         | 528           | 0,72841         |
| 344           | 0,07155         | 406           | 5,11911         | 468           | 8,54632         | 530           | 0,61713         |
| 346           | 0,09328         | 408           | 5,33273         | 470           | 8,53418         | 532           | 0,51733         |
| 348           | 0,12468         | 410           | 5,54055         | 472           | 8,51396         | 534           | 0,42905         |
| 350           | 0,1673          | 412           | 5,74243         | 474           | 8,48563         | 536           | 0,35233         |
| 352           | 0,22122         | 414           | 5,93821         | 476           | 8,44923         | 538           | 0,28719         |
| 354           | 0,2864          | 416           | 6,12776         | 478           | 8,40475         | 540           | 0,23365         |
| 356           | 0,36279         | 418           | 6,31094         | 480           | 8,3522          | 542           | 0,19172         |
| 358           | 0,45035         | 420           | 6,48766         | 482           | 8,29161         | 544           | 0,16122         |
| 360           | 0,54901         | 422           | 6,65778         | 484           | 8,22301         | 546           | 0,14115         |
| 362           | 0,65872         | 424           | 6,82122         | 486           | 8,14644         | 548           | 0,12812         |
| 364           | 0,7794          | 426           | 6,97784         | 488           | 8,06193         | 550           | 0,11517         |
| 366           | 0,91098         | 428           | 7,12756         | 490           | 7,96954         | 552           | 0,1047          |
| 368           | 1,05336         | 430           | 7,27027         | 492           | 7,86932         | 554           | 0,09423         |
| 370           | 1,20642         | 432           | 7,40588         | 494           | 7,76135         | 556           | 0,08376         |
| 372           | 1,36998         | 434           | 7,53429         | 496           | 7,64568         | 558           | 0,07329         |
| 374           | 1,54381         | 436           | 7,65542         | 498           | 7,52241         | 560           | 0,06282         |
| 376           | 1,72762         | 438           | 7,76918         | 500           | 7,3916          | 562           | 0,05235         |
| 378           | 1,92109         | 440           | 7,87549         | 502           | 7,25333         | 564           | 0,04188         |
| 380           | 2,12384         | 442           | 7,97428         | 504           | 7,10769         | 566           | 0,03141         |
| 382           | 2,33538         | 444           | 8,06547         | 506           | 6,95476         | 568           | 0,0212          |
| 384           | 2,55507         | 446           | 8,149           | 508           | 6,79466         | 570           | 0,01283         |
| 386           | 2,78196         | 448           | 8,22479         | 510           | 6,62749         | 572           | 0,00654         |
| 388           | 3,01483         | 450           | 8,29278         | 512           | 6,45337         | 574           | 0,00236         |
| 390           | 3,25215         | 452           | 8,35291         | 514           | 6,27245         | 576           | 0,00026         |
| 392           | 3,49223         | 454           | 8,40514         | 516           | 6,08487         | 578           | 0               |

Figura 40 - Diagrama da válvula de admissão 8 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    |
| 332    | 0       | 394    | 3,73333 | 456    | 8,44942 | 518    | 5,89076 |
| 334    | 0,00262 | 396    | 3,97371 | 458    | 8,4857  | 520    | 5,6903  |
| 336    | 0,01047 | 398    | 4,21163 | 460    | 8,51396 | 522    | 0,98529 |
| 338    | 0,02356 | 400    | 4,44579 | 462    | 8,53416 | 524    | 0,85114 |
| 340    | 0,03927 | 402    | 4,67537 | 464    | 8,5463  | 526    | 0,72841 |
| 342    | 0,05497 | 404    | 4,89992 | 466    | 8,55035 | 528    | 0,61713 |
| 344    | 0,07155 | 406    | 5,11911 | 468    | 8,54632 | 530    | 0,51733 |
| 346    | 0,09328 | 408    | 5,33273 | 470    | 8,53418 | 532    | 0,42905 |
| 348    | 0,12468 | 410    | 5,54055 | 472    | 8,51396 | 534    | 0,35233 |
| 350    | 0,1673  | 412    | 5,74243 | 474    | 8,48563 | 536    | 0,28719 |
| 352    | 0,22122 | 414    | 5,93821 | 476    | 8,44923 | 538    | 0,23365 |
| 354    | 0,2864  | 416    | 6,12776 | 478    | 8,40475 | 540    | 0,19172 |
| 356    | 0,36279 | 418    | 6,31094 | 480    | 8,3522  | 542    | 0,16122 |
| 358    | 0,45035 | 420    | 6,48766 | 482    | 8,29161 | 544    | 0,14115 |
| 360    | 0,54901 | 422    | 6,65778 | 484    | 8,22301 | 546    | 0,12812 |
| 362    | 0,65872 | 424    | 6,82122 | 486    | 8,14644 | 548    | 0,11517 |
| 364    | 0,7794  | 426    | 6,97784 | 488    | 8,06193 | 550    | 0,1047  |
| 366    | 0,91098 | 428    | 7,12756 | 490    | 7,96954 | 552    | 0,09423 |
| 368    | 1,05336 | 430    | 7,27027 | 492    | 7,86932 | 554    | 0,08376 |
| 370    | 1,20642 | 432    | 7,40588 | 494    | 7,76135 | 556    | 0,07329 |
| 372    | 1,36998 | 434    | 7,53429 | 496    | 7,64568 | 558    | 0,06282 |
| 374    | 1,54381 | 436    | 7,65542 | 498    | 7,52241 | 560    | 0,05235 |
| 376    | 1,72762 | 438    | 7,76918 | 500    | 7,3916  | 562    | 0,04188 |
| 378    | 1,92109 | 440    | 7,87549 | 502    | 7,25333 | 564    | 0,03141 |
| 380    | 2,12384 | 442    | 7,97428 | 504    | 7,10769 | 566    | 0,0212  |
| 382    | 2,33538 | 444    | 8,06547 | 506    | 6,95476 | 568    | 0,01283 |
| 384    | 2,55507 | 446    | 8,149   | 508    | 6,79466 | 570    | 0,00654 |
| 386    | 2,78196 | 448    | 8,22479 | 510    | 6,62749 | 572    | 0,00236 |
| 388    | 3,01483 | 450    | 8,29278 | 512    | 6,45337 | 574    | 0,00026 |
| 390    | 3,25215 | 452    | 8,35291 | 514    | 6,27245 | 576    | 0       |
| 392    | 3,49223 | 454    | 8,40514 | 516    | 6,08487 |        |         |

Figura 41 - Diagrama da válvula de admissão 10 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| []     | []      | []     | []      | []     | []      | []     | []      |
| 332    | 0       | 394    | 3,73333 | 456    | 8,44942 | 518    | 5,89076 |
| 334    | 0,00262 | 396    | 3,97371 | 458    | 8,4857  | 520    | 0,98529 |
| 336    | 0,01047 | 398    | 4,21163 | 460    | 8,51396 | 522    | 0,85114 |
| 338    | 0,02356 | 400    | 4,44579 | 462    | 8,53416 | 524    | 0,72841 |
| 340    | 0,03927 | 402    | 4,67537 | 464    | 8,5463  | 526    | 0,61713 |
| 342    | 0,05497 | 404    | 4,89992 | 466    | 8,55035 | 528    | 0,51733 |
| 344    | 0,07155 | 406    | 5,11911 | 468    | 8,54632 | 530    | 0,42905 |
| 346    | 0,09328 | 408    | 5,33273 | 470    | 8,53418 | 532    | 0,35233 |
| 348    | 0,12468 | 410    | 5,54055 | 472    | 8,51396 | 534    | 0,28719 |
| 350    | 0,1673  | 412    | 5,74243 | 474    | 8,48563 | 536    | 0,23365 |
| 352    | 0,22122 | 414    | 5,93821 | 476    | 8,44923 | 538    | 0,19172 |
| 354    | 0,2864  | 416    | 6,12776 | 478    | 8,40475 | 540    | 0,16122 |
| 356    | 0,36279 | 418    | 6,31094 | 480    | 8,3522  | 542    | 0,14115 |
| 358    | 0,45035 | 420    | 6,48766 | 482    | 8,29161 | 544    | 0,12812 |
| 360    | 0,54901 | 422    | 6,65778 | 484    | 8,22301 | 546    | 0,11517 |
| 362    | 0,65872 | 424    | 6,82122 | 486    | 8,14644 | 548    | 0,1047  |
| 364    | 0,7794  | 426    | 6,97784 | 488    | 8,06193 | 550    | 0,09423 |
| 366    | 0,91098 | 428    | 7,12756 | 490    | 7,96954 | 552    | 0,08376 |
| 368    | 1,05336 | 430    | 7,27027 | 492    | 7,86932 | 554    | 0,07329 |
| 370    | 1,20642 | 432    | 7,40588 | 494    | 7,76135 | 556    | 0,06282 |
| 372    | 1,36998 | 434    | 7,53429 | 496    | 7,64568 | 558    | 0,05235 |
| 374    | 1,54381 | 436    | 7,65542 | 498    | 7,52241 | 560    | 0,04188 |
| 376    | 1,72762 | 438    | 7,76918 | 500    | 7,3916  | 562    | 0,03141 |
| 378    | 1,92109 | 440    | 7,87549 | 502    | 7,25333 | 564    | 0,0212  |
| 380    | 2,12384 | 442    | 7,97428 | 504    | 7,10769 | 566    | 0,01283 |
| 382    | 2,33538 | 444    | 8,06547 | 506    | 6,95476 | 568    | 0,00654 |
| 384    | 2,55507 | 446    | 8,149   | 508    | 6,79466 | 570    | 0,00236 |
| 386    | 2,78196 | 448    | 8,22479 | 510    | 6,62749 | 572    | 0,00026 |
| 388    | 3,01483 | 450    | 8,29278 | 512    | 6,45337 | 574    | 0       |
| 390    | 3,25215 | 452    | 8,35291 | 514    | 6,27245 |        |         |
| 392    | 3,49223 | 454    | 8,40514 | 516    | 6,08487 |        |         |

Figura 42 - Diagrama da válvula de admissão 12 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [1]    | [mm]    | [1]    | լՠՠյ    | ľ      | [mm]    | [1]    | [mm]    |
| 332    | 0       | 394    | 3,73333 | 456    | 8,44942 | 518    | 0,98529 |
| 334    | 0,00262 | 396    | 3,97371 | 458    | 8,4857  | 520    | 0,85114 |
| 336    | 0,01047 | 398    | 4,21163 | 460    | 8,51396 | 522    | 0,72841 |
| 338    | 0,02356 | 400    | 4,44579 | 462    | 8,53416 | 524    | 0,61713 |
| 340    | 0,03927 | 402    | 4,67537 | 464    | 8,5463  | 526    | 0,51733 |
| 342    | 0,05497 | 404    | 4,89992 | 466    | 8,55035 | 528    | 0,42905 |
| 344    | 0,07155 | 406    | 5,11911 | 468    | 8,54632 | 530    | 0,35233 |
| 346    | 0,09328 | 408    | 5,33273 | 470    | 8,53418 | 532    | 0,28719 |
| 348    | 0,12468 | 410    | 5,54055 | 472    | 8,51396 | 534    | 0,23365 |
| 350    | 0,1673  | 412    | 5,74243 | 474    | 8,48563 | 536    | 0,19172 |
| 352    | 0,22122 | 414    | 5,93821 | 476    | 8,44923 | 538    | 0,16122 |
| 354    | 0,2864  | 416    | 6,12776 | 478    | 8,40475 | 540    | 0,14115 |
| 356    | 0,36279 | 418    | 6,31094 | 480    | 8,3522  | 542    | 0,12812 |
| 358    | 0,45035 | 420    | 6,48766 | 482    | 8,29161 | 544    | 0,11517 |
| 360    | 0,54901 | 422    | 6,65778 | 484    | 8,22301 | 546    | 0,1047  |
| 362    | 0,65872 | 424    | 6,82122 | 486    | 8,14644 | 548    | 0,09423 |
| 364    | 0,7794  | 426    | 6,97784 | 488    | 8,06193 | 550    | 0,08376 |
| 366    | 0,91098 | 428    | 7,12756 | 490    | 7,96954 | 552    | 0,07329 |
| 368    | 1,05336 | 430    | 7,27027 | 492    | 7,86932 | 554    | 0,06282 |
| 370    | 1,20642 | 432    | 7,40588 | 494    | 7,76135 | 556    | 0,05235 |
| 372    | 1,36998 | 434    | 7,53429 | 496    | 7,64568 | 558    | 0,04188 |
| 374    | 1,54381 | 436    | 7,65542 | 498    | 7,52241 | 560    | 0,03141 |
| 376    | 1,72762 | 438    | 7,76918 | 500    | 7,3916  | 562    | 0,0212  |
| 378    | 1,92109 | 440    | 7,87549 | 502    | 7,25333 | 564    | 0,01283 |
| 380    | 2,12384 | 442    | 7,97428 | 504    | 7,10769 | 566    | 0,00654 |
| 382    | 2,33538 | 444    | 8,06547 | 506    | 6,95476 | 568    | 0,00236 |
| 384    | 2,55507 | 446    | 8,149   | 508    | 6,79466 | 570    | 0,00026 |
| 386    | 2,78196 | 448    | 8,22479 | 510    | 6,62749 | 572    | 0       |
| 388    | 3,01483 | 450    | 8,29278 | 512    | 6,45337 |        |         |
| 390    | 3,25215 | 452    | 8,35291 | 514    | 6,27245 |        |         |
| 392    | 3,49223 | 454    | 8,40514 | 516    | 6,08487 |        |         |

Figura 43 - Diagrama da válvula de admissão 14 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 392           | 3,49223         | 452           | 8,35291         | 512           | 6,45337         |
| 334           | 0,00262         | 394           | 3,73333         | 454           | 8,40514         | 514           | 0,98529         |
| 336           | 0,01047         | 396           | 3,97371         | 456           | 8,44942         | 516           | 0,85114         |
| 338           | 0,02356         | 398           | 4,21163         | 458           | 8,4857          | 518           | 0,72841         |
| 340           | 0,03927         | 400           | 4,44579         | 460           | 8,51396         | 520           | 0,61713         |
| 342           | 0,05497         | 402           | 4,67537         | 462           | 8,53416         | 522           | 0,51733         |
| 344           | 0,07155         | 404           | 4,89992         | 464           | 8,5463          | 524           | 0,42905         |
| 346           | 0,09328         | 406           | 5,11911         | 466           | 8,55035         | 526           | 0,35233         |
| 348           | 0,12468         | 408           | 5,33273         | 468           | 8,54632         | 528           | 0,28719         |
| 350           | 0,1673          | 410           | 5,54055         | 470           | 8,53418         | 530           | 0,23365         |
| 352           | 0,22122         | 412           | 5,74243         | 472           | 8,51396         | 532           | 0,19172         |
| 354           | 0,2864          | 414           | 5,93821         | 474           | 8,48563         | 534           | 0,16122         |
| 356           | 0,36279         | 416           | 6,12776         | 476           | 8,44923         | 536           | 0,14115         |
| 358           | 0,45035         | 418           | 6,31094         | 478           | 8,40475         | 538           | 0,12812         |
| 360           | 0,54901         | 420           | 6,48766         | 480           | 8,3522          | 540           | 0,11517         |
| 362           | 0,65872         | 422           | 6,65778         | 482           | 8,29161         | 542           | 0,1047          |
| 364           | 0,7794          | 424           | 6,82122         | 484           | 8,22301         | 544           | 0,09423         |
| 366           | 0,91098         | 426           | 6,97784         | 486           | 8,14644         | 546           | 0,08376         |
| 368           | 1,05336         | 428           | 7,12756         | 488           | 8,06193         | 548           | 0,07329         |
| 370           | 1,20642         | 430           | 7,27027         | 490           | 7,96954         | 550           | 0,06282         |
| 372           | 1,36998         | 432           | 7,40588         | 492           | 7,86932         | 552           | 0,05235         |
| 374           | 1,54381         | 434           | 7,53429         | 494           | 7,76135         | 554           | 0,04188         |
| 376           | 1,72762         | 436           | 7,65542         | 496           | 7,64568         | 556           | 0,03141         |
| 378           | 1,92109         | 438           | 7,76918         | 498           | 7,52241         | 558           | 0,0212          |
| 380           | 2,12384         | 440           | 7,87549         | 500           | 7,3916          | 560           | 0,01283         |
| 382           | 2,33538         | 442           | 7,97428         | 502           | 7,25333         | 562           | 0,00654         |
| 384           | 2,55507         | 444           | 8,06547         | 504           | 7,10769         | 564           | 0,00236         |
| 386           | 2,78196         | 446           | 8,149           | 506           | 6,95476         | 566           | 0,00026         |
| 388           | 3,01483         | 448           | 8,22479         | 508           | 6,79466         | 568           | 0               |
| 390           | 3,25215         | 450           | 8,29278         | 510           | 6,62749         |               |                 |

Figura 44 - Diagrama da válvula de admissão 18 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 392           | 3,49223         | 452           | 8,35291         | 512           | 0,98529         |
| 334           | 0,00262         | 394           | 3,73333         | 454           | 8,40514         | 514           | 0,85114         |
| 336           | 0,01047         | 396           | 3,97371         | 456           | 8,44942         | 516           | 0,72841         |
| 338           | 0,02356         | 398           | 4,21163         | 458           | 8,4857          | 518           | 0,61713         |
| 340           | 0,03927         | 400           | 4,44579         | 460           | 8,51396         | 520           | 0,51733         |
| 342           | 0,05497         | 402           | 4,67537         | 462           | 8,53416         | 522           | 0,42905         |
| 344           | 0,07155         | 404           | 4,89992         | 464           | 8,5463          | 524           | 0,35233         |
| 346           | 0,09328         | 406           | 5,11911         | 466           | 8,55035         | 526           | 0,28719         |
| 348           | 0,12468         | 408           | 5,33273         | 468           | 8,54632         | 528           | 0,23365         |
| 350           | 0,1673          | 410           | 5,54055         | 470           | 8,53418         | 530           | 0,19172         |
| 352           | 0,22122         | 412           | 5,74243         | 472           | 8,51396         | 532           | 0,16122         |
| 354           | 0,2864          | 414           | 5,93821         | 474           | 8,48563         | 534           | 0,14115         |
| 356           | 0,36279         | 416           | 6,12776         | 476           | 8,44923         | 536           | 0,12812         |
| 358           | 0,45035         | 418           | 6,31094         | 478           | 8,40475         | 538           | 0,11517         |
| 360           | 0,54901         | 420           | 6,48766         | 480           | 8,3522          | 540           | 0,1047          |
| 362           | 0,65872         | 422           | 6,65778         | 482           | 8,29161         | 542           | 0,09423         |
| 364           | 0,7794          | 424           | 6,82122         | 484           | 8,22301         | 544           | 0,08376         |
| 366           | 0,91098         | 426           | 6,97784         | 486           | 8,14644         | 546           | 0,07329         |
| 368           | 1,05336         | 428           | 7,12756         | 488           | 8,06193         | 548           | 0,06282         |
| 370           | 1,20642         | 430           | 7,27027         | 490           | 7,96954         | 550           | 0,05235         |
| 372           | 1,36998         | 432           | 7,40588         | 492           | 7,86932         | 552           | 0,04188         |
| 374           | 1,54381         | 434           | 7,53429         | 494           | 7,76135         | 554           | 0,03141         |
| 376           | 1,72762         | 436           | 7,65542         | 496           | 7,64568         | 556           | 0,0212          |
| 378           | 1,92109         | 438           | 7,76918         | 498           | 7,52241         | 558           | 0,01283         |
| 380           | 2,12384         | 440           | 7,87549         | 500           | 7,3916          | 560           | 0,00654         |
| 382           | 2,33538         | 442           | 7,97428         | 502           | 7,25333         | 562           | 0,00236         |
| 384           | 2,55507         | 444           | 8,06547         | 504           | 7,10769         | 564           | 0,00026         |
| 386           | 2,78196         | 446           | 8,149           | 506           | 6,95476         | 566           | 0               |
| 388           | 3,01483         | 448           | 8,22479         | 508           | 6,79466         |               |                 |
| 390           | 3,25215         | 450           | 8,29278         | 510           | 6,62749         |               |                 |

Figura 45 - Diagrama da válvula de admissão 20 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 390           | 3,25215         | 448           | 8,22479         | 506           | 6,95476         |
| 334           | 0,00262         | 392           | 3,49223         | 450           | 8,29278         | 508           | 0,98529         |
| 336           | 0,01047         | 394           | 3,73333         | 452           | 8,35291         | 510           | 0,85114         |
| 338           | 0,02356         | 396           | 3,97371         | 454           | 8,40514         | 512           | 0,72841         |
| 340           | 0,03927         | 398           | 4,21163         | 456           | 8,44942         | 514           | 0,61713         |
| 342           | 0,05497         | 400           | 4,44579         | 458           | 8,4857          | 516           | 0,51733         |
| 344           | 0,07155         | 402           | 4,67537         | 460           | 8,51396         | 518           | 0,42905         |
| 346           | 0,09328         | 404           | 4,89992         | 462           | 8,53416         | 520           | 0,35233         |
| 348           | 0,12468         | 406           | 5,11911         | 464           | 8,5463          | 522           | 0,28719         |
| 350           | 0,1673          | 408           | 5,33273         | 466           | 8,55035         | 524           | 0,23365         |
| 352           | 0,22122         | 410           | 5,54055         | 468           | 8,54632         | 526           | 0,19172         |
| 354           | 0,2864          | 412           | 5,74243         | 470           | 8,53418         | 528           | 0,16122         |
| 356           | 0,36279         | 414           | 5,93821         | 472           | 8,51396         | 530           | 0,14115         |
| 358           | 0,45035         | 416           | 6,12776         | 474           | 8,48563         | 532           | 0,12812         |
| 360           | 0,54901         | 418           | 6,31094         | 476           | 8,44923         | 534           | 0,11517         |
| 362           | 0,65872         | 420           | 6,48766         | 478           | 8,40475         | 536           | 0,1047          |
| 364           | 0,7794          | 422           | 6,65778         | 480           | 8,3522          | 538           | 0,09423         |
| 366           | 0,91098         | 424           | 6,82122         | 482           | 8,29161         | 540           | 0,08376         |
| 368           | 1,05336         | 426           | 6,97784         | 484           | 8,22301         | 542           | 0,07329         |
| 370           | 1,20642         | 428           | 7,12756         | 486           | 8,14644         | 544           | 0,06282         |
| 372           | 1,36998         | 430           | 7,27027         | 488           | 8,06193         | 546           | 0,05235         |
| 374           | 1,54381         | 432           | 7,40588         | 490           | 7,96954         | 548           | 0,04188         |
| 376           | 1,72762         | 434           | 7,53429         | 492           | 7,86932         | 550           | 0,03141         |
| 378           | 1,92109         | 436           | 7,65542         | 494           | 7,76135         | 552           | 0,0212          |
| 380           | 2,12384         | 438           | 7,76918         | 496           | 7,64568         | 554           | 0,01283         |
| 382           | 2,33538         | 440           | 7,87549         | 498           | 7,52241         | 556           | 0,00654         |
| 384           | 2,55507         | 442           | 7,97428         | 500           | 7,3916          | 558           | 0,00236         |
| 386           | 2,78196         | 444           | 8,06547         | 502           | 7,25333         | 560           | 0,00026         |
| 388           | 3,01483         | 446           | 8,149           | 504           | 7,10769         | 562           | 0               |

Figura 46 - Diagrama da válvula de admissão 24 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| ľ      | [mm]    | ľ      | [mm]    | ľ      | [mm]    | ້ເ     | [mm]    |
| 332    | 0       | 390    | 3,25215 | 448    | 8,22479 | 506    | 0,98529 |
| 334    | 0,00262 | 392    | 3,49223 | 450    | 8,29278 | 508    | 0,85114 |
| 336    | 0,01047 | 394    | 3,73333 | 452    | 8,35291 | 510    | 0,72841 |
| 338    | 0,02356 | 396    | 3,97371 | 454    | 8,40514 | 512    | 0,61713 |
| 340    | 0,03927 | 398    | 4,21163 | 456    | 8,44942 | 514    | 0,51733 |
| 342    | 0,05497 | 400    | 4,44579 | 458    | 8,4857  | 516    | 0,42905 |
| 344    | 0,07155 | 402    | 4,67537 | 460    | 8,51396 | 518    | 0,35233 |
| 346    | 0,09328 | 404    | 4,89992 | 462    | 8,53416 | 520    | 0,28719 |
| 348    | 0,12468 | 406    | 5,11911 | 464    | 8,5463  | 522    | 0,23365 |
| 350    | 0,1673  | 408    | 5,33273 | 466    | 8,55035 | 524    | 0,19172 |
| 352    | 0,22122 | 410    | 5,54055 | 468    | 8,54632 | 526    | 0,16122 |
| 354    | 0,2864  | 412    | 5,74243 | 470    | 8,53418 | 528    | 0,14115 |
| 356    | 0,36279 | 414    | 5,93821 | 472    | 8,51396 | 530    | 0,12812 |
| 358    | 0,45035 | 416    | 6,12776 | 474    | 8,48563 | 532    | 0,11517 |
| 360    | 0,54901 | 418    | 6,31094 | 476    | 8,44923 | 534    | 0,1047  |
| 362    | 0,65872 | 420    | 6,48766 | 478    | 8,40475 | 536    | 0,09423 |
| 364    | 0,7794  | 422    | 6,65778 | 480    | 8,3522  | 538    | 0,08376 |
| 366    | 0,91098 | 424    | 6,82122 | 482    | 8,29161 | 540    | 0,07329 |
| 368    | 1,05336 | 426    | 6,97784 | 484    | 8,22301 | 542    | 0,06282 |
| 370    | 1,20642 | 428    | 7,12756 | 486    | 8,14644 | 544    | 0,05235 |
| 372    | 1,36998 | 430    | 7,27027 | 488    | 8,06193 | 546    | 0,04188 |
| 374    | 1,54381 | 432    | 7,40588 | 490    | 7,96954 | 548    | 0,03141 |
| 376    | 1,72762 | 434    | 7,53429 | 492    | 7,86932 | 550    | 0,0212  |
| 378    | 1,92109 | 436    | 7,65542 | 494    | 7,76135 | 552    | 0,01283 |
| 380    | 2,12384 | 438    | 7,76918 | 496    | 7,64568 | 554    | 0,00654 |
| 382    | 2,33538 | 440    | 7,87549 | 498    | 7,52241 | 556    | 0,00236 |
| 384    | 2,55507 | 442    | 7,97428 | 500    | 7,3916  | 558    | 0,00026 |
| 386    | 2,78196 | 444    | 8,06547 | 502    | 7,25333 | 560    | 0       |
| 388    | 3,01483 | 446    | 8,149   | 504    | 7,10769 |        |         |

Figura 47 - Diagrama da válvula de admissão 26 APMI
| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    |
| 332    | 0       | 390    | 3,25215 | 448    | 8,22479 | 506    | 0,85114 |
| 334    | 0,00262 | 392    | 3,49223 | 450    | 8,29278 | 508    | 0,72841 |
| 336    | 0,01047 | 394    | 3,73333 | 452    | 8,35291 | 510    | 0,61713 |
| 338    | 0,02356 | 396    | 3,97371 | 454    | 8,40514 | 512    | 0,51733 |
| 340    | 0,03927 | 398    | 4,21163 | 456    | 8,44942 | 514    | 0,42905 |
| 342    | 0,05497 | 400    | 4,44579 | 458    | 8,4857  | 516    | 0,35233 |
| 344    | 0,07155 | 402    | 4,67537 | 460    | 8,51396 | 518    | 0,28719 |
| 346    | 0,09328 | 404    | 4,89992 | 462    | 8,53416 | 520    | 0,23365 |
| 348    | 0,12468 | 406    | 5,11911 | 464    | 8,5463  | 522    | 0,19172 |
| 350    | 0,1673  | 408    | 5,33273 | 466    | 8,55035 | 524    | 0,16122 |
| 352    | 0,22122 | 410    | 5,54055 | 468    | 8,54632 | 526    | 0,14115 |
| 354    | 0,2864  | 412    | 5,74243 | 470    | 8,53418 | 528    | 0,12812 |
| 356    | 0,36279 | 414    | 5,93821 | 472    | 8,51396 | 530    | 0,11517 |
| 358    | 0,45035 | 416    | 6,12776 | 474    | 8,48563 | 532    | 0,1047  |
| 360    | 0,54901 | 418    | 6,31094 | 476    | 8,44923 | 534    | 0,09423 |
| 362    | 0,65872 | 420    | 6,48766 | 478    | 8,40475 | 536    | 0,08376 |
| 364    | 0,7794  | 422    | 6,65778 | 480    | 8,3522  | 538    | 0,07329 |
| 366    | 0,91098 | 424    | 6,82122 | 482    | 8,29161 | 540    | 0,06282 |
| 368    | 1,05336 | 426    | 6,97784 | 484    | 8,22301 | 542    | 0,05235 |
| 370    | 1,20642 | 428    | 7,12756 | 486    | 8,14644 | 544    | 0,04188 |
| 372    | 1,36998 | 430    | 7,27027 | 488    | 8,06193 | 546    | 0,03141 |
| 374    | 1,54381 | 432    | 7,40588 | 490    | 7,96954 | 548    | 0,0212  |
| 376    | 1,72762 | 434    | 7,53429 | 492    | 7,86932 | 550    | 0,01283 |
| 378    | 1,92109 | 436    | 7,65542 | 494    | 7,76135 | 552    | 0,00654 |
| 380    | 2,12384 | 438    | 7,76918 | 496    | 7,64568 | 554    | 0,00236 |
| 382    | 2,33538 | 440    | 7,87549 | 498    | 7,52241 | 556    | 0,00026 |
| 384    | 2,55507 | 442    | 7,97428 | 500    | 7,3916  | 558    | 0       |
| 386    | 2,78196 | 444    | 8,06547 | 502    | 7,25333 |        |         |
| 388    | 3,01483 | 446    | 8,149   | 504    | 0,98529 |        |         |

Figura 48 - Diagrama da válvula de admissão 28 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| ľ      | [mm]    | ľ      | [mm]    | ľ      | [mm]    | ľ      | [mm]    |
| 332    | 0       | 390    | 3,25215 | 448    | 8,22479 | 506    | 0,72841 |
| 334    | 0,00262 | 392    | 3,49223 | 450    | 8,29278 | 508    | 0,61713 |
| 336    | 0,01047 | 394    | 3,73333 | 452    | 8,35291 | 510    | 0,51733 |
| 338    | 0,02356 | 396    | 3,97371 | 454    | 8,40514 | 512    | 0,42905 |
| 340    | 0,03927 | 398    | 4,21163 | 456    | 8,44942 | 514    | 0,35233 |
| 342    | 0,05497 | 400    | 4,44579 | 458    | 8,4857  | 516    | 0,28719 |
| 344    | 0,07155 | 402    | 4,67537 | 460    | 8,51396 | 518    | 0,23365 |
| 346    | 0,09328 | 404    | 4,89992 | 462    | 8,53416 | 520    | 0,19172 |
| 348    | 0,12468 | 406    | 5,11911 | 464    | 8,5463  | 522    | 0,16122 |
| 350    | 0,1673  | 408    | 5,33273 | 466    | 8,55035 | 524    | 0,14115 |
| 352    | 0,22122 | 410    | 5,54055 | 468    | 8,54632 | 526    | 0,12812 |
| 354    | 0,2864  | 412    | 5,74243 | 470    | 8,53418 | 528    | 0,11517 |
| 356    | 0,36279 | 414    | 5,93821 | 472    | 8,51396 | 530    | 0,1047  |
| 358    | 0,45035 | 416    | 6,12776 | 474    | 8,48563 | 532    | 0,09423 |
| 360    | 0,54901 | 418    | 6,31094 | 476    | 8,44923 | 534    | 0,08376 |
| 362    | 0,65872 | 420    | 6,48766 | 478    | 8,40475 | 536    | 0,07329 |
| 364    | 0,7794  | 422    | 6,65778 | 480    | 8,3522  | 538    | 0,06282 |
| 366    | 0,91098 | 424    | 6,82122 | 482    | 8,29161 | 540    | 0,05235 |
| 368    | 1,05336 | 426    | 6,97784 | 484    | 8,22301 | 542    | 0,04188 |
| 370    | 1,20642 | 428    | 7,12756 | 486    | 8,14644 | 544    | 0,03141 |
| 372    | 1,36998 | 430    | 7,27027 | 488    | 8,06193 | 546    | 0,0212  |
| 374    | 1,54381 | 432    | 7,40588 | 490    | 7,96954 | 548    | 0,01283 |
| 376    | 1,72762 | 434    | 7,53429 | 492    | 7,86932 | 550    | 0,00654 |
| 378    | 1,92109 | 436    | 7,65542 | 494    | 7,76135 | 552    | 0,00236 |
| 380    | 2,12384 | 438    | 7,76918 | 496    | 7,64568 | 554    | 0,00026 |
| 382    | 2,33538 | 440    | 7,87549 | 498    | 7,52241 | 556    | 0       |
| 384    | 2,55507 | 442    | 7,97428 | 500    | 7,3916  |        |         |
| 386    | 2,78196 | 444    | 8,06547 | 502    | 0,98529 |        |         |
| 388    | 3,01483 | 446    | 8,149   | 504    | 0,85114 |        |         |

Figura 49 - Diagrama da válvula de admissão 30 APMI

| Ângulo<br>[°] | Levant. | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|---------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0       | 388           | 3.01483         | 444           | 8.06547         | 500           | 0.98529         |
| 334           | 0.00262 | 390           | 3.25215         | 446           | 8.149           | 502           | 0.85114         |
| 336           | 0,01047 | 392           | 3,49223         | 448           | 8,22479         | 504           | 0,72841         |
| 338           | 0,02356 | 394           | 3,73333         | 450           | 8,29278         | 506           | 0,61713         |
| 340           | 0,03927 | 396           | 3,97371         | 452           | 8,35291         | 508           | 0,51733         |
| 342           | 0,05497 | 398           | 4,21163         | 454           | 8,40514         | 510           | 0,42905         |
| 344           | 0,07155 | 400           | 4,44579         | 456           | 8,44942         | 512           | 0,35233         |
| 346           | 0,09328 | 402           | 4,67537         | 458           | 8,4857          | 514           | 0,28719         |
| 348           | 0,12468 | 404           | 4,89992         | 460           | 8,51396         | 516           | 0,23365         |
| 350           | 0,1673  | 406           | 5,11911         | 462           | 8,53416         | 518           | 0,19172         |
| 352           | 0,22122 | 408           | 5,33273         | 464           | 8,5463          | 520           | 0,16122         |
| 354           | 0,2864  | 410           | 5,54055         | 466           | 8,55035         | 522           | 0,14115         |
| 356           | 0,36279 | 412           | 5,74243         | 468           | 8,54632         | 524           | 0,12812         |
| 358           | 0,45035 | 414           | 5,93821         | 470           | 8,53418         | 526           | 0,11517         |
| 360           | 0,54901 | 416           | 6,12776         | 472           | 8,51396         | 528           | 0,1047          |
| 362           | 0,65872 | 418           | 6,31094         | 474           | 8,48563         | 530           | 0,09423         |
| 364           | 0,7794  | 420           | 6,48766         | 476           | 8,44923         | 532           | 0,08376         |
| 366           | 0,91098 | 422           | 6,65778         | 478           | 8,40475         | 534           | 0,07329         |
| 368           | 1,05336 | 424           | 6,82122         | 480           | 8,3522          | 536           | 0,06282         |
| 370           | 1,20642 | 426           | 6,97784         | 482           | 8,29161         | 538           | 0,05235         |
| 372           | 1,36998 | 428           | 7,12756         | 484           | 8,22301         | 540           | 0,04188         |
| 374           | 1,54381 | 430           | 7,27027         | 486           | 8,14644         | 542           | 0,03141         |
| 376           | 1,72762 | 432           | 7,40588         | 488           | 8,06193         | 544           | 0,0212          |
| 378           | 1,92109 | 434           | 7,53429         | 490           | 7,96954         | 546           | 0,01283         |
| 380           | 2,12384 | 436           | 7,65542         | 492           | 7,86932         | 548           | 0,00654         |
| 382           | 2,33538 | 438           | 7,76918         | 494           | 7,76135         | 550           | 0,00236         |
| 384           | 2,55507 | 440           | 7,87549         | 496           | 7,64568         | 552           | 0,00026         |
| 386           | 2,78196 | 442           | 7,97428         | 498           | 7,52241         | 554           | 0               |

Figura 50 - Diagrama da válvula de admissão 32 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| []     | [IIIII] | []     | []      |        | []      | []     | []      |
| 332    | 0       | 388    | 3,01483 | 444    | 8,06547 | 500    | 0,85114 |
| 334    | 0,00262 | 390    | 3,25215 | 446    | 8,149   | 502    | 0,72841 |
| 336    | 0,01047 | 392    | 3,49223 | 448    | 8,22479 | 504    | 0,61713 |
| 338    | 0,02356 | 394    | 3,73333 | 450    | 8,29278 | 506    | 0,51733 |
| 340    | 0,03927 | 396    | 3,97371 | 452    | 8,35291 | 508    | 0,42905 |
| 342    | 0,05497 | 398    | 4,21163 | 454    | 8,40514 | 510    | 0,35233 |
| 344    | 0,07155 | 400    | 4,44579 | 456    | 8,44942 | 512    | 0,28719 |
| 346    | 0,09328 | 402    | 4,67537 | 458    | 8,4857  | 514    | 0,23365 |
| 348    | 0,12468 | 404    | 4,89992 | 460    | 8,51396 | 516    | 0,19172 |
| 350    | 0,1673  | 406    | 5,11911 | 462    | 8,53416 | 518    | 0,16122 |
| 352    | 0,22122 | 408    | 5,33273 | 464    | 8,5463  | 520    | 0,14115 |
| 354    | 0,2864  | 410    | 5,54055 | 466    | 8,55035 | 522    | 0,12812 |
| 356    | 0,36279 | 412    | 5,74243 | 468    | 8,54632 | 524    | 0,11517 |
| 358    | 0,45035 | 414    | 5,93821 | 470    | 8,53418 | 526    | 0,1047  |
| 360    | 0,54901 | 416    | 6,12776 | 472    | 8,51396 | 528    | 0,09423 |
| 362    | 0,65872 | 418    | 6,31094 | 474    | 8,48563 | 530    | 0,08376 |
| 364    | 0,7794  | 420    | 6,48766 | 476    | 8,44923 | 532    | 0,07329 |
| 366    | 0,91098 | 422    | 6,65778 | 478    | 8,40475 | 534    | 0,06282 |
| 368    | 1,05336 | 424    | 6,82122 | 480    | 8,3522  | 536    | 0,05235 |
| 370    | 1,20642 | 426    | 6,97784 | 482    | 8,29161 | 538    | 0,04188 |
| 372    | 1,36998 | 428    | 7,12756 | 484    | 8,22301 | 540    | 0,03141 |
| 374    | 1,54381 | 430    | 7,27027 | 486    | 8,14644 | 542    | 0,0212  |
| 376    | 1,72762 | 432    | 7,40588 | 488    | 8,06193 | 544    | 0,01283 |
| 378    | 1,92109 | 434    | 7,53429 | 490    | 7,96954 | 546    | 0,00654 |
| 380    | 2,12384 | 436    | 7,65542 | 492    | 7,86932 | 548    | 0,00236 |
| 382    | 2,33538 | 438    | 7,76918 | 494    | 7,76135 | 550    | 0,00026 |
| 384    | 2,55507 | 440    | 7,87549 | 496    | 7,64568 | 552    | 0       |
| 386    | 2,78196 | 442    | 7,97428 | 498    | 0,98529 |        |         |

Figura 51 - Diagrama da válvula de admissão 34 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [1]    | [mm]    | [1]    | [mm]    | [1]    | [mm]    | [1]    | [mm]    |
| 332    | 0       | 388    | 3,01483 | 444    | 8,06547 | 500    | 0,72841 |
| 334    | 0,00262 | 390    | 3,25215 | 446    | 8,149   | 502    | 0,61713 |
| 336    | 0,01047 | 392    | 3,49223 | 448    | 8,22479 | 504    | 0,51733 |
| 338    | 0,02356 | 394    | 3,73333 | 450    | 8,29278 | 506    | 0,42905 |
| 340    | 0,03927 | 396    | 3,97371 | 452    | 8,35291 | 508    | 0,35233 |
| 342    | 0,05497 | 398    | 4,21163 | 454    | 8,40514 | 510    | 0,28719 |
| 344    | 0,07155 | 400    | 4,44579 | 456    | 8,44942 | 512    | 0,23365 |
| 346    | 0,09328 | 402    | 4,67537 | 458    | 8,4857  | 514    | 0,19172 |
| 348    | 0,12468 | 404    | 4,89992 | 460    | 8,51396 | 516    | 0,16122 |
| 350    | 0,1673  | 406    | 5,11911 | 462    | 8,53416 | 518    | 0,14115 |
| 352    | 0,22122 | 408    | 5,33273 | 464    | 8,5463  | 520    | 0,12812 |
| 354    | 0,2864  | 410    | 5,54055 | 466    | 8,55035 | 522    | 0,11517 |
| 356    | 0,36279 | 412    | 5,74243 | 468    | 8,54632 | 524    | 0,1047  |
| 358    | 0,45035 | 414    | 5,93821 | 470    | 8,53418 | 526    | 0,09423 |
| 360    | 0,54901 | 416    | 6,12776 | 472    | 8,51396 | 528    | 0,08376 |
| 362    | 0,65872 | 418    | 6,31094 | 474    | 8,48563 | 530    | 0,07329 |
| 364    | 0,7794  | 420    | 6,48766 | 476    | 8,44923 | 532    | 0,06282 |
| 366    | 0,91098 | 422    | 6,65778 | 478    | 8,40475 | 534    | 0,05235 |
| 368    | 1,05336 | 424    | 6,82122 | 480    | 8,3522  | 536    | 0,04188 |
| 370    | 1,20642 | 426    | 6,97784 | 482    | 8,29161 | 538    | 0,03141 |
| 372    | 1,36998 | 428    | 7,12756 | 484    | 8,22301 | 540    | 0,0212  |
| 374    | 1,54381 | 430    | 7,27027 | 486    | 8,14644 | 542    | 0,01283 |
| 376    | 1,72762 | 432    | 7,40588 | 488    | 8,06193 | 544    | 0,00654 |
| 378    | 1,92109 | 434    | 7,53429 | 490    | 7,96954 | 546    | 0,00236 |
| 380    | 2,12384 | 436    | 7,65542 | 492    | 7,86932 | 548    | 0,00026 |
| 382    | 2,33538 | 438    | 7,76918 | 494    | 7,76135 | 550    | 0       |
| 384    | 2,55507 | 440    | 7,87549 | 496    | 0,98529 |        |         |
| 386    | 2,78196 | 442    | 7,97428 | 498    | 0,85114 |        |         |

Figura 52 - Diagrama da válvula de admissão 36 APMI

| Ângulo<br>[°] | Levant. | Ângulo<br>[°] | Levant.  | Ângulo<br>[°1 | Levant.  | Ângulo<br>[°] | Levant. |
|---------------|---------|---------------|----------|---------------|----------|---------------|---------|
| 332           | 0       | 388           | 3 01483  | 444           | 8.06547  | 500           | 0.61713 |
| 334           | 0.00262 | 390           | 3 25215  | 446           | 8 149    | 502           | 0 51733 |
| 336           | 0.01047 | 392           | 3 /19223 | 1/18          | 8 22/179 | 502           | 0,01705 |
| 338           | 0.02356 | 394           | 3 73333  | 450           | 8 29278  | 506           | 0 35233 |
| 340           | 0.03927 | 396           | 3,97371  | 452           | 8,35291  | 508           | 0.28719 |
| 342           | 0.05497 | 398           | 4,21163  | 454           | 8.40514  | 510           | 0.23365 |
| 344           | 0.07155 | 400           | 4.44579  | 456           | 8.44942  | 512           | 0.19172 |
| 346           | 0.09328 | 402           | 4.67537  | 458           | 8.4857   | 514           | 0.16122 |
| 348           | 0.12468 | 404           | 4.89992  | 460           | 8.51396  | 516           | 0.14115 |
| 350           | 0,1673  | 406           | 5,11911  | 462           | 8,53416  | 518           | 0,12812 |
| 352           | 0,22122 | 408           | 5,33273  | 464           | 8,5463   | 520           | 0,11517 |
| 354           | 0,2864  | 410           | 5,54055  | 466           | 8,55035  | 522           | 0,1047  |
| 356           | 0,36279 | 412           | 5,74243  | 468           | 8,54632  | 524           | 0,09423 |
| 358           | 0,45035 | 414           | 5,93821  | 470           | 8,53418  | 526           | 0,08376 |
| 360           | 0,54901 | 416           | 6,12776  | 472           | 8,51396  | 528           | 0,07329 |
| 362           | 0,65872 | 418           | 6,31094  | 474           | 8,48563  | 530           | 0,06282 |
| 364           | 0,7794  | 420           | 6,48766  | 476           | 8,44923  | 532           | 0,05235 |
| 366           | 0,91098 | 422           | 6,65778  | 478           | 8,40475  | 534           | 0,04188 |
| 368           | 1,05336 | 424           | 6,82122  | 480           | 8,3522   | 536           | 0,03141 |
| 370           | 1,20642 | 426           | 6,97784  | 482           | 8,29161  | 538           | 0,0212  |
| 372           | 1,36998 | 428           | 7,12756  | 484           | 8,22301  | 540           | 0,01283 |
| 374           | 1,54381 | 430           | 7,27027  | 486           | 8,14644  | 542           | 0,00654 |
| 376           | 1,72762 | 432           | 7,40588  | 488           | 8,06193  | 544           | 0,00236 |
| 378           | 1,92109 | 434           | 7,53429  | 490           | 7,96954  | 546           | 0,00026 |
| 380           | 2,12384 | 436           | 7,65542  | 492           | 7,86932  | 548           | 0       |
| 382           | 2,33538 | 438           | 7,76918  | 494           | 0,98529  |               |         |
| 384           | 2,55507 | 440           | 7,87549  | 496           | 0,85114  |               |         |
| 386           | 2,78196 | 442           | 7,97428  | 498           | 0,72841  |               |         |

Figura 53 - Diagrama da válvula de admissão 38 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| Ľٵ     | [mm]    | ູ່     | [mm]    | ້ເ     | [mm]    | ່ເງ    | [mm]    |
| 332    | 0       | 386    | 2,78196 | 440    | 7,87549 | 494    | 0,72841 |
| 334    | 0,00262 | 388    | 3,01483 | 442    | 7,97428 | 496    | 0,61713 |
| 336    | 0,01047 | 390    | 3,25215 | 444    | 8,06547 | 498    | 0,51733 |
| 338    | 0,02356 | 392    | 3,49223 | 446    | 8,149   | 500    | 0,42905 |
| 340    | 0,03927 | 394    | 3,73333 | 448    | 8,22479 | 502    | 0,35233 |
| 342    | 0,05497 | 396    | 3,97371 | 450    | 8,29278 | 504    | 0,28719 |
| 344    | 0,07155 | 398    | 4,21163 | 452    | 8,35291 | 506    | 0,23365 |
| 346    | 0,09328 | 400    | 4,44579 | 454    | 8,40514 | 508    | 0,19172 |
| 348    | 0,12468 | 402    | 4,67537 | 456    | 8,44942 | 510    | 0,16122 |
| 350    | 0,1673  | 404    | 4,89992 | 458    | 8,4857  | 512    | 0,14115 |
| 352    | 0,22122 | 406    | 5,11911 | 460    | 8,51396 | 514    | 0,12812 |
| 354    | 0,2864  | 408    | 5,33273 | 462    | 8,53416 | 516    | 0,11517 |
| 356    | 0,36279 | 410    | 5,54055 | 464    | 8,5463  | 518    | 0,1047  |
| 358    | 0,45035 | 412    | 5,74243 | 466    | 8,55035 | 520    | 0,09423 |
| 360    | 0,54901 | 414    | 5,93821 | 468    | 8,54632 | 522    | 0,08376 |
| 362    | 0,65872 | 416    | 6,12776 | 470    | 8,53418 | 524    | 0,07329 |
| 364    | 0,7794  | 418    | 6,31094 | 472    | 8,51396 | 526    | 0,06282 |
| 366    | 0,91098 | 420    | 6,48766 | 474    | 8,48563 | 528    | 0,05235 |
| 368    | 1,05336 | 422    | 6,65778 | 476    | 8,44923 | 530    | 0,04188 |
| 370    | 1,20642 | 424    | 6,82122 | 478    | 8,40475 | 532    | 0,03141 |
| 372    | 1,36998 | 426    | 6,97784 | 480    | 8,3522  | 534    | 0,0212  |
| 374    | 1,54381 | 428    | 7,12756 | 482    | 8,29161 | 536    | 0,01283 |
| 376    | 1,72762 | 430    | 7,27027 | 484    | 8,22301 | 538    | 0,00654 |
| 378    | 1,92109 | 432    | 7,40588 | 486    | 8,14644 | 540    | 0,00236 |
| 380    | 2,12384 | 434    | 7,53429 | 488    | 8,06193 | 542    | 0,00026 |
| 382    | 2,33538 | 436    | 7,65542 | 490    | 0,98529 | 544    | 0       |
| 384    | 2,55507 | 438    | 7,76918 | 492    | 0,85114 |        |         |

Figura 54 - Diagrama da válvula de admissão 42 APMI

| Ângulo<br>[°1 | Levant. | Ângulo<br>[°1 | Levant. | Ângulo<br>[°1 | Levant. | Ângulo<br>[°1 | Levant. |
|---------------|---------|---------------|---------|---------------|---------|---------------|---------|
| 332           | 0       | 386           | 2 78196 | 440           | 7 87549 | 494           | 0.61713 |
| 334           | 0.00262 | 388           | 3 01483 | 442           | 7 97428 | 496           | 0 51733 |
| 336           | 0.01047 | 390           | 3 25215 | 442           | 8 06547 | 490           | 0.42905 |
| 338           | 0.02356 | 397           | 3 49223 | 446           | 8 149   | 500           | 0 35233 |
| 340           | 0.03927 | 394           | 3,73333 | 448           | 8,22479 | 502           | 0,28719 |
| 342           | 0,05497 | 396           | 3,97371 | 450           | 8,29278 | 504           | 0,23365 |
| 344           | 0,07155 | 398           | 4,21163 | 452           | 8,35291 | 506           | 0,19172 |
| 346           | 0,09328 | 400           | 4,44579 | 454           | 8,40514 | 508           | 0,16122 |
| 348           | 0,12468 | 402           | 4,67537 | 456           | 8,44942 | 510           | 0,14115 |
| 350           | 0,1673  | 404           | 4,89992 | 458           | 8,4857  | 512           | 0,12812 |
| 352           | 0,22122 | 406           | 5,11911 | 460           | 8,51396 | 514           | 0,11517 |
| 354           | 0,2864  | 408           | 5,33273 | 462           | 8,53416 | 516           | 0,1047  |
| 356           | 0,36279 | 410           | 5,54055 | 464           | 8,5463  | 518           | 0,09423 |
| 358           | 0,45035 | 412           | 5,74243 | 466           | 8,55035 | 520           | 0,08376 |
| 360           | 0,54901 | 414           | 5,93821 | 468           | 8,54632 | 522           | 0,07329 |
| 362           | 0,65872 | 416           | 6,12776 | 470           | 8,53418 | 524           | 0,06282 |
| 364           | 0,7794  | 418           | 6,31094 | 472           | 8,51396 | 526           | 0,05235 |
| 366           | 0,91098 | 420           | 6,48766 | 474           | 8,48563 | 528           | 0,04188 |
| 368           | 1,05336 | 422           | 6,65778 | 476           | 8,44923 | 530           | 0,03141 |
| 370           | 1,20642 | 424           | 6,82122 | 478           | 8,40475 | 532           | 0,0212  |
| 372           | 1,36998 | 426           | 6,97784 | 480           | 8,3522  | 534           | 0,01283 |
| 374           | 1,54381 | 428           | 7,12756 | 482           | 8,29161 | 536           | 0,00654 |
| 376           | 1,72762 | 430           | 7,27027 | 484           | 8,22301 | 538           | 0,00236 |
| 378           | 1,92109 | 432           | 7,40588 | 486           | 8,14644 | 540           | 0,00026 |
| 380           | 2,12384 | 434           | 7,53429 | 488           | 0,98529 | 542           | 0       |
| 382           | 2,33538 | 436           | 7,65542 | 490           | 0,85114 |               |         |
| 384           | 2,55507 | 438           | 7,76918 | 492           | 0,72841 |               |         |

Figura 55 - Diagrama da válvula de admissão 44 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| []     | լՠՠյ    | []     | լտտյ    | LJ     | լՠՠյ    | []     | լՠՠյ    |
| 332    | 0       | 386    | 2,78196 | 440    | 7,87549 | 494    | 0,51733 |
| 334    | 0,00262 | 388    | 3,01483 | 442    | 7,97428 | 496    | 0,42905 |
| 336    | 0,01047 | 390    | 3,25215 | 444    | 8,06547 | 498    | 0,35233 |
| 338    | 0,02356 | 392    | 3,49223 | 446    | 8,149   | 500    | 0,28719 |
| 340    | 0,03927 | 394    | 3,73333 | 448    | 8,22479 | 502    | 0,23365 |
| 342    | 0,05497 | 396    | 3,97371 | 450    | 8,29278 | 504    | 0,19172 |
| 344    | 0,07155 | 398    | 4,21163 | 452    | 8,35291 | 506    | 0,16122 |
| 346    | 0,09328 | 400    | 4,44579 | 454    | 8,40514 | 508    | 0,14115 |
| 348    | 0,12468 | 402    | 4,67537 | 456    | 8,44942 | 510    | 0,12812 |
| 350    | 0,1673  | 404    | 4,89992 | 458    | 8,4857  | 512    | 0,11517 |
| 352    | 0,22122 | 406    | 5,11911 | 460    | 8,51396 | 514    | 0,1047  |
| 354    | 0,2864  | 408    | 5,33273 | 462    | 8,53416 | 516    | 0,09423 |
| 356    | 0,36279 | 410    | 5,54055 | 464    | 8,5463  | 518    | 0,08376 |
| 358    | 0,45035 | 412    | 5,74243 | 466    | 8,55035 | 520    | 0,07329 |
| 360    | 0,54901 | 414    | 5,93821 | 468    | 8,54632 | 522    | 0,06282 |
| 362    | 0,65872 | 416    | 6,12776 | 470    | 8,53418 | 524    | 0,05235 |
| 364    | 0,7794  | 418    | 6,31094 | 472    | 8,51396 | 526    | 0,04188 |
| 366    | 0,91098 | 420    | 6,48766 | 474    | 8,48563 | 528    | 0,03141 |
| 368    | 1,05336 | 422    | 6,65778 | 476    | 8,44923 | 530    | 0,0212  |
| 370    | 1,20642 | 424    | 6,82122 | 478    | 8,40475 | 532    | 0,01283 |
| 372    | 1,36998 | 426    | 6,97784 | 480    | 8,3522  | 534    | 0,00654 |
| 374    | 1,54381 | 428    | 7,12756 | 482    | 8,29161 | 536    | 0,00236 |
| 376    | 1,72762 | 430    | 7,27027 | 484    | 8,22301 | 538    | 0,00026 |
| 378    | 1,92109 | 432    | 7,40588 | 486    | 0,98529 | 540    | 0       |
| 380    | 2,12384 | 434    | 7,53429 | 488    | 0,85114 |        |         |
| 382    | 2,33538 | 436    | 7,65542 | 490    | 0,72841 |        |         |
| 384    | 2,55507 | 438    | 7,76918 | 492    | 0,61713 |        |         |

Figura 56 - Diagrama da válvula de admissão 46 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 384           | 2,55507         | 436           | 7,65542         | 488           | 0,72841         |
| 334           | 0,00262         | 386           | 2,78196         | 438           | 7,76918         | 490           | 0,61713         |
| 336           | 0,01047         | 388           | 3,01483         | 440           | 7,87549         | 492           | 0,51733         |
| 338           | 0,02356         | 390           | 3,25215         | 442           | 7,97428         | 494           | 0,42905         |
| 340           | 0,03927         | 392           | 3,49223         | 444           | 8,06547         | 496           | 0,35233         |
| 342           | 0,05497         | 394           | 3,73333         | 446           | 8,149           | 498           | 0,28719         |
| 344           | 0,07155         | 396           | 3,97371         | 448           | 8,22479         | 500           | 0,23365         |
| 346           | 0,09328         | 398           | 4,21163         | 450           | 8,29278         | 502           | 0,19172         |
| 348           | 0,12468         | 400           | 4,44579         | 452           | 8,35291         | 504           | 0,16122         |
| 350           | 0,1673          | 402           | 4,67537         | 454           | 8,40514         | 506           | 0,14115         |
| 352           | 0,22122         | 404           | 4,89992         | 456           | 8,44942         | 508           | 0,12812         |
| 354           | 0,2864          | 406           | 5,11911         | 458           | 8,4857          | 510           | 0,11517         |
| 356           | 0,36279         | 408           | 5,33273         | 460           | 8,51396         | 512           | 0,1047          |
| 358           | 0,45035         | 410           | 5,54055         | 462           | 8,53416         | 514           | 0,09423         |
| 360           | 0,54901         | 412           | 5,74243         | 464           | 8,5463          | 516           | 0,08376         |
| 362           | 0,65872         | 414           | 5,93821         | 466           | 8,55035         | 518           | 0,07329         |
| 364           | 0,7794          | 416           | 6,12776         | 468           | 8,54632         | 520           | 0,06282         |
| 366           | 0,91098         | 418           | 6,31094         | 470           | 8,53418         | 522           | 0,05235         |
| 368           | 1,05336         | 420           | 6,48766         | 472           | 8,51396         | 524           | 0,04188         |
| 370           | 1,20642         | 422           | 6,65778         | 474           | 8,48563         | 526           | 0,03141         |
| 372           | 1,36998         | 424           | 6,82122         | 476           | 8,44923         | 528           | 0,0212          |
| 374           | 1,54381         | 426           | 6,97784         | 478           | 8,40475         | 530           | 0,01283         |
| 376           | 1,72762         | 428           | 7,12756         | 480           | 8,3522          | 532           | 0,00654         |
| 378           | 1,92109         | 430           | 7,27027         | 482           | 8,29161         | 534           | 0,00236         |
| 380           | 2,12384         | 432           | 7,40588         | 484           | 0,98529         | 536           | 0,00026         |
| 382           | 2,33538         | 434           | 7,53429         | 486           | 0,85114         | 538           | 0               |

Figura 57 - Diagrama da válvula de admissão 48 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| []     | լտայ    |        | լաայ    | []     | լտայ    | []     | լտայ    |
| 332    | 0       | 384    | 2,55507 | 436    | 7,65542 | 488    | 0,61713 |
| 334    | 0,00262 | 386    | 2,78196 | 438    | 7,76918 | 490    | 0,51733 |
| 336    | 0,01047 | 388    | 3,01483 | 440    | 7,87549 | 492    | 0,42905 |
| 338    | 0,02356 | 390    | 3,25215 | 442    | 7,97428 | 494    | 0,35233 |
| 340    | 0,03927 | 392    | 3,49223 | 444    | 8,06547 | 496    | 0,28719 |
| 342    | 0,05497 | 394    | 3,73333 | 446    | 8,149   | 498    | 0,23365 |
| 344    | 0,07155 | 396    | 3,97371 | 448    | 8,22479 | 500    | 0,19172 |
| 346    | 0,09328 | 398    | 4,21163 | 450    | 8,29278 | 502    | 0,16122 |
| 348    | 0,12468 | 400    | 4,44579 | 452    | 8,35291 | 504    | 0,14115 |
| 350    | 0,1673  | 402    | 4,67537 | 454    | 8,40514 | 506    | 0,12812 |
| 352    | 0,22122 | 404    | 4,89992 | 456    | 8,44942 | 508    | 0,11517 |
| 354    | 0,2864  | 406    | 5,11911 | 458    | 8,4857  | 510    | 0,1047  |
| 356    | 0,36279 | 408    | 5,33273 | 460    | 8,51396 | 512    | 0,09423 |
| 358    | 0,45035 | 410    | 5,54055 | 462    | 8,53416 | 514    | 0,08376 |
| 360    | 0,54901 | 412    | 5,74243 | 464    | 8,5463  | 516    | 0,07329 |
| 362    | 0,65872 | 414    | 5,93821 | 466    | 8,55035 | 518    | 0,06282 |
| 364    | 0,7794  | 416    | 6,12776 | 468    | 8,54632 | 520    | 0,05235 |
| 366    | 0,91098 | 418    | 6,31094 | 470    | 8,53418 | 522    | 0,04188 |
| 368    | 1,05336 | 420    | 6,48766 | 472    | 8,51396 | 524    | 0,03141 |
| 370    | 1,20642 | 422    | 6,65778 | 474    | 8,48563 | 526    | 0,0212  |
| 372    | 1,36998 | 424    | 6,82122 | 476    | 8,44923 | 528    | 0,01283 |
| 374    | 1,54381 | 426    | 6,97784 | 478    | 8,40475 | 530    | 0,00654 |
| 376    | 1,72762 | 428    | 7,12756 | 480    | 8,3522  | 532    | 0,00236 |
| 378    | 1,92109 | 430    | 7,27027 | 482    | 0,98529 | 534    | 0,00026 |
| 380    | 2,12384 | 432    | 7,40588 | 484    | 0,85114 | 536    | 0       |
| 382    | 2,33538 | 434    | 7,53429 | 486    | 0,72841 |        |         |

Figura 58 - Diagrama da válvula de admissão 50 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| []     | լտայ    | []     | լաայ    | []     | լտայ    | []     | լտայ    |
| 332    | 0       | 384    | 2,55507 | 436    | 7,65542 | 488    | 0,51733 |
| 334    | 0,00262 | 386    | 2,78196 | 438    | 7,76918 | 490    | 0,42905 |
| 336    | 0,01047 | 388    | 3,01483 | 440    | 7,87549 | 492    | 0,35233 |
| 338    | 0,02356 | 390    | 3,25215 | 442    | 7,97428 | 494    | 0,28719 |
| 340    | 0,03927 | 392    | 3,49223 | 444    | 8,06547 | 496    | 0,23365 |
| 342    | 0,05497 | 394    | 3,73333 | 446    | 8,149   | 498    | 0,19172 |
| 344    | 0,07155 | 396    | 3,97371 | 448    | 8,22479 | 500    | 0,16122 |
| 346    | 0,09328 | 398    | 4,21163 | 450    | 8,29278 | 502    | 0,14115 |
| 348    | 0,12468 | 400    | 4,44579 | 452    | 8,35291 | 504    | 0,12812 |
| 350    | 0,1673  | 402    | 4,67537 | 454    | 8,40514 | 506    | 0,11517 |
| 352    | 0,22122 | 404    | 4,89992 | 456    | 8,44942 | 508    | 0,1047  |
| 354    | 0,2864  | 406    | 5,11911 | 458    | 8,4857  | 510    | 0,09423 |
| 356    | 0,36279 | 408    | 5,33273 | 460    | 8,51396 | 512    | 0,08376 |
| 358    | 0,45035 | 410    | 5,54055 | 462    | 8,53416 | 514    | 0,07329 |
| 360    | 0,54901 | 412    | 5,74243 | 464    | 8,5463  | 516    | 0,06282 |
| 362    | 0,65872 | 414    | 5,93821 | 466    | 8,55035 | 518    | 0,05235 |
| 364    | 0,7794  | 416    | 6,12776 | 468    | 8,54632 | 520    | 0,04188 |
| 366    | 0,91098 | 418    | 6,31094 | 470    | 8,53418 | 522    | 0,03141 |
| 368    | 1,05336 | 420    | 6,48766 | 472    | 8,51396 | 524    | 0,0212  |
| 370    | 1,20642 | 422    | 6,65778 | 474    | 8,48563 | 526    | 0,01283 |
| 372    | 1,36998 | 424    | 6,82122 | 476    | 8,44923 | 528    | 0,00654 |
| 374    | 1,54381 | 426    | 6,97784 | 478    | 8,40475 | 530    | 0,00236 |
| 376    | 1,72762 | 428    | 7,12756 | 480    | 0,98529 | 532    | 0,00026 |
| 378    | 1,92109 | 430    | 7,27027 | 482    | 0,85114 | 534    | 0       |
| 380    | 2,12384 | 432    | 7,40588 | 484    | 0,72841 |        |         |
| 382    | 2,33538 | 434    | 7,53429 | 486    | 0,61713 |        |         |

Figura 59 - Diagrama da válvula de admissão 52 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    |
| 332    | 0       | 384    | 2,55507 | 436    | 7,65542 | 488    | 0,42905 |
| 334    | 0,00262 | 386    | 2,78196 | 438    | 7,76918 | 490    | 0,35233 |
| 336    | 0,01047 | 388    | 3,01483 | 440    | 7,87549 | 492    | 0,28719 |
| 338    | 0,02356 | 390    | 3,25215 | 442    | 7,97428 | 494    | 0,23365 |
| 340    | 0,03927 | 392    | 3,49223 | 444    | 8,06547 | 496    | 0,19172 |
| 342    | 0,05497 | 394    | 3,73333 | 446    | 8,149   | 498    | 0,16122 |
| 344    | 0,07155 | 396    | 3,97371 | 448    | 8,22479 | 500    | 0,14115 |
| 346    | 0,09328 | 398    | 4,21163 | 450    | 8,29278 | 502    | 0,12812 |
| 348    | 0,12468 | 400    | 4,44579 | 452    | 8,35291 | 504    | 0,11517 |
| 350    | 0,1673  | 402    | 4,67537 | 454    | 8,40514 | 506    | 0,1047  |
| 352    | 0,22122 | 404    | 4,89992 | 456    | 8,44942 | 508    | 0,09423 |
| 354    | 0,2864  | 406    | 5,11911 | 458    | 8,4857  | 510    | 0,08376 |
| 356    | 0,36279 | 408    | 5,33273 | 460    | 8,51396 | 512    | 0,07329 |
| 358    | 0,45035 | 410    | 5,54055 | 462    | 8,53416 | 514    | 0,06282 |
| 360    | 0,54901 | 412    | 5,74243 | 464    | 8,5463  | 516    | 0,05235 |
| 362    | 0,65872 | 414    | 5,93821 | 466    | 8,55035 | 518    | 0,04188 |
| 364    | 0,7794  | 416    | 6,12776 | 468    | 8,54632 | 520    | 0,03141 |
| 366    | 0,91098 | 418    | 6,31094 | 470    | 8,53418 | 522    | 0,0212  |
| 368    | 1,05336 | 420    | 6,48766 | 472    | 8,51396 | 524    | 0,01283 |
| 370    | 1,20642 | 422    | 6,65778 | 474    | 8,48563 | 526    | 0,00654 |
| 372    | 1,36998 | 424    | 6,82122 | 476    | 8,44923 | 528    | 0,00236 |
| 374    | 1,54381 | 426    | 6,97784 | 478    | 0,98529 | 530    | 0,00026 |
| 376    | 1,72762 | 428    | 7,12756 | 480    | 0,85114 | 532    | 0       |
| 378    | 1,92109 | 430    | 7,27027 | 482    | 0,72841 |        |         |
| 380    | 2,12384 | 432    | 7,40588 | 484    | 0,61713 |        |         |
| 382    | 2,33538 | 434    | 7,53429 | 486    | 0,51733 |        |         |

Figura 60 - Diagrama da válvula de admissão 54 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 382           | 2,33538         | 432           | 7,40588         | 482           | 0,61713         |
| 334           | 0,00262         | 384           | 2,55507         | 434           | 7,53429         | 484           | 0,51733         |
| 336           | 0,01047         | 386           | 2,78196         | 436           | 7,65542         | 486           | 0,42905         |
| 338           | 0,02356         | 388           | 3,01483         | 438           | 7,76918         | 488           | 0,35233         |
| 340           | 0,03927         | 390           | 3,25215         | 440           | 7,87549         | 490           | 0,28719         |
| 342           | 0,05497         | 392           | 3,49223         | 442           | 7,97428         | 492           | 0,23365         |
| 344           | 0,07155         | 394           | 3,73333         | 444           | 8,06547         | 494           | 0,19172         |
| 346           | 0,09328         | 396           | 3,97371         | 446           | 8,149           | 496           | 0,16122         |
| 348           | 0,12468         | 398           | 4,21163         | 448           | 8,22479         | 498           | 0,14115         |
| 350           | 0,1673          | 400           | 4,44579         | 450           | 8,29278         | 500           | 0,12812         |
| 352           | 0,22122         | 402           | 4,67537         | 452           | 8,35291         | 502           | 0,11517         |
| 354           | 0,2864          | 404           | 4,89992         | 454           | 8,40514         | 504           | 0,1047          |
| 356           | 0,36279         | 406           | 5,11911         | 456           | 8,44942         | 506           | 0,09423         |
| 358           | 0,45035         | 408           | 5,33273         | 458           | 8,4857          | 508           | 0,08376         |
| 360           | 0,54901         | 410           | 5,54055         | 460           | 8,51396         | 510           | 0,07329         |
| 362           | 0,65872         | 412           | 5,74243         | 462           | 8,53416         | 512           | 0,06282         |
| 364           | 0,7794          | 414           | 5,93821         | 464           | 8,5463          | 514           | 0,05235         |
| 366           | 0,91098         | 416           | 6,12776         | 466           | 8,55035         | 516           | 0,04188         |
| 368           | 1,05336         | 418           | 6,31094         | 468           | 8,54632         | 518           | 0,03141         |
| 370           | 1,20642         | 420           | 6,48766         | 470           | 8,53418         | 520           | 0,0212          |
| 372           | 1,36998         | 422           | 6,65778         | 472           | 8,51396         | 522           | 0,01283         |
| 374           | 1,54381         | 424           | 6,82122         | 474           | 8,48563         | 524           | 0,00654         |
| 376           | 1,72762         | 426           | 6,97784         | 476           | 0,98529         | 526           | 0,00236         |
| 378           | 1,92109         | 428           | 7,12756         | 478           | 0,85114         | 528           | 0,00026         |
| 380           | 2,12384         | 430           | 7,27027         | 480           | 0,72841         | 530           | 0               |

Figura 61 - Diagrama da válvula de admissão 56 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 382           | 2,33538         | 432           | 7,40588         | 482           | 0,51733         |
| 334           | 0,00262         | 384           | 2,55507         | 434           | 7,53429         | 484           | 0,42905         |
| 336           | 0,01047         | 386           | 2,78196         | 436           | 7,65542         | 486           | 0,35233         |
| 338           | 0,02356         | 388           | 3,01483         | 438           | 7,76918         | 488           | 0,28719         |
| 340           | 0,03927         | 390           | 3,25215         | 440           | 7,87549         | 490           | 0,23365         |
| 342           | 0,05497         | 392           | 3,49223         | 442           | 7,97428         | 492           | 0,19172         |
| 344           | 0,07155         | 394           | 3,73333         | 444           | 8,06547         | 494           | 0,16122         |
| 346           | 0,09328         | 396           | 3,97371         | 446           | 8,149           | 496           | 0,14115         |
| 348           | 0,12468         | 398           | 4,21163         | 448           | 8,22479         | 498           | 0,12812         |
| 350           | 0,1673          | 400           | 4,44579         | 450           | 8,29278         | 500           | 0,11517         |
| 352           | 0,22122         | 402           | 4,67537         | 452           | 8,35291         | 502           | 0,1047          |
| 354           | 0,2864          | 404           | 4,89992         | 454           | 8,40514         | 504           | 0,09423         |
| 356           | 0,36279         | 406           | 5,11911         | 456           | 8,44942         | 506           | 0,08376         |
| 358           | 0,45035         | 408           | 5,33273         | 458           | 8,4857          | 508           | 0,07329         |
| 360           | 0,54901         | 410           | 5,54055         | 460           | 8,51396         | 510           | 0,06282         |
| 362           | 0,65872         | 412           | 5,74243         | 462           | 8,53416         | 512           | 0,05235         |
| 364           | 0,7794          | 414           | 5,93821         | 464           | 8,5463          | 514           | 0,04188         |
| 366           | 0,91098         | 416           | 6,12776         | 466           | 8,55035         | 516           | 0,03141         |
| 368           | 1,05336         | 418           | 6,31094         | 468           | 8,54632         | 518           | 0,0212          |
| 370           | 1,20642         | 420           | 6,48766         | 470           | 8,53418         | 520           | 0,01283         |
| 372           | 1,36998         | 422           | 6,65778         | 472           | 8,51396         | 522           | 0,00654         |
| 374           | 1,54381         | 424           | 6,82122         | 474           | 0,98529         | 524           | 0,00236         |
| 376           | 1,72762         | 426           | 6,97784         | 476           | 0,85114         | 526           | 0,00026         |
| 378           | 1,92109         | 428           | 7,12756         | 478           | 0,72841         | 528           | 0               |
| 380           | 2,12384         | 430           | 7,27027         | 480           | 0,61713         |               |                 |

Figura 62 - Diagrama da válvula de admissão 58 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 382           | 2,33538         | 432           | 7.40588         | 482           | 0.42905         |
| 334           | 0,00262         | 384           | 2,55507         | 434           | 7,53429         | 484           | 0,35233         |
| 336           | 0,01047         | 386           | 2,78196         | 436           | 7,65542         | 486           | 0,28719         |
| 338           | 0,02356         | 388           | 3,01483         | 438           | 7,76918         | 488           | 0,23365         |
| 340           | 0,03927         | 390           | 3,25215         | 440           | 7,87549         | 490           | 0,19172         |
| 342           | 0,05497         | 392           | 3,49223         | 442           | 7,97428         | 492           | 0,16122         |
| 344           | 0,07155         | 394           | 3,73333         | 444           | 8,06547         | 494           | 0,14115         |
| 346           | 0,09328         | 396           | 3,97371         | 446           | 8,149           | 496           | 0,12812         |
| 348           | 0,12468         | 398           | 4,21163         | 448           | 8,22479         | 498           | 0,11517         |
| 350           | 0,1673          | 400           | 4,44579         | 450           | 8,29278         | 500           | 0,1047          |
| 352           | 0,22122         | 402           | 4,67537         | 452           | 8,35291         | 502           | 0,09423         |
| 354           | 0,2864          | 404           | 4,89992         | 454           | 8,40514         | 504           | 0,08376         |
| 356           | 0,36279         | 406           | 5,11911         | 456           | 8,44942         | 506           | 0,07329         |
| 358           | 0,45035         | 408           | 5,33273         | 458           | 8,4857          | 508           | 0,06282         |
| 360           | 0,54901         | 410           | 5,54055         | 460           | 8,51396         | 510           | 0,05235         |
| 362           | 0,65872         | 412           | 5,74243         | 462           | 8,53416         | 512           | 0,04188         |
| 364           | 0,7794          | 414           | 5,93821         | 464           | 8,5463          | 514           | 0,03141         |
| 366           | 0,91098         | 416           | 6,12776         | 466           | 8,55035         | 516           | 0,0212          |
| 368           | 1,05336         | 418           | 6,31094         | 468           | 8,54632         | 518           | 0,01283         |
| 370           | 1,20642         | 420           | 6,48766         | 470           | 8,53418         | 520           | 0,00654         |
| 372           | 1,36998         | 422           | 6,65778         | 472           | 0,98529         | 522           | 0,00236         |
| 374           | 1,54381         | 424           | 6,82122         | 474           | 0,85114         | 524           | 0,00026         |
| 376           | 1,72762         | 426           | 6,97784         | 476           | 0,72841         | 526           | 0               |
| 378           | 1,92109         | 428           | 7,12756         | 478           | 0,61713         |               |                 |
| 380           | 2,12384         | 430           | 7,27027         | 480           | 0,51733         |               |                 |

Figura 63 - Diagrama da válvula de admissão 60 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 380           | 2,12384         | 428           | 7,12756         | 476           | 0,51733         |
| 334           | 0,00262         | 382           | 2,33538         | 430           | 7,27027         | 478           | 0,42905         |
| 336           | 0,01047         | 384           | 2,55507         | 432           | 7,40588         | 480           | 0,35233         |
| 338           | 0,02356         | 386           | 2,78196         | 434           | 7,53429         | 482           | 0,28719         |
| 340           | 0,03927         | 388           | 3,01483         | 436           | 7,65542         | 484           | 0,23365         |
| 342           | 0,05497         | 390           | 3,25215         | 438           | 7,76918         | 486           | 0,19172         |
| 344           | 0,07155         | 392           | 3,49223         | 440           | 7,87549         | 488           | 0,16122         |
| 346           | 0,09328         | 394           | 3,73333         | 442           | 7,97428         | 490           | 0,14115         |
| 348           | 0,12468         | 396           | 3,97371         | 444           | 8,06547         | 492           | 0,12812         |
| 350           | 0,1673          | 398           | 4,21163         | 446           | 8,149           | 494           | 0,11517         |
| 352           | 0,22122         | 400           | 4,44579         | 448           | 8,22479         | 496           | 0,1047          |
| 354           | 0,2864          | 402           | 4,67537         | 450           | 8,29278         | 498           | 0,09423         |
| 356           | 0,36279         | 404           | 4,89992         | 452           | 8,35291         | 500           | 0,08376         |
| 358           | 0,45035         | 406           | 5,11911         | 454           | 8,40514         | 502           | 0,07329         |
| 360           | 0,54901         | 408           | 5,33273         | 456           | 8,44942         | 504           | 0,06282         |
| 362           | 0,65872         | 410           | 5,54055         | 458           | 8,4857          | 506           | 0,05235         |
| 364           | 0,7794          | 412           | 5,74243         | 460           | 8,51396         | 508           | 0,04188         |
| 366           | 0,91098         | 414           | 5,93821         | 462           | 8,53416         | 510           | 0,03141         |
| 368           | 1,05336         | 416           | 6,12776         | 464           | 8,5463          | 512           | 0,0212          |
| 370           | 1,20642         | 418           | 6,31094         | 466           | 8,55035         | 514           | 0,01283         |
| 372           | 1,36998         | 420           | 6,48766         | 468           | 0,98529         | 516           | 0,00654         |
| 374           | 1,54381         | 422           | 6,65778         | 470           | 0,85114         | 518           | 0,00236         |
| 376           | 1,72762         | 424           | 6,82122         | 472           | 0,72841         | 520           | 0,00026         |
| 378           | 1,92109         | 426           | 6,97784         | 474           | 0,61713         | 522           | 0               |

Figura 64 - Diagrama da válvula de admissão 64 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 380           | 2,12384         | 428           | 7,12756         | 476           | 0,42905         |
| 334           | 0,00262         | 382           | 2,33538         | 430           | 7,27027         | 478           | 0,35233         |
| 336           | 0,01047         | 384           | 2,55507         | 432           | 7,40588         | 480           | 0,28719         |
| 338           | 0,02356         | 386           | 2,78196         | 434           | 7,53429         | 482           | 0,23365         |
| 340           | 0,03927         | 388           | 3,01483         | 436           | 7,65542         | 484           | 0,19172         |
| 342           | 0,05497         | 390           | 3,25215         | 438           | 7,76918         | 486           | 0,16122         |
| 344           | 0,07155         | 392           | 3,49223         | 440           | 7,87549         | 488           | 0,14115         |
| 346           | 0,09328         | 394           | 3,73333         | 442           | 7,97428         | 490           | 0,12812         |
| 348           | 0,12468         | 396           | 3,97371         | 444           | 8,06547         | 492           | 0,11517         |
| 350           | 0,1673          | 398           | 4,21163         | 446           | 8,149           | 494           | 0,1047          |
| 352           | 0,22122         | 400           | 4,44579         | 448           | 8,22479         | 496           | 0,09423         |
| 354           | 0,2864          | 402           | 4,67537         | 450           | 8,29278         | 498           | 0,08376         |
| 356           | 0,36279         | 404           | 4,89992         | 452           | 8,35291         | 500           | 0,07329         |
| 358           | 0,45035         | 406           | 5,11911         | 454           | 8,40514         | 502           | 0,06282         |
| 360           | 0,54901         | 408           | 5,33273         | 456           | 8,44942         | 504           | 0,05235         |
| 362           | 0,65872         | 410           | 5,54055         | 458           | 8,4857          | 506           | 0,04188         |
| 364           | 0,7794          | 412           | 5,74243         | 460           | 8,51396         | 508           | 0,03141         |
| 366           | 0,91098         | 414           | 5,93821         | 462           | 8,53416         | 510           | 0,0212          |
| 368           | 1,05336         | 416           | 6,12776         | 464           | 8,5463          | 512           | 0,01283         |
| 370           | 1,20642         | 418           | 6,31094         | 466           | 0,98529         | 514           | 0,00654         |
| 372           | 1,36998         | 420           | 6,48766         | 468           | 0,85114         | 516           | 0,00236         |
| 374           | 1,54381         | 422           | 6,65778         | 470           | 0,72841         | 518           | 0,00026         |
| 376           | 1,72762         | 424           | 6,82122         | 472           | 0,61713         | 520           | 0               |
| 378           | 1,92109         | 426           | 6,97784         | 474           | 0,51733         |               |                 |

Figura 65 - Diagrama da válvula de admissão 66 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 380           | 2,12384         | 428           | 7,12756         | 476           | 0,35233         |
| 334           | 0,00262         | 382           | 2,33538         | 430           | 7,27027         | 478           | 0,28719         |
| 336           | 0,01047         | 384           | 2,55507         | 432           | 7,40588         | 480           | 0,23365         |
| 338           | 0,02356         | 386           | 2,78196         | 434           | 7,53429         | 482           | 0,19172         |
| 340           | 0,03927         | 388           | 3,01483         | 436           | 7,65542         | 484           | 0,16122         |
| 342           | 0,05497         | 390           | 3,25215         | 438           | 7,76918         | 486           | 0,14115         |
| 344           | 0,07155         | 392           | 3,49223         | 440           | 7,87549         | 488           | 0,12812         |
| 346           | 0,09328         | 394           | 3,73333         | 442           | 7,97428         | 490           | 0,11517         |
| 348           | 0,12468         | 396           | 3,97371         | 444           | 8,06547         | 492           | 0,1047          |
| 350           | 0,1673          | 398           | 4,21163         | 446           | 8,149           | 494           | 0,09423         |
| 352           | 0,22122         | 400           | 4,44579         | 448           | 8,22479         | 496           | 0,08376         |
| 354           | 0,2864          | 402           | 4,67537         | 450           | 8,29278         | 498           | 0,07329         |
| 356           | 0,36279         | 404           | 4,89992         | 452           | 8,35291         | 500           | 0,06282         |
| 358           | 0,45035         | 406           | 5,11911         | 454           | 8,40514         | 502           | 0,05235         |
| 360           | 0,54901         | 408           | 5,33273         | 456           | 8,44942         | 504           | 0,04188         |
| 362           | 0,65872         | 410           | 5,54055         | 458           | 8,4857          | 506           | 0,03141         |
| 364           | 0,7794          | 412           | 5,74243         | 460           | 8,51396         | 508           | 0,0212          |
| 366           | 0,91098         | 414           | 5,93821         | 462           | 8,53416         | 510           | 0,01283         |
| 368           | 1,05336         | 416           | 6,12776         | 464           | 0,98529         | 512           | 0,00654         |
| 370           | 1,20642         | 418           | 6,31094         | 466           | 0,85114         | 514           | 0,00236         |
| 372           | 1,36998         | 420           | 6,48766         | 468           | 0,72841         | 516           | 0,00026         |
| 374           | 1,54381         | 422           | 6,65778         | 470           | 0,61713         | 518           | 0               |
| 376           | 1,72762         | 424           | 6,82122         | 472           | 0,51733         |               |                 |
| 378           | 1,92109         | 426           | 6,97784         | 474           | 0,42905         |               |                 |

Figura 66 - Diagrama da válvula de admissão 68 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 380           | 2,12384         | 428           | 7,12756         | 476           | 0,28719         |
| 334           | 0,00262         | 382           | 2,33538         | 430           | 7,27027         | 478           | 0,23365         |
| 336           | 0,01047         | 384           | 2,55507         | 432           | 7,40588         | 480           | 0,19172         |
| 338           | 0,02356         | 386           | 2,78196         | 434           | 7,53429         | 482           | 0,16122         |
| 340           | 0,03927         | 388           | 3,01483         | 436           | 7,65542         | 484           | 0,14115         |
| 342           | 0,05497         | 390           | 3,25215         | 438           | 7,76918         | 486           | 0,12812         |
| 344           | 0,07155         | 392           | 3,49223         | 440           | 7,87549         | 488           | 0,11517         |
| 346           | 0,09328         | 394           | 3,73333         | 442           | 7,97428         | 490           | 0,1047          |
| 348           | 0,12468         | 396           | 3,97371         | 444           | 8,06547         | 492           | 0,09423         |
| 350           | 0,1673          | 398           | 4,21163         | 446           | 8,149           | 494           | 0,08376         |
| 352           | 0,22122         | 400           | 4,44579         | 448           | 8,22479         | 496           | 0,07329         |
| 354           | 0,2864          | 402           | 4,67537         | 450           | 8,29278         | 498           | 0,06282         |
| 356           | 0,36279         | 404           | 4,89992         | 452           | 8,35291         | 500           | 0,05235         |
| 358           | 0,45035         | 406           | 5,11911         | 454           | 8,40514         | 502           | 0,04188         |
| 360           | 0,54901         | 408           | 5,33273         | 456           | 8,44942         | 504           | 0,03141         |
| 362           | 0,65872         | 410           | 5,54055         | 458           | 8,4857          | 506           | 0,0212          |
| 364           | 0,7794          | 412           | 5,74243         | 460           | 8,51396         | 508           | 0,01283         |
| 366           | 0,91098         | 414           | 5,93821         | 462           | 0,98529         | 510           | 0,00654         |
| 368           | 1,05336         | 416           | 6,12776         | 464           | 0,85114         | 512           | 0,00236         |
| 370           | 1,20642         | 418           | 6,31094         | 466           | 0,72841         | 514           | 0,00026         |
| 372           | 1,36998         | 420           | 6,48766         | 468           | 0,61713         | 516           | 0               |
| 374           | 1,54381         | 422           | 6,65778         | 470           | 0,51733         |               |                 |
| 376           | 1,72762         | 424           | 6,82122         | 472           | 0,42905         |               |                 |
| 378           | 1,92109         | 426           | 6,97784         | 474           | 0,35233         |               |                 |

Figura 67 - Diagrama da válvula de admissão 70 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 378           | 1,92109         | 424           | 6,82122         | 470           | 0,42905         |
| 334           | 0,00262         | 380           | 2,12384         | 426           | 6,97784         | 472           | 0,35233         |
| 336           | 0,01047         | 382           | 2,33538         | 428           | 7,12756         | 474           | 0,28719         |
| 338           | 0,02356         | 384           | 2,55507         | 430           | 7,27027         | 476           | 0,23365         |
| 340           | 0,03927         | 386           | 2,78196         | 432           | 7,40588         | 478           | 0,19172         |
| 342           | 0,05497         | 388           | 3,01483         | 434           | 7,53429         | 480           | 0,16122         |
| 344           | 0,07155         | 390           | 3,25215         | 436           | 7,65542         | 482           | 0,14115         |
| 346           | 0,09328         | 392           | 3,49223         | 438           | 7,76918         | 484           | 0,12812         |
| 348           | 0,12468         | 394           | 3,73333         | 440           | 7,87549         | 486           | 0,11517         |
| 350           | 0,1673          | 396           | 3,97371         | 442           | 7,97428         | 488           | 0,1047          |
| 352           | 0,22122         | 398           | 4,21163         | 444           | 8,06547         | 490           | 0,09423         |
| 354           | 0,2864          | 400           | 4,44579         | 446           | 8,149           | 492           | 0,08376         |
| 356           | 0,36279         | 402           | 4,67537         | 448           | 8,22479         | 494           | 0,07329         |
| 358           | 0,45035         | 404           | 4,89992         | 450           | 8,29278         | 496           | 0,06282         |
| 360           | 0,54901         | 406           | 5,11911         | 452           | 8,35291         | 498           | 0,05235         |
| 362           | 0,65872         | 408           | 5,33273         | 454           | 8,40514         | 500           | 0,04188         |
| 364           | 0,7794          | 410           | 5,54055         | 456           | 8,44942         | 502           | 0,03141         |
| 366           | 0,91098         | 412           | 5,74243         | 458           | 8,4857          | 504           | 0,0212          |
| 368           | 1,05336         | 414           | 5,93821         | 460           | 0,98529         | 506           | 0,01283         |
| 370           | 1,20642         | 416           | 6,12776         | 462           | 0,85114         | 508           | 0,00654         |
| 372           | 1,36998         | 418           | 6,31094         | 464           | 0,72841         | 510           | 0,00236         |
| 374           | 1,54381         | 420           | 6,48766         | 466           | 0,61713         | 512           | 0,00026         |
| 376           | 1,72762         | 422           | 6,65778         | 468           | 0,51733         | 514           | 0               |

Figura 68 - Diagrama da válvula de admissão 72 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 378           | 1,92109         | 424           | 6,82122         | 470           | 0,28719         |
| 334           | 0,00262         | 380           | 2,12384         | 426           | 6,97784         | 472           | 0,23365         |
| 336           | 0,01047         | 382           | 2,33538         | 428           | 7,12756         | 474           | 0,19172         |
| 338           | 0,02356         | 384           | 2,55507         | 430           | 7,27027         | 476           | 0,16122         |
| 340           | 0,03927         | 386           | 2,78196         | 432           | 7,40588         | 478           | 0,14115         |
| 342           | 0,05497         | 388           | 3,01483         | 434           | 7,53429         | 480           | 0,12812         |
| 344           | 0,07155         | 390           | 3,25215         | 436           | 7,65542         | 482           | 0,11517         |
| 346           | 0,09328         | 392           | 3,49223         | 438           | 7,76918         | 484           | 0,1047          |
| 348           | 0,12468         | 394           | 3,73333         | 440           | 7,87549         | 486           | 0,09423         |
| 350           | 0,1673          | 396           | 3,97371         | 442           | 7,97428         | 488           | 0,08376         |
| 352           | 0,22122         | 398           | 4,21163         | 444           | 8,06547         | 490           | 0,07329         |
| 354           | 0,2864          | 400           | 4,44579         | 446           | 8,149           | 492           | 0,06282         |
| 356           | 0,36279         | 402           | 4,67537         | 448           | 8,22479         | 494           | 0,05235         |
| 358           | 0,45035         | 404           | 4,89992         | 450           | 8,29278         | 496           | 0,04188         |
| 360           | 0,54901         | 406           | 5,11911         | 452           | 8,35291         | 498           | 0,03141         |
| 362           | 0,65872         | 408           | 5,33273         | 454           | 8,40514         | 500           | 0,0212          |
| 364           | 0,7794          | 410           | 5,54055         | 456           | 0,98529         | 502           | 0,01283         |
| 366           | 0,91098         | 412           | 5,74243         | 458           | 0,85114         | 504           | 0,00654         |
| 368           | 1,05336         | 414           | 5,93821         | 460           | 0,72841         | 506           | 0,00236         |
| 370           | 1,20642         | 416           | 6,12776         | 462           | 0,61713         | 508           | 0,00026         |
| 372           | 1,36998         | 418           | 6,31094         | 464           | 0,51733         | 510           | 0               |
| 374           | 1,54381         | 420           | 6,48766         | 466           | 0,42905         |               |                 |
| 376           | 1,72762         | 422           | 6,65778         | 468           | 0,35233         |               |                 |

Figura 69 - Diagrama da válvula de admissão 76 APMI

| Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. | Ângulo | Levant. |
|--------|---------|--------|---------|--------|---------|--------|---------|
| [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    | [°]    | [mm]    |
| 332    | 0       | 376    | 1,72762 | 420    | 6,48766 | 464    | 0,35233 |
| 334    | 0,00262 | 378    | 1,92109 | 422    | 6,65778 | 466    | 0,28719 |
| 336    | 0,01047 | 380    | 2,12384 | 424    | 6,82122 | 468    | 0,23365 |
| 338    | 0,02356 | 382    | 2,33538 | 426    | 6,97784 | 470    | 0,19172 |
| 340    | 0,03927 | 384    | 2,55507 | 428    | 7,12756 | 472    | 0,16122 |
| 342    | 0,05497 | 386    | 2,78196 | 430    | 7,27027 | 474    | 0,14115 |
| 344    | 0,07155 | 388    | 3,01483 | 432    | 7,40588 | 476    | 0,12812 |
| 346    | 0,09328 | 390    | 3,25215 | 434    | 7,53429 | 478    | 0,11517 |
| 348    | 0,12468 | 392    | 3,49223 | 436    | 7,65542 | 480    | 0,1047  |
| 350    | 0,1673  | 394    | 3,73333 | 438    | 7,76918 | 482    | 0,09423 |
| 352    | 0,22122 | 396    | 3,97371 | 440    | 7,87549 | 484    | 0,08376 |
| 354    | 0,2864  | 398    | 4,21163 | 442    | 7,97428 | 486    | 0,07329 |
| 356    | 0,36279 | 400    | 4,44579 | 444    | 8,06547 | 488    | 0,06282 |
| 358    | 0,45035 | 402    | 4,67537 | 446    | 8,149   | 490    | 0,05235 |
| 360    | 0,54901 | 404    | 4,89992 | 448    | 8,22479 | 492    | 0,04188 |
| 362    | 0,65872 | 406    | 5,11911 | 450    | 8,29278 | 494    | 0,03141 |
| 364    | 0,7794  | 408    | 5,33273 | 452    | 0,98529 | 496    | 0,0212  |
| 366    | 0,91098 | 410    | 5,54055 | 454    | 0,85114 | 498    | 0,01283 |
| 368    | 1,05336 | 412    | 5,74243 | 456    | 0,72841 | 500    | 0,00654 |
| 370    | 1,20642 | 414    | 5,93821 | 458    | 0,61713 | 502    | 0,00236 |
| 372    | 1,36998 | 416    | 6,12776 | 460    | 0,51733 | 504    | 0,00026 |
| 374    | 1,54381 | 418    | 6,31094 | 462    | 0,42905 | 506    | 0       |

Figura 70 - Diagrama da válvula de admissão 80 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 376           | 1,72762         | 420           | 6,48766         | 464           | 0,19172         |
| 334           | 0,00262         | 378           | 1,92109         | 422           | 6,65778         | 466           | 0,16122         |
| 336           | 0,01047         | 380           | 2,12384         | 424           | 6,82122         | 468           | 0,14115         |
| 338           | 0,02356         | 382           | 2,33538         | 426           | 6,97784         | 470           | 0,12812         |
| 340           | 0,03927         | 384           | 2,55507         | 428           | 7,12756         | 472           | 0,11517         |
| 342           | 0,05497         | 386           | 2,78196         | 430           | 7,27027         | 474           | 0,1047          |
| 344           | 0,07155         | 388           | 3,01483         | 432           | 7,40588         | 476           | 0,09423         |
| 346           | 0,09328         | 390           | 3,25215         | 434           | 7,53429         | 478           | 0,08376         |
| 348           | 0,12468         | 392           | 3,49223         | 436           | 7,65542         | 480           | 0,07329         |
| 350           | 0,1673          | 394           | 3,73333         | 438           | 7,76918         | 482           | 0,06282         |
| 352           | 0,22122         | 396           | 3,97371         | 440           | 7,87549         | 484           | 0,05235         |
| 354           | 0,2864          | 398           | 4,21163         | 442           | 7,97428         | 486           | 0,04188         |
| 356           | 0,36279         | 400           | 4,44579         | 444           | 8,06547         | 488           | 0,03141         |
| 358           | 0,45035         | 402           | 4,67537         | 446           | 0,98529         | 490           | 0,0212          |
| 360           | 0,54901         | 404           | 4,89992         | 448           | 0,85114         | 492           | 0,01283         |
| 362           | 0,65872         | 406           | 5,11911         | 450           | 0,72841         | 494           | 0,00654         |
| 364           | 0,7794          | 408           | 5,33273         | 452           | 0,61713         | 496           | 0,00236         |
| 366           | 0,91098         | 410           | 5,54055         | 454           | 0,51733         | 498           | 0,00026         |
| 368           | 1,05336         | 412           | 5,74243         | 456           | 0,42905         | 500           | 0               |
| 370           | 1,20642         | 414           | 5,93821         | 458           | 0,35233         |               |                 |
| 372           | 1,36998         | 416           | 6,12776         | 460           | 0,28719         |               |                 |
| 374           | 1,54381         | 418           | 6,31094         | 462           | 0,23365         |               |                 |

Figura 71 - Diagrama da válvula de admissão 86 APMI

|               |                 |               |                 |               |                 |               | -               |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
| 332           | 0               | 374           | 1,54381         | 416           | 6,12776         | 458           | 0,28719         |
| 334           | 0,00262         | 376           | 1,72762         | 418           | 6,31094         | 460           | 0,23365         |
| 336           | 0,01047         | 378           | 1,92109         | 420           | 6,48766         | 462           | 0,19172         |
| 338           | 0,02356         | 380           | 2,12384         | 422           | 6,65778         | 464           | 0,16122         |
| 340           | 0,03927         | 382           | 2,33538         | 424           | 6,82122         | 466           | 0,14115         |
| 342           | 0,05497         | 384           | 2,55507         | 426           | 6,97784         | 468           | 0,12812         |
| 344           | 0,07155         | 386           | 2,78196         | 428           | 7,12756         | 470           | 0,11517         |
| 346           | 0,09328         | 388           | 3,01483         | 430           | 7,27027         | 472           | 0,1047          |
| 348           | 0,12468         | 390           | 3,25215         | 432           | 7,40588         | 474           | 0,09423         |
| 350           | 0,1673          | 392           | 3,49223         | 434           | 7,53429         | 476           | 0,08376         |
| 352           | 0,22122         | 394           | 3,73333         | 436           | 7,65542         | 478           | 0,07329         |
| 354           | 0,2864          | 396           | 3,97371         | 438           | 7,76918         | 480           | 0,06282         |
| 356           | 0,36279         | 398           | 4,21163         | 440           | 7,87549         | 482           | 0,05235         |
| 358           | 0,45035         | 400           | 4,44579         | 442           | 7,97428         | 484           | 0,04188         |
| 360           | 0,54901         | 402           | 4,67537         | 444           | 0,98529         | 486           | 0,03141         |
| 362           | 0,65872         | 404           | 4,89992         | 446           | 0,85114         | 488           | 0,0212          |
| 364           | 0,7794          | 406           | 5,11911         | 448           | 0,72841         | 490           | 0,01283         |
| 366           | 0,91098         | 408           | 5,33273         | 450           | 0,61713         | 492           | 0,00654         |
| 368           | 1,05336         | 410           | 5,54055         | 452           | 0,51733         | 494           | 0,00236         |
| 370           | 1,20642         | 412           | 5,74243         | 454           | 0,42905         | 496           | 0,00026         |
| 372           | 1,36998         | 414           | 5,93821         | 456           | 0,35233         | 498           | 0               |

Figura 72 - Diagrama da válvula de admissão 88 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 374           | 1,54381         | 416           | 6,12776         | 458           | 0,23365         |
| 334           | 0,00262         | 376           | 1,72762         | 418           | 6,31094         | 460           | 0,19172         |
| 336           | 0,01047         | 378           | 1,92109         | 420           | 6,48766         | 462           | 0,16122         |
| 338           | 0,02356         | 380           | 2,12384         | 422           | 6,65778         | 464           | 0,14115         |
| 340           | 0,03927         | 382           | 2,33538         | 424           | 6,82122         | 466           | 0,12812         |
| 342           | 0,05497         | 384           | 2,55507         | 426           | 6,97784         | 468           | 0,11517         |
| 344           | 0,07155         | 386           | 2,78196         | 428           | 7,12756         | 470           | 0,1047          |
| 346           | 0,09328         | 388           | 3,01483         | 430           | 7,27027         | 472           | 0,09423         |
| 348           | 0,12468         | 390           | 3,25215         | 432           | 7,40588         | 474           | 0,08376         |
| 350           | 0,1673          | 392           | 3,49223         | 434           | 7,53429         | 476           | 0,07329         |
| 352           | 0,22122         | 394           | 3,73333         | 436           | 7,65542         | 478           | 0,06282         |
| 354           | 0,2864          | 396           | 3,97371         | 438           | 7,76918         | 480           | 0,05235         |
| 356           | 0,36279         | 398           | 4,21163         | 440           | 7,87549         | 482           | 0,04188         |
| 358           | 0,45035         | 400           | 4,44579         | 442           | 0,98529         | 484           | 0,03141         |
| 360           | 0,54901         | 402           | 4,67537         | 444           | 0,85114         | 486           | 0,0212          |
| 362           | 0,65872         | 404           | 4,89992         | 446           | 0,72841         | 488           | 0,01283         |
| 364           | 0,7794          | 406           | 5,11911         | 448           | 0,61713         | 490           | 0,00654         |
| 366           | 0,91098         | 408           | 5,33273         | 450           | 0,51733         | 492           | 0,00236         |
| 368           | 1,05336         | 410           | 5,54055         | 452           | 0,42905         | 494           | 0,00026         |
| 370           | 1,20642         | 412           | 5,74243         | 454           | 0,35233         | 496           | 0               |
| 372           | 1,36998         | 414           | 5,93821         | 456           | 0,28719         |               |                 |

Figura 73 - Diagrama da válvula de admissão 90 APMI

|               |                 |               |                 |               |                 |               | -               |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
| 332           | 0               | 374           | 1,54381         | 416           | 6,12776         | 458           | 0,19172         |
| 334           | 0,00262         | 376           | 1,72762         | 418           | 6,31094         | 460           | 0,16122         |
| 336           | 0,01047         | 378           | 1,92109         | 420           | 6,48766         | 462           | 0,14115         |
| 338           | 0,02356         | 380           | 2,12384         | 422           | 6,65778         | 464           | 0,12812         |
| 340           | 0,03927         | 382           | 2,33538         | 424           | 6,82122         | 466           | 0,11517         |
| 342           | 0,05497         | 384           | 2,55507         | 426           | 6,97784         | 468           | 0,1047          |
| 344           | 0,07155         | 386           | 2,78196         | 428           | 7,12756         | 470           | 0,09423         |
| 346           | 0,09328         | 388           | 3,01483         | 430           | 7,27027         | 472           | 0,08376         |
| 348           | 0,12468         | 390           | 3,25215         | 432           | 7,40588         | 474           | 0,07329         |
| 350           | 0,1673          | 392           | 3,49223         | 434           | 7,53429         | 476           | 0,06282         |
| 352           | 0,22122         | 394           | 3,73333         | 436           | 7,65542         | 478           | 0,05235         |
| 354           | 0,2864          | 396           | 3,97371         | 438           | 7,76918         | 480           | 0,04188         |
| 356           | 0,36279         | 398           | 4,21163         | 440           | 0,98529         | 482           | 0,03141         |
| 358           | 0,45035         | 400           | 4,44579         | 442           | 0,85114         | 484           | 0,0212          |
| 360           | 0,54901         | 402           | 4,67537         | 444           | 0,72841         | 486           | 0,01283         |
| 362           | 0,65872         | 404           | 4,89992         | 446           | 0,61713         | 488           | 0,00654         |
| 364           | 0,7794          | 406           | 5,11911         | 448           | 0,51733         | 490           | 0,00236         |
| 366           | 0,91098         | 408           | 5,33273         | 450           | 0,42905         | 492           | 0,00026         |
| 368           | 1,05336         | 410           | 5,54055         | 452           | 0,35233         | 494           | 0               |
| 370           | 1,20642         | 412           | 5,74243         | 454           | 0,28719         |               |                 |
| 372           | 1,36998         | 414           | 5,93821         | 456           | 0,23365         |               |                 |

Figura 74 - Diagrama da válvula de admissão 92 APMI

| Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] | Ângulo<br>[°] | Levant.<br>[mm] |
|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
| 332           | 0               | 374           | 1,54381         | 416           | 6,12776         | 458           | 0,16122         |
| 334           | 0,00262         | 376           | 1,72762         | 418           | 6,31094         | 460           | 0,14115         |
| 336           | 0,01047         | 378           | 1,92109         | 420           | 6,48766         | 462           | 0,12812         |
| 338           | 0,02356         | 380           | 2,12384         | 422           | 6,65778         | 464           | 0,11517         |
| 340           | 0,03927         | 382           | 2,33538         | 424           | 6,82122         | 466           | 0,1047          |
| 342           | 0,05497         | 384           | 2,55507         | 426           | 6,97784         | 468           | 0,09423         |
| 344           | 0,07155         | 386           | 2,78196         | 428           | 7,12756         | 470           | 0,08376         |
| 346           | 0,09328         | 388           | 3,01483         | 430           | 7,27027         | 472           | 0,07329         |
| 348           | 0,12468         | 390           | 3,25215         | 432           | 7,40588         | 474           | 0,06282         |
| 350           | 0,1673          | 392           | 3,49223         | 434           | 7,53429         | 476           | 0,05235         |
| 352           | 0,22122         | 394           | 3,73333         | 436           | 7,65542         | 478           | 0,04188         |
| 354           | 0,2864          | 396           | 3,97371         | 438           | 0,98529         | 480           | 0,03141         |
| 356           | 0,36279         | 398           | 4,21163         | 440           | 0,85114         | 482           | 0,0212          |
| 358           | 0,45035         | 400           | 4,44579         | 442           | 0,72841         | 484           | 0,01283         |
| 360           | 0,54901         | 402           | 4,67537         | 444           | 0,61713         | 486           | 0,00654         |
| 362           | 0,65872         | 404           | 4,89992         | 446           | 0,51733         | 488           | 0,00236         |
| 364           | 0,7794          | 406           | 5,11911         | 448           | 0,42905         | 490           | 0,00026         |
| 366           | 0,91098         | 408           | 5,33273         | 450           | 0,35233         | 492           | 0               |
| 368           | 1,05336         | 410           | 5,54055         | 452           | 0,28719         |               |                 |
| 370           | 1,20642         | 412           | 5,74243         | 454           | 0,23365         |               |                 |
| 372           | 1,36998         | 414           | 5,93821         | 456           | 0,19172         |               |                 |

Figura 75 - Diagrama da válvula de admissão 94 APMI

# **APÊNDICE D – RESULTADOS PARÂMETROS**

|       | EXPERIMENTAL - ETANOL |            |          |                             |            |         |              |         |         |  |
|-------|-----------------------|------------|----------|-----------------------------|------------|---------|--------------|---------|---------|--|
| Rot.  | Eficiênc              | ia Volumét | rica [%] | Cons. de Combustível [kg/h] |            |         | Torque [N.m] |         |         |  |
| [rpm] | Carga A               | Carga B    | Carga C  | Carga A                     | Carga B    | Carga C | Carga A      | Carga B | Carga C |  |
| 2000  | 77,7%                 | 68,7%      | 41,3%    | 9,5                         | 8,4        | 5,1     | 119,6        | 102,4   | 51,5    |  |
| 2500  | 86,2%                 | 71,6%      | 41,7%    | 14,0                        | 10,7       | 6,4     | 136,3        | 102,2   | 51,5    |  |
| 3000  | 82,6%                 | 70,4%      | 41,4%    | 16,1                        | 13,0       | 7,8     | 124,7        | 102,4   | 51,8    |  |
| 3500  | 82,4%                 | 69,2%      | 41,4%    | 18,3                        | 15,3       | 9,2     | 126,3        | 102,5   | 51,6    |  |
| 4000  | 91,6%                 | 72,5%      | 43,7%    | 22,9                        | 17,7       | 10,8    | 136,0        | 102,7   | 51,4    |  |
| 4500  | 94,3%                 | 72,8%      | 44,6%    | 27,8                        | 20,1       | 12,6    | 142,0        | 101,9   | 52,0    |  |
| 5000  | 92,2%                 | 73,3%      | 44,3%    | 30,5                        | 22,6       | 14,0    | 138,5        | 102,1   | 51,3    |  |
| 5500  | 87,7%                 | 74,3%      | 45,0%    | 32,7                        | 25,9       | 16,2    | 129,0        | 102,4   | 51,1    |  |
| 6000  | 80,9%                 | 75,4%      | 47,3%    | 33,5                        | 31,0       | 18,0    | 110,0        | 102,0   | 51,6    |  |
|       |                       |            | F        | onte: Dado                  | s da pesqu | isa     |              |         |         |  |

Tabela 8 - Resultados experimentais - Etanol

|       |           |            |          |          |                             |         | -       |              |         |  |
|-------|-----------|------------|----------|----------|-----------------------------|---------|---------|--------------|---------|--|
| Rot.  | Eficiênci | ia Volumét | rica [%] | Cons. de | Cons. de Combustível [kg/h] |         |         | Torque [N.m] |         |  |
| [rpm] | Carga A   | Carga B    | Carga C  | Carga A  | Carga B                     | Carga C | Carga A | Carga B      | Carga C |  |
| 2000  | 75,2%     | 69,9%      | 40,1%    | 6,5      | 5,8                         | 3,3     | 116,6   | 103,3        | 53,0    |  |
| 2500  | 85,9%     | 70,0%      | 39,9%    | 9,3      | 7,0                         | 4,1     | 129,8   | 104,2        | 52,1    |  |
| 3000  | 80,7%     | 69,9%      | 39,9%    | 10,7     | 8,3                         | 4,7     | 126,3   | 102,4        | 50,3    |  |
| 3500  | 82,2%     | 70,2%      | 40,1%    | 12,4     | 10,0                        | 5,6     | 128,9   | 105,1        | 49,5    |  |
| 4000  | 87,9%     | 69,9%      | 39,9%    | 16,2     | 12,1                        | 6,3     | 136,0   | 102,4        | 46,8    |  |
| 4500  | 92,3%     | 70,3%      | 39,6%    | 20,2     | 14,2                        | 7,1     | 139,5   | 100,7        | 45,0    |  |
| 5000  | 91,3%     | 70,8%      | 40,6%    | 22,7     | 16,8                        | 8,3     | 136,9   | 99,8         | 47,7    |  |
| 5500  | 87,4%     | 69,4%      | 40,0%    | 25,1     | 18,5                        | 9,1     | 125,4   | 95,4         | 44,2    |  |
| 6000  | 80,0%     | 72,4%      | 50,5%    | 25,4     | 20,8                        | 12,9    | 111,3   | 98,0         | 60,9    |  |

Tabela 9 - Resultados experimentais - Gasolina

#### EXPERIMENTAL - GASOLINA

|       | 3                          |         |         |                             |         |         |              |         |         |
|-------|----------------------------|---------|---------|-----------------------------|---------|---------|--------------|---------|---------|
| Rot.  | Eficiência Volumétrica [%] |         |         | Cons. de Combustível [kg/h] |         |         | Torque [N.m] |         |         |
| [rpm] | Carga A                    | Carga B | Carga C | Carga A                     | Carga B | Carga C | Carga A      | Carga B | Carga C |
| 2000  | 80,7%                      | 68,9%   | 42,0%   | 9,9                         | 8,6     | 5,3     | 122,1        | 101,8   | 51,0    |
| 2500  | 87,6%                      | 70,9%   | 42,2%   | 14,2                        | 11,0    | 6,6     | 141,7        | 106,0   | 51,6    |
| 3000  | 80,9%                      | 71,1%   | 41,8%   | 16,2                        | 13,3    | 7,8     | 129,2        | 106,2   | 50,6    |
| 3500  | 83,9%                      | 70,5%   | 42,7%   | 18,9                        | 15,3    | 9,3     | 130,3        | 103,2   | 50,8    |
| 4000  | 90,2%                      | 72,7%   | 43,5%   | 23,8                        | 18,1    | 10,8    | 139,0        | 105,4   | 50,9    |
| 4500  | 93,5%                      | 73,5%   | 44,9%   | 28,4                        | 20,5    | 12,5    | 144,6        | 104,5   | 51,0    |
| 5000  | 91,2%                      | 73,9%   | 45,3%   | 30,5                        | 22,9    | 14,1    | 142,8        | 104,4   | 50,8    |
| 5500  | 86,2%                      | 76,0%   | 46,1%   | 31,9                        | 26,0    | 15,8    | 130,3        | 105,3   | 50,1    |
| 6000  | 77,9%                      | 74,8%   | 48,0%   | 32,8                        | 30,8    | 17,9    | 113,7        | 105,8   | 52,9    |

Tabela 10 - Resultados Modelo de Validação - Etanol

## MODELO DE VALIDAÇÃO - ETANOL

| Rot.  | Octane Number [-] |         |         | CEC [g/kW.h] |         |         | PMB [bar] |         |         |
|-------|-------------------|---------|---------|--------------|---------|---------|-----------|---------|---------|
| [rpm] | Carga A           | Carga B | Carga C | Carga A      | Carga B | Carga C | Carga A   | Carga B | Carga C |
| 2000  | 83,4              | 74,5    | 61,3    | 386,6        | 403,8   | 492,4   | 2,2       | 2,4     | 2,6     |
| 2500  | 83,6              | 73,2    | 60,1    | 383,1        | 396,9   | 487,5   | 2,3       | 2,5     | 2,6     |
| 3000  | 82,5              | 75,0    | 56,6    | 398,7        | 398,4   | 491,0   | 2,5       | 2,6     | 2,7     |
| 3500  | 83,2              | 74,5    | 57,3    | 395,5        | 405,5   | 500,2   | 2,9       | 3,1     | 3,1     |
| 4000  | 83,8              | 74,6    | 57,5    | 408,6        | 409,3   | 508,1   | 3,3       | 3,4     | 3,3     |
| 4500  | 83,0              | 73,8    | 58,5    | 417,0        | 416,8   | 520,7   | 3,5       | 3,6     | 3,5     |
| 5000  | 82,9              | 71,3    | 58,2    | 408,5        | 419,9   | 530,1   | 3,9       | 3,8     | 3,5     |
| 5500  | 81,9              | 75,1    | 58,3    | 424,7        | 428,7   | 547,7   | 4,3       | 4,3     | 3,8     |
| 6000  | 77,2              | 73,6    | 60,4    | 460,0        | 463,8   | 537,5   | 4,2       | 4,2     | 3,8     |

| Rot.  | Eficiência Volumétrica [%] |         |         | Cons. de Combustível [kg/h] |         |         | Torque [N.m] |         |         |
|-------|----------------------------|---------|---------|-----------------------------|---------|---------|--------------|---------|---------|
| [rpm] | Carga A                    | Carga B | Carga C | Carga A                     | Carga B | Carga C | Carga A      | Carga B | Carga C |
| 2000  | 73,7%                      | 69,0%   | 40,2%   | 6,6                         | 5,8     | 3,4     | 113,9        | 102,6   | 48,0    |
| 2500  | 80,7%                      | 68,1%   | 39,5%   | 9,1                         | 7,2     | 4,2     | 128,8        | 102,1   | 47,0    |
| 3000  | 76,1%                      | 67,3%   | 38,4%   | 10,6                        | 8,6     | 4,9     | 121,8        | 101,5   | 45,2    |
| 3500  | 81,2%                      | 68,6%   | 38,8%   | 12,8                        | 10,2    | 5,8     | 129,7        | 102,1   | 44,3    |
| 4000  | 85,1%                      | 68,2%   | 38,7%   | 16,4                        | 12,4    | 6,6     | 136,6        | 102,1   | 42,4    |
| 4500  | 87,4%                      | 68,6%   | 38,3%   | 20,0                        | 14,5    | 7,4     | 137,4        | 101,9   | 39,7    |
| 5000  | 85,6%                      | 69,2%   | 39,8%   | 22,2                        | 17,1    | 8,5     | 130,0        | 100,8   | 41,4    |
| 5500  | 81,5%                      | 68,2%   | 39,8%   | 24,4                        | 18,8    | 9,3     | 120,3        | 96,2    | 39,0    |
| 6000  | 73,9%                      | 70,3%   | 49,9%   | 24,5                        | 21,1    | 13,3    | 106,4        | 101,4   | 60,7    |

Tabela 11 - Resultados Modelo de Validação - Gasolina

## MODELO DE VALIDAÇÃO - GASOLINA

| Rot.  | Octane Number [-] |         |         | CEC [g/kW.h] |         |         | PMB [bar] |         |         |
|-------|-------------------|---------|---------|--------------|---------|---------|-----------|---------|---------|
| [rpm] | Carga A           | Carga B | Carga C | Carga A      | Carga B | Carga C | Carga A   | Carga B | Carga C |
| 2000  | 86,7              | 84,6    | 71,5    | 278,6        | 272,2   | 339,1   | 2,1       | 2,2     | 2,5     |
| 2500  | 86,9              | 81,7    | 68,2    | 269,7        | 270,2   | 340,3   | 2,3       | 2,4     | 2,6     |
| 3000  | 84,5              | 80,1    | 65,8    | 276,1        | 269,0   | 346,1   | 2,4       | 2,5     | 2,6     |
| 3500  | 86,5              | 81,0    | 65,9    | 268,9        | 273,4   | 358,1   | 2,8       | 2,9     | 3,0     |
| 4000  | 86,2              | 79,6    | 64,4    | 286,2        | 288,9   | 369,8   | 3,1       | 3,3     | 3,2     |
| 4500  | 83,1              | 80,0    | 63,9    | 308,6        | 302,3   | 394,1   | 3,4       | 3,5     | 3,4     |
| 5000  | 79,8              | 80,1    | 62,6    | 326,0        | 324,3   | 391,4   | 3,7       | 3,7     | 3,4     |
| 5500  | 81,7              | 78,3    | 64,1    | 352,0        | 338,7   | 414,4   | 4,2       | 4,1     | 3,6     |
| 6000  | 75,7              | 77,2    | 68,5    | 365,9        | 330,5   | 348,8   | 4,2       | 4,1     | 3,8     |

| Pot   | Efic. Volur | nétrica [%] | Cons. de C | omb. [kg/h] | Torqu   | e [N.m] |
|-------|-------------|-------------|------------|-------------|---------|---------|
| [rpm] | Carga B     | Carga C     | Carga B    | Carga C     | Carga B | Carga C |
| 2000  | 68,9%       | 41,7%       | 8,6        | 5,2         | 103,6   | 54,6    |
| 2500  | 71,2%       | 42,3%       | 11,1       | 6,6         | 108,8   | 55,3    |
| 3000  | 70,5%       | 41,1%       | 13,2       | 7,7         | 106,4   | 52,8    |
| 3500  | 70,5%       | 43,6%       | 15,3       | 9,5         | 105,5   | 57,0    |
| 4000  | 72,8%       | 44,0%       | 18,1       | 10,9        | 108,2   | 56,5    |
| 4500  | 73,3%       | 45,4%       | 20,5       | 12,6        | 106,4   | 56,0    |
| 5000  | 74,2%       | 44,4%       | 23,0       | 13,8        | 107,4   | 54,1    |
| 5500  | 75,8%       | 46,7%       | 25,9       | 16,0        | 106,2   | 55,9    |
| 6000  | 74,9%       | 48,5%       | 30,9       | 18,1        | 106,3   | 56,0    |

| Tabela 12 - | Resultados  | Modelo | EIVC - | Etanol |
|-------------|-------------|--------|--------|--------|
|             | Itesultuuos | moucio |        | Lunor  |

**MODELO EIVC - ETANOL** 

| Rot.  | Octane N | umber [-] | CEC [g  | g/kW.h] | PMB [bar] |         |  |
|-------|----------|-----------|---------|---------|-----------|---------|--|
| [rpm] | Carga B  | Carga C   | Carga B | Carga C | Carga B   | Carga C |  |
| 2000  | 70,6     | 52,7      | 395,9   | 457,9   | 1,8       | 1,3     |  |
| 2500  | 69,3     | 52,0      | 388,8   | 452,6   | 2,0       | 1,4     |  |
| 3000  | 71,8     | 48,7      | 394,0   | 463,3   | 2,2       | 1,6     |  |
| 3500  | 70,0     | 49,1      | 396,3   | 455,4   | 2,4       | 1,7     |  |
| 4000  | 70,4     | 49,0      | 399,0   | 462,3   | 2,7       | 1,9     |  |
| 4500  | 69,9     | 50,9      | 407,9   | 478,5   | 2,9       | 2,2     |  |
| 5000  | 67,4     | 49,7      | 409,4   | 488,3   | 3,1       | 2,0     |  |
| 5500  | 72,8     | 50,9      | 423,7   | 496,3   | 3,9       | 2,4     |  |
| 6000  | 73,0     | 56,7      | 462,9   | 513,8   | 4,2       | 3,1     |  |

| Rot.  | Efic. Volun | nétrica [%] | Cons. de C | omb. [kg/h] | Torque [N.m] |         |  |
|-------|-------------|-------------|------------|-------------|--------------|---------|--|
| [rpm] | Carga B     | Carga C     | Carga B    | Carga C     | Carga B      | Carga C |  |
| 2000  | 69,3%       | 40,8%       | 5,9        | 3,5         | 104,4        | 53,4    |  |
| 2500  | 68,2%       | 39,8%       | 7,2        | 4,2         | 103,8        | 51,4    |  |
| 3000  | 67,1%       | 38,8%       | 8,6        | 4,9         | 102,3        | 48,9    |  |
| 3500  | 68,7%       | 39,5%       | 10,2       | 5,9         | 104,0        | 49,9    |  |
| 4000  | 67,9%       | 38,5%       | 12,3       | 6,6         | 103,9        | 47,0    |  |
| 4500  | 68,6%       | 39,1%       | 14,5       | 7,5         | 104,1        | 45,5    |  |
| 5000  | 69,7%       | 39,6%       | 17,2       | 8,4         | 104,1        | 46,0    |  |
| 5500  | 68,1%       | 39,1%       | 18,7       | 9,2         | 97,7         | 42,7    |  |
| 6000  | 70,5%       | 50,0%       | 21,2       | 13,3        | 102,1        | 62,7    |  |

| Tabela 13 -                                    | Resultados | Modelo | EIVC - | Gasolina |
|------------------------------------------------|------------|--------|--------|----------|
| $\mathbf{I}$ abcia $\mathbf{I}$ $\mathbf{J}$ = | Resultauos | moucio |        | Gasonna  |

#### MODELO EIVC - GASOLINA

| Rot.  | Octane N | umber [-] | CEC [g  | g/kW.h] | PMB [bar] |         |  |
|-------|----------|-----------|---------|---------|-----------|---------|--|
| [rpm] | Carga B  | Carga C   | Carga B | Carga C | Carga B   | Carga C |  |
| 2000  | 82,5     | 63,0      | 269,2   | 310,9   | 1,9       | 1,3     |  |
| 2500  | 78,7     | 60,4      | 265,8   | 312,8   | 2,0       | 1,4     |  |
| 3000  | 77,8     | 58,9      | 266,8   | 319,9   | 2,2       | 1,6     |  |
| 3500  | 78,0     | 58,0      | 268,8   | 321,3   | 2,5       | 1,7     |  |
| 4000  | 75,7     | 55,4      | 282,3   | 333,2   | 2,6       | 1,7     |  |
| 4500  | 76,9     | 56,6      | 296,1   | 350,4   | 2,9       | 2,1     |  |
| 5000  | 77,0     | 54,0      | 316,2   | 349,8   | 3,1       | 1,9     |  |
| 5500  | 75,9     | 55,4      | 332,3   | 373,0   | 3,6       | 2,1     |  |
| 6000  | 77,0     | 65,6      | 329,9   | 337,8   | 4,1       | 3,3     |  |

|       |                            |         |         |                             |         | ,       |              |         |         |
|-------|----------------------------|---------|---------|-----------------------------|---------|---------|--------------|---------|---------|
| Rot.  | Eficiência Volumétrica [%] |         |         | Cons. de Combustível [kg/h] |         |         | Torque [N.m] |         |         |
| [rpm] | Carga A                    | Carga B | Carga C | Carga A                     | Carga B | Carga C | Carga A      | Carga B | Carga C |
| 2000  | 81,1%                      | 69,1%   | 42,8%   | 9,9                         | 8,6     | 5,4     | 130,8        | 111,3   | 61,0    |
| 2500  | 88,9%                      | 70,7%   | 42,1%   | 14,4                        | 11,0    | 6,6     | 154,1        | 115,9   | 59,7    |
| 3000  | 82,2%                      | 72,0%   | 41,3%   | 16,5                        | 13,4    | 7,7     | 139,6        | 116,8   | 58,0    |
| 3500  | 84,0%                      | 70,4%   | 42,0%   | 18,9                        | 15,3    | 9,1     | 139,3        | 113,2   | 58,8    |
| 4000  | 90,2%                      | 73,1%   | 42,8%   | 23,8                        | 18,1    | 10,7    | 146,7        | 116,9   | 59,6    |
| 4500  | 94,3%                      | 72,8%   | 44,8%   | 28,6                        | 20,3    | 12,5    | 154,7        | 113,6   | 60,7    |
| 5000  | 92,1%                      | 73,6%   | 45,4%   | 30,8                        | 22,8    | 14,1    | 156,0        | 116,3   | 61,6    |
| 5500  | 88,2%                      | 76,4%   | 46,5%   | 32,6                        | 26,1    | 15,9    | 145,3        | 117,0   | 61,6    |
| 6000  | 80,5%                      | 75,2%   | 47,9%   | 34,0                        | 31,0    | 17,9    | 126,9        | 114,0   | 60,3    |

Tabela 14 - Resultados Modelo de Ciclo Miller com Rc 14,5;1 - Etanol

#### MODELO DE CICLO MILLER COM RC 14,5:1 - ETANOL

| Rot.  | Octane Number [-] |         |         | CEC [g/kW.h] |         |         | PMB [bar] |         |         |
|-------|-------------------|---------|---------|--------------|---------|---------|-----------|---------|---------|
| [rpm] | Carga A           | Carga B | Carga C | Carga A      | Carga B | Carga C | Carga A   | Carga B | Carga C |
| 2000  | 105,0             | 87,8    | 65,0    | 362,8        | 369,6   | 420,1   | 2,2       | 1,8     | 1,4     |
| 2500  | 106,6             | 86,3    | 63,6    | 357,9        | 362,6   | 419,9   | 2,4       | 2,0     | 1,4     |
| 3000  | 105,8             | 91,8    | 59,5    | 375,2        | 366,4   | 422,8   | 2,5       | 2,3     | 1,6     |
| 3500  | 106,0             | 88,3    | 59,0    | 370,6        | 368,3   | 423,3   | 2,9       | 2,4     | 1,7     |
| 4000  | 106,7             | 89,5    | 59,5    | 386,5        | 370,6   | 427,2   | 3,3       | 2,7     | 1,9     |
| 4500  | 106,2             | 88,4    | 62,3    | 392,4        | 379,4   | 436,2   | 3,5       | 3,0     | 2,3     |
| 5000  | 106,3             | 84,0    | 62,2    | 377,1        | 375,1   | 437,9   | 3,9       | 3,2     | 2,1     |
| 5500  | 105,3             | 92,1    | 62,8    | 389,7        | 387,4   | 448,6   | 4,4       | 4,0     | 2,4     |
| 6000  | 100,1             | 92,6    | 70,4    | 426,4        | 432,3   | 471,7   | 4,4       | 4,3     | 3,1     |

| Rot.  | Eficiência Volumétrica [%] |         |         | Cons. de Combustível [kg/h] |         |         | Torque [N.m] |         |         |
|-------|----------------------------|---------|---------|-----------------------------|---------|---------|--------------|---------|---------|
| [rpm] | Carga A                    | Carga B | Carga C | Carga A                     | Carga B | Carga C | Carga A      | Carga B | Carga C |
| 2000  | 55,1%                      | 54,5%   | 40,0%   | 5,0                         | 4,6     | 3,4     | 86,6         | 84,0    | 55,4    |
| 2500  | 57,2%                      | 56,5%   | 39,4%   | 6,4                         | 6,0     | 4,2     | 92,3         | 88,9    | 54,7    |
| 3000  | 55,7%                      | 55,0%   | 38,8%   | 7,7                         | 7,0     | 4,9     | 89,6         | 86,2    | 53,5    |
| 3500  | 56,3%                      | 57,5%   | 38,2%   | 8,9                         | 8,6     | 5,7     | 90,1         | 90,6    | 52,1    |
| 4000  | 61,6%                      | 59,5%   | 39,3%   | 11,9                        | 10,8    | 6,7     | 101,0        | 95,9    | 53,0    |
| 4500  | 66,0%                      | 57,1%   | 38,5%   | 15,1                        | 12,0    | 7,4     | 106,5        | 89,2    | 49,1    |
| 5000  | 71,2%                      | 58,6%   | 40,6%   | 18,4                        | 14,5    | 8,6     | 113,9        | 91,0    | 53,0    |
| 5500  | 63,1%                      | 59,0%   | 40,4%   | 18,9                        | 16,2    | 9,4     | 95,6         | 89,2    | 50,2    |
| 6000  | 63,9%                      | 58,5%   | 49,4%   | 21,2                        | 17,6    | 13,2    | 96,2         | 87,1    | 68,1    |

Tabela 15 - Resultados Modelo de Ciclo Miller com Rc 14,5;1 - Gasolina

## MODELO DE CICLO MILLER COM RC 14,5:1 - GASOLINA

| Rot.  | Octane Number [-] |         |         | CEC [g/kW.h] |         |         | PMB [bar] |         |         |
|-------|-------------------|---------|---------|--------------|---------|---------|-----------|---------|---------|
| [rpm] | Carga A           | Carga B | Carga C | Carga A      | Carga B | Carga C | Carga A   | Carga B | Carga C |
| 2000  | 86,5              | 86,5    | 76,0    | 273,0        | 263,6   | 292,0   | 1,6       | 1,6     | 1,3     |
| 2500  | 86,0              | 86,8    | 73,5    | 266,8        | 256,9   | 291,9   | 1,8       | 1,8     | 1,4     |
| 3000  | 86,9              | 86,1    | 71,7    | 274,5        | 259,1   | 294,1   | 2,0       | 2,0     | 1,6     |
| 3500  | 85,9              | 86,6    | 69,5    | 269,4        | 258,0   | 300,5   | 2,2       | 2,2     | 1,6     |
| 4000  | 86,8              | 86,4    | 68,2    | 281,1        | 268,1   | 299,7   | 2,4       | 2,4     | 1,8     |
| 4500  | 86,8              | 86,2    | 69,0    | 300,1        | 286,3   | 320,0   | 2,9       | 2,7     | 2,1     |
| 5000  | 86,7              | 86,1    | 66,7    | 309,1        | 303,8   | 310,3   | 3,1       | 2,6     | 2,0     |
| 5500  | 86,5              | 85,9    | 68,9    | 342,3        | 315,5   | 325,8   | 3,4       | 3,2     | 2,2     |
| 6000  | 86,9              | 86,6    | 80,6    | 350,6        | 321,4   | 307,7   | 4,0       | 3,8     | 3,3     |